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Abstract

The range accrual note is an exotic interest rate derivative that pays out a
fixed rate for every day that a chosen reference rate falls within a predefined
corridor. This project derives expressions for the price and ∆ of the range
note before considering FRAs as a hedge instrument.
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Chapter 1

Introduction

At initiation of the contract a range and rate are fixed, the range note pays
the fixed rate for every day that the reference interest rate is in the corridor
and nothing when it is not. The contract makes payments at periods equal
to the tenor of the reference rate. This introduces timing issues into the
pricing that make the daily replication of the note slightly more advanced
than a simple spread of digital caplets. Instead the range note is replicated
by daily range contingent payoffs which, themselves, are a spread of daily
contingent payoffs. The contingent payoff differs from the digital caplet in
that, instead of paying out 1, it pays out the present value of 1 at the actual
date of payment. The range note is then fully replicated by summing over
all these range contingent payoffs for all ’active’ days in the future. Hence
the pricing of the range note depends entirely on finding an expression for
the contingent payoff.

The next chapter sets up the theory of the pricing procedure sketched in
the above paragraph. After making the above more exact, we begin by con-
sidering the two cases of the single period range note- when the evaluation
date is before the initiation of the period and when it falls during the period.
We then go on to show how multi-period range notes are built from these
two cases.

Having established that pricing the range note depends entirely on evaluat-
ing the contingent payoff, the third chapter accomplishes this in the South
African market. A Black’s model is assumed for JIBAR, a suitable numeraire
is chosen and an integral expression for the contingent payoff is found. This
expression cannot be solved analytically 1 and is, instead, approximated nu-
merically by Taylor expanding the integrand and interchanging summation
and integral. This approximation then allows us to implement the pricing
of the range note in matlab.

1At least not to my knowledge
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The fourth chapter is concerned with finding ∆ of the range note. Again
this depends entirely on finding ∆ of the contingent payoff. The integral ex-
pression for the contingent payoff is differentiated using the Leibnitz integral
rule resulting in a boundary and integral term. The integral term is then
solved with exactly the same method as that in chapter three. The rest of
the chapter then gives the matlab algorithm for finding ∆.

In the final chapter we consider the ∆-hedging of the range note with FRA’s
and a riskless money market account. After deriving the hedge portfolio, we
obtain an expression for the associated hedge slippage.
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Chapter 2

General Method For Pricing

a Range Note

In this section we build up a general method for pricing a range note by
considering a sequence of simpler derivatives. We will begin by considering
the following instruments:

• European digital call option
• European range digital call option
• European contingent payoff call option
• European range contingent payoff call option

Before we discuss their relevance to the pricing of

• Single period range note
• Multi-period range note

2.1 European Digital Call Option

Definition: A digital call is an option that has unit payoff if the reference
interest rate is above the strike interest rate at maturity and zero if it is
below or equal to the strike rate at maturity.

Let T,R(T, α) and k denote the options’s maturity, reference interest rate
at maturity and strike rate respectively, where α is the tenor of the reference
interest rate. Then the payoff at maturity T is given by

DC (T ;T, α, k) = θ (R (T ;α) − k) (2.1)

Where the Heaviside function θ (R (T ;α) − k) equals 1 on R (T ;α) > k and

7



0 on R (T ;α) ≤ k.

Thus with a suitable choice of numeraire φ and equivalent martingale mea-
sure Q we can price the digital call by evaluating

DC (t;T, α, k) = φ(t)EQ

[
θ (R (T ;α) − k)

φ(T )

]

(2.2)

2.2 European Range Digital Call Option

Definition: A range digital call is an option that has unit payoff if the ref-
erence interest rate is within the range (kL, kU ] at maturity and zero outside
this range at maturity. We call kL the lower strike and kU the upper strike.

Denoting the range digital call by RD, we can mathematically express the
definition as

RD (T ;T, α, kL, kU ) = 1; kL < R (T ;α) ≤ kU

0; otherwise

= [θ (R (T ;α) − kL) − θ (R (T ;α) − kU )] (2.3)

This payoff can be replicated with the following portfolio

• Long a digital call at the lower strike
• Short a digital call at the upper strike

Thus, by the law of one price we have that the price of a range digital call
at date t (t < T ) is

RD (t;T, α, kL, kU ) = DC (t;T, α, kL) − DC (t;T, α, kU ) (2.4)

2.3 European Contingent Payoff Call Option

Definition: A contingent payoff call is an option that pays at maturity
T the present value of one at a later time T ′ if the reference interest rate
is greater than the strike rate and zero if it is below or equal to the strike rate.

Denoting the present value at T of one at T ′ by the discount factor Z(T, T ′)
and the contingent payoff call by CP , the payoff can be expressed as

CP
(
T ;T, T ′, α, k

)
= Z(T, T ′)θ (R (T ;α) − k)

Again with a suitable choice of numeraire φ and equivalent martingale mea-
sure Q we can price the digital call by evaluating
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CP
(
t;T, T ′, α, k

)
= φ(t)EQ

[
Z(T, T ′)θ (R (T ;α) − k)

φ(T )

]

(2.5)

2.4 European Range Contingent Payoff Call Op-

tion

Definition: A range contingent payoff call is an option that has payoff
Z(T, T ′) if the reference interest rate is within the range (kL, kU ] at matu-
rity and zero outside this range at maturity.

Denoting the range contingent payoff call by RCP , we can express the payoff
at maturity as

RCP
(
T ;T, T ′, α, kL, kU

)
= Z(T, T ′) [θ (R (T ;α) − kL) − θ (R (T ;α) − kU )](2.6)

Analogously to the case of the range digital call, the range contingent pay-
off call is a spread of contingent payoff calls and can be priced with the
expression

RCP
(
t;T, T ′, α, kL, kU

)
= CP

(
t;T, T ′, α, kL

)
− CP

(
t;T, T ′, α, kU

)
(2.7)

2.5 Range Accrual Note

We begin the study of the range note by considering the basic single period
range note, which has two cases. In the first case the valuation date falls
before the initiation of the period and in the second case, the valuation
date falls during the period. The second case is split into two parts: the
deterministic period between the initiation of the period and the valuation
date, and a truncated single period from the valuation date to the end of
the period. This treatment of the single period range note then allows an
easy description of the multiperiod range note.

2.5.1 Single Period Range Note

Definition: A fixed interest rate, interest rate range and period is specified
on initiation of the single period range note. This note entitles the holder
to a payment at then end of the period calculated by multiplying the fixed
interest rate by the number of days during the period that a reference interest
rate fell within the specified range. At the expiry of the contract the nominal
is also, of course, paid back.
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Valuation Date Before Period Initiation

Denoting the initiation and end of the period by T0 and T1 respectively, the
fixed rate as R and the range note as V , the value of the range note at T1 is

V (T1;T0, T1, R, kL, kU ) =
RN

D

n∑

i=0

[θ (R (T0 + i;α) − kL) − θ (R (T0 + i;α) − kU )]+N

(2.8)
Where N is the nominal, D is the number of days in the year and T0 + i
is the ith day after T0 with T0 + n = T1. Obviously R (T0 + i;α) is the
reference interest rate on day T0 + i, which is known at T1, and so the
summation counts the number of days in which the reference rate fell within
the specified range over the period. Comparing this to (2.3) one might
naively suspect that we can use digital calls as counters for the number of
days and so replicate the range note with digital calls. However the payment
of the digital call occurs at the same time as the reference rate is observed,
thus if kL < R (T0 + i;α) ≤ kU , the holder of the digital call would receive
one at T0 + i whereas a holder of the range note only receives this payment
at T1. But if the holder received Z(T0 + i, T1) at T0 + i, then this payment
would be worth one at T1 and we could replicate the range note. Thus
we replicate the range note with the collection of range contingent payoffs
{RCP (t;T0 + i, T1, α, kL, kU )}n

i=0 giving

V (t;T0, T1, R, kL, kU ) =
RN

D

n∑

i=0

RCP (t;T0 + i, T1, α, kL, kU ) + Z(t, T1)N

(2.9)
for t < T0.

Valuation Date During Period

We now consider the case where T0 < t ≤ T1. We split the period into two
parts as below
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Figure 2.1: When the valuation date falls in the middle of the period, the
valuation is split into two parts. The deterministic known period and the
stochastic broken period

We call the period (T0, t] the known period as we have already observed
how many days within this period will contribute to the payment at T1, we
denote this number by H(t).

VKnown =
RNH(t)

D
Z(t, T1)

Defining p such that t = T0 +p, we then price the contribution of the broken
period (t, T1] in exactly the same way as in(2.9) except the summation now
begins from i = p + 1 as opposed to i = 0. Putting the parts together, we
obtain

V (t;T0, T1, R, kL, kU ) =
RNH(t)

D
Z(t, T1)+

RN

D

n∑

i=p+1

RCP (t;T0 + i, T1, α, kL, kU )+Z(t, T1)N

(2.10)
for T0 < t ≤ T1.

2.5.2 Multi-Period Range Note

Definition:A multi-period range note is a successive series of single period
range notes with interest being paid at the end of each period and the nom-
inal payment occurring at the end of the final period.

We will only consider the case 1 where the fixed rate and strike range are
constant throughout the life of the range note 2.

Define

1The generalisation is obvious
2Range note refers to the general case of the multi-period range note
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Vj (t;Tj−1, Tj , R, kL, kU ) =
RN

D

nj∑

i=0

RCP (t;Tj−1 + i, Tj , α, kL, kU ) (2.11)

Where Tj = Tj−1 + nj. Then a m − period range note V , with initiation
date of first period T0 and end date Tm of the mth period, has value at date
t < T0 of

V (t;T0, Tm, R, kL, kU ) =
m∑

j=1

Vj (t;Tj−1, Tj , R, kL, kU ) + Z(t, Tm)N (2.12)

Where Vj is given by (2.11), RCP by (2.7) and CP by (2.5).

Figure 2.2: The bottom time-line illustrates the case where the evaluation
date lies before the initiation of the first period while the time-line above it
illustrates the case where the evaluation date falls in the middle of a period

In the case where Tn < t ≤ Tn+1 (n < m), we make the obvious adjust-
ments to (2.12) and (2.10) to obtain

V (t;Tn, Tm, R, kL, kU ) = Vn+1 (t;Tn, Tn+1, R, kL, kU ) + V (t;Tn+1, Tm, R, kL, kU ) (2.13)

Vn+1 (t;Tn, Tn+1, R, kL, kU ) =
RNH(t)

D
Z(t, T1) +

RN

D

nn+1∑

i=p+1

RCP (t;Tn + i, Tn+1, α, kL, kU )

(2.14)
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2.5.3 The Utility of The Range Note

To tease out the financial understanding of a range note we begin by com-
paring it to the most common of pure interest rate derivatives- the bond.
A bond has a fixed coupon with fixed payment dates with a bullet accom-
panying the last coupon payment. The future cash flows of the bond are
completely deterministic and the interest rate dependence enters with the
present valuing of these flows 3. This is the basis for the inverse relationship
between bonds and rates. The higher the rate, the lower the discount factor
and the smaller the present value of the cash flow. The differing maturity
of the bonds determines the exposure of the bond to the term structure of
interest rates.

A range note also entitles the holder to cash flows at known dates including
a known bullet at the end. However these cash flows are stochastic depend-
ing on the daily level of some reference interest rate and are floored to be
positive. This gives the holder of the range note direct exposure to the ref-
erence rate and not just to an averaging of the yield curve as in the case of
bonds. In addition, the details of the stochastic dependence of the payoff are
a direct play on the reference interest rate volatility where the specification
of the in the money corridor allows one to make this play as fine or coarse as
desired. The purchaser of an in the money range note is expecting volatility
to be low. An out of the money range note pays off for high volatility and
a directional move up or down. While a spread of out of the money range
notes pays off under high volatility regardless of the directional move. In
addition the binary, all-or-nothing nature of the daily payoff makes this a
relatively cheap derivative.

3All pricing using the rule of present worth exposes the instrument to interest rates, it

is the fact that the coupons are known which makes bonds only exposed to interest rates
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Figure 2.3: The top left graph gives the payoff for an in the money range
note paying out under low volatility. The bottom right graph is a spread
of out of the money range notes (graphed above and next to it) paying out
under high volatility
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2.6 Pricing Schematic

Below is a summary for the pricing of a range note:
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CP (t;T, T ′, α, k) = φ(t)EQ
[

Z(T,T ′)θ(R(T ;α)−k)
φ(T )

]

RCP (t;T, T ′, α, kL, kU ) = CP (t;T, T ′, α, kL) − CP (t;T, T ′, α, kU )

Vj (t;Tj−1, Tj , R, kL, kU ) = RN
D

∑nj

i=0 RCP (t;Tj−1 + i, Tj , α, kL, kU )

For t < T0

V (t;T0, Tm, R, kL, kU ) =
∑m

j=1 Vj (t;Tj−1, Tj , R, kL, kU ) + Z(t, Tm)N

And for Tn < t ≤ Tn+1, we have

V (t;Tn, Tm, R, kL, kU ) = Vn+1 (t;Tn, Tn+1, R, kL, kU ) + V (t;Tn+1, Tm, R, kL, kU )

Where

Vn+1 (t;Tn, Tn+1, R, kL, kU ) = NH(t)
D Z(t, T1) + RN

D

∑nn+1

i=p+1 RCP (t;Tn + i, Tn+1, α, kL, kU )

∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣
∣
∣
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(2.15)
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Chapter 3

Valuing a Range Note in the

South African Market

From this summary it is immediately evident that the valuation of a range
note depends entirely on solving (2.5) for the contingent payoff call 1. In
this chapter we assume dynamics for forward JIBAR, choose a suitable nu-
meraire, and evaluate (2.5).

3.1 Forward JIBAR Dynamics

We use Black’s model to price the contingent payoff by assuming that for-
ward JIBAR fi for period ti to ti + α has marginal distribution on each day
given by solving the SDE

dfi = fiσidW (3.1)

Where dW is a brownian motion under the equivalent martingale measure
and σi is the volatility measure.
We now solve for fi:

d (lnfi) =
1

fi
df − 1

2f2
i

(dfi)
2

= −1

2
σ2

i dt + σidW

Integrating from t to later time tj (≤ ti) gives

fi(tj) = fi(t) exp

(

−1

2
σ2

i (tj − t) + σi

√
tj − tz

)

; z ∼ N(0, 1) (3.2)

fi(t) are the forward JIBAR rates implied by the current yield curve

1The current yield curve is assumed to be given
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Figure 3.1: Black’s model assumes that the underlying is marginally distrib-
uted according to geometric Brownian motion at discrete points in time but
makes no comment about the process between these dates

Z(t, ti)
1

(1 + αfi(t))
= Z(t, ti + α)

⇒ fi(t) =
1

α

[
Z(t, ti)

Z(t, ti + α)
− 1

]

(3.3)

Now (3.2) holds for all points tj where we assume fi is marginally distributed,
in our case this will just be at the payoff day ti. Hence (3.2) will give the
marginal distribution of j(ti;α) = fi(ti), the spot JIBAR rate from ti to
ti + α

j(ti;α) = fi(ti) = fi(t) exp

(

−1

2
σ2

i (ti − t) + σi

√
ti − tz

)

(3.4)

3.2 Evaluating a Contingent Payoff Call

We now evaluate CP (t; ti, T + α,α, k). We begin by rewriting the payoff in
terms of the numeraire.
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Figure 3.2: Timeline illustrating the procedure for finding the payoff as a
function of the numeraire

Given j(ti;α) we know that Z(ti, ti +α) = (1+ j(ti;α)α)−1. What does this
imply for Z(ti, T + α)?
Since α and τi are rational numbers, we know that there exists positive
integers m and n such that nτi = mα. Now if we invest n-times at the
τi-rate and m-times at the α-rate, then be no arbitrage we must have

Z(ti, T + α)n = Z(ti, ti + α)m

⇒ Z(ti, T + α) = Z(ti, ti + α)
m
n

⇒ Z(ti, T + α) = Z(ti, ti + α)
τi
α

⇒ Z(ti, T + α) = (1 + j(ti;α)α)−
τi
α (3.5)

⇒ Z(ti, T + α) =

(

1 + αfi(t) exp

(

−1

2
σ2

i (∆ti) + σi

√

∆tiz

))− τi
α

(3.6)

We now choose the discount factor Z(t, ti + α) with fixed maturity at ti + α
as the numeraire. Resultantly (2.5) becomes

CP (t; ti, T + α,α, k) = Z(t, ti + α)EQ

[
Z(ti, T + α)

Z(ti, ti + α)
θ (j(ti;α) − k)

]

= Z(t, ti + α)EQ
[

(1 + j(ti;α)α)(1−
τi
α ) θ (j(ti;α) − k)

]

= Z(t, ti + α)CPE (t; ti, T + α,α, k) (3.7)

Now the discount factor will be exogenously taken off the yield curve at t
and, so, the challenge becomes to solve for

CPE (t; ti, T + α,α, k) = EQ
[

(1 + j(ti;α)α)(1−
τi
α ) θ (j(ti;α) − k)

]

(3.8)

18



The strategy will be to Taylor expand (1 + j(ti;α)α)(1−
τi
α ), interchange in-

tegral and summation before finding a series solution for the expectation.
In order to implement this strategy, we require the following theorems.

3.2.1 Some Useful Theorems

Theorem (Binomial Series): For |x| < 1 and 0 < |β| < 1, we have

(1 + x)β =

∞∑

n=0

(−β)n
n!

(−x)n

where (−β)n is the pochammer number defined in terms of the gamma func-
tion as

(−β)n =
Γ(n − β)

Γ(−β)

Theorem (Weierstrass M-test): For each n ≥ 0 let fn : E → R be a continu-
ous function. Suppose that for each n ∈ N ∃ Mn ≥ 0 such that |fn(x)| ≤ Mn

∀x ∈ E, and also
∑

Mn < ∞, then
∑

fn(x) converges absolutely and uni-
formly on E to some continuous function F

Theorem (Term-By-Term Integration): Suppose for each n ≥ 0 we have
that fn : (a, b) → R is integrable over (a, b) and that

∑
fn converges uni-

formly on (a,b) to some function F : (a, b) → R. Then F is integrable over
(a, b) too and

∫ b

a
F (x)dx =

∫ b

a

(
∞∑

n=0

fn(x)

)

dx =
∞∑

n=0

∫ b

a
fn(x)dx

3.2.2 Approximating CPE

Setting βi = (1− τi
α ) we see that 0 < βi < 1 as long as τi 6= 0, α. Additionally,

in order to use the Binomial series we require

j(ti;α)α < 1

⇒ j(ti;α) <
1

α

⇒ z <
1

σi

√
∆ti

[

− ln(fi(t)α) +
1

2
σ2

i ∆ti

]

= Du

Where we used (3.4) in the last line. Again using (3.4) we note that

θ (j(ti;α) − k) = θ (z − DL) (3.9)

where DL =
1

σi

√
∆ti

[

ln

(
k

fi(t)

)

+
1

2
σ2

i ∆ti

]

(3.10)

19



As a quick check on the limits, we note that

DU = DL − 1

σi

√
∆ti

ln(kα) (3.11)

⇒ DL < DU ⇐⇒ k <
1

α
(3.12)

Using the Binomial series we can rewrite (3.8) as

CPE (t; ti, k) =

∫ DU

DL

∞∑

n=0

(−βi)n√
2πn!

(

−αfi(t) exp

(

−1

2
σ2

i (∆ti) + σi

√

∆tiz

))n

exp

(

−1

2
z2

)

dz

︸ ︷︷ ︸

I1

+

∫ ∞

DU

(1 + j(ti;α)α)βi exp

(

−1

2
z2

)
dz√
2π

︸ ︷︷ ︸

Error Term

(3.13)

In order to approximate CPE by I1 we have to demonstrate that the error
term is negligible. JIBAR is a quarterly rate implying that α = 1

4 . Thus the
exclusion of the error term involves ignoring the expectation over the range
j(ti; 1/4) > 4. Both history and common sense would indicate that these
events truly are negligible. From an economic standpoint, before interest
rates reach anywhere near 4 the mispricing of the derivative is the last of
the writer’s problems. This is indeed evident in the mathematical framework
of the model as shown in the table below where P[z ≥ DU ] is calculated for
various choices of parameters. Even for long dated derivatives with current
forward rate at 1 and high vol, we only have a 0.05 probability of the spot
rate reaching 4. On the technical side this table also illustrates that the
strike will, with almost certainty 2 , also be below 4 showing by (3.11) that
DL ≤ DU .

2In fact, since the strike is agreed upon before initiating deal, the writer can choose to

never enter into a deal where this restriction is violated
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Figure 3.3: This table illustrates how negligible the error term is in the
approximation for CPE

Hence we will use the approximation

CPE (t; ti, k) ≈
∫ DU

DL

∞∑

n=0

(−βi)n√
2πn!

(

−αfi(t) exp

(

−1

2
σ2

i (∆ti) + σi

√

∆tiz

))n

exp

(

−1

2
z2

)

dz

= I1 (3.14)

In order to interchange integral and summation, we set
fn(z) = (−βi)n

n!

(
−αfi(t) exp

(
−1

2σ2
i (∆ti) + σi

√
∆tiz

))n
exp

(
−1

2z2
)

and, with
the aid of the Weierstrass M-test, check that the conditions set out in the
theorem on term -by-term integration are satisfied:

• Γ(x) is an increasing function for x > 2 implying that for n ≥ 3,
∣
∣
∣
(−βi)n

n!

∣
∣
∣ =

∣
∣
∣

Γ(n−βi)
Γ(−βi)n!

∣
∣
∣ is a decreasing sequence in n since Γ(n − βi) < Γ(n) = (n − 1)!

and Γ(−βi) is finite for 0 < βi < 1. This together with fact that
∣
∣
∣
(−βi)n

n!

∣
∣
∣

is finite for all n implies that
∣
∣
∣
(−βi)n

n!

∣
∣
∣ ≤ γ∗ = max{

∣
∣
∣
(−βi)n

n!

∣
∣
∣ |n = 0, 1, 2, 3}.

Thus
∑ |fn(z)| <

∑
γ∗
(
αfi(t) exp

(
−1

2σ2
i (∆ti) + σi

√
∆tiz

))n
=
∑

γ∗νn < ∞ on
z ∈ (DL,DU ) since ν < 1 on this domain. Thus by the Weierstrass M-test
we can conclude that fn(z) is uniformly convergent on (DL,DU ).

•
∫ DU

DL

|fn(z)| dz√
2π

<

∫ DU

DL

exp

(

−1

2
z2

)
dz√
2π

<

∫ ∞

−∞
exp

(

−1

2
z2

)
dz√
2π

< ∞

Hence we can write
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I1 =

∞∑

n=0

(−βi)n
n!

(

−αfi(t) exp

(

−1

2
σ2

i (∆ti)

))n ∫ DU

DL

exp

(

−1

2
z2 + σi

√

∆tiz

)
dz√
2π

︸ ︷︷ ︸

I∗

(3.15)
Solving for I∗ gives

I∗ = exp

(
1

2
n2σ2

i ∆ti

)∫ DU

DL

exp

(

−1

2

(

z − nσi

√

∆ti

)2
)

dz√
2π

= exp

(
1

2
n2σ2

i ∆ti

)∫ DU−nσi

√
∆ti

DL−nσi

√
∆ti

exp

(

−1

2
z2

)
dz√
2π

= exp

(
1

2
n2σ2

i ∆ti

)∫ Dn
U

Dn
L

exp

(

−1

2
z2

)
dz√
2π

= exp

(
1

2
n2σ2

i ∆ti

)

[N(Dn
U ) − N(Dn

L)] (3.16)

Where as usual N(x) denotes the cumulative normal function. Putting
(3.16), (3.15) and (3.14) together, we have for 0 < βi < 1

CPE (t; ti, T + α,α, k) ≈
∞∑

n=0

Γ(n − βi)

Γ(−βi)n!

(

−αfi(t) exp

(

−1

2
σ2

i (∆ti(1 − n))

))n

[N(Dn
U ) − N(Dn

L)]

(3.17)

Where

DL =
1

σi

√
∆ti

[

ln

(
k

jt

)

+
1

2
σ2

i ∆ti

]

DU = DL − 1

σi

√
∆ti

ln(kα)

Dn
L = DL − σi

√

∆ti

Dn
U = Dn

L − 1

σi

√
∆ti

ln(kα)

We now consider the case βi = 1. In this case we can solve (3.8) explicitly

•βi = 1 ⇐⇒ τi = 0 :

CPE (t;T + α, T + α,α, k) = EQ [(1 + j(ti;α)α) θ (j(ti;α) − k)]

=

∫ ∞

DL

(

1 + αfi(t) exp

(

−1

2
σ2

i (T + α − t) + σi

√
T + α − tz

))

exp

(

−1

2
z2

)
dz√
2π

= N(−DL) + αfi(t)

∫ ∞

DL

exp

(

−1

2

(

z − σi

√
T + α − t

)2
)

dz√
2π

= N(−DL) + αfi(t)N(σi

√
T + α − t − DL) (3.18)
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Where DL is given by (3.10).

3.3 Matlab Implementation of Derived Scheme

In this section we implement the scheme set out in (2.15) with (3.8) as
the expression for the contingent payoff. Note that the code assumes a
flat volatility structure. If one were to generalise this, one would include a
volatility curve in the body of the code and use it in an analogous fashion
to the code for the term structure of forward rates taken off the discount
curve.

3.3.1 The Discount Factor Function

Before we can implement the scheme proper we require a current discount
curve in order to obtain

• the discounting of the expected payoff given by CPE.
• the current forward JIBAR rates which are inputs in CPE

The program implementing this will generally involve bootstrapping to ob-
tain node points on a yield curve which will then be generated in full by
some interpolation scheme. Since this is not a focus of the project, my gen-
eration of discount factors is decidedly more sloppy. My function has two
matrix inputs consisting of the node discount factors and their respective
dates. Arbitrary discount factors are then obtained by linearly interpolating
between these points. In the function below I have used node points 3 as on
Monday 3 October 2005:

function William=currentdiscount(T_start,T_maturity) df= [1.000000

0.999812................... 0.342328]; T=[0............

0.002739726 13.26027397];

Znow1=interp1(T,df,T_maturity);

Znow2=interp1(T,df,T_start);

William=Znow1./Znow2;

3.3.2 Evaluating CPE

%CPe for 0<beta<1

function Martin=CPe(alpha,tau,t,vol,f, strike,N)

beta=1-tau./alpha;

Dlow=(log(strike./f)+0.5.*vol.^2.*t)./(vol.*sqrt(t));

Dup=(-log(f.*alpha)+0.5.*vol.^2.*t)./(vol.*sqrt(t));

b=0.5.*vol.^2.*t;

3As given to me by my supervisor Glenn Brickhill
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c=vol.*sqrt(t);

a=alpha.*f;

g=gamma(-beta);

A=0;

for n=0:N

B=-b.*(1-n);

C= n.*c;

A=A+ gamma(n-beta)./(g.*factorial(n))

.*(-a.*exp(B)).^n.*(cdf(Dup-C)-cdf(Dlow-C));

end

Martin=A;

%CpeEnd- Cpe for beta=1

function Malcolm=CPeEnd(alpha,t,vol,f, strike)

Dlow=(log(strike./f)+0.5*vol^2*t)./(vol.*sqrt(t));

Malcolm=cdf(-Dlow)+alpha.*f.*cdf(vol.*sqrt(t)-Dlow);

3.3.3 Evaluating RCPE

%RCPe for 0<beta<1

function Morris=RCPe(alpha,tau,t,vol,f, StrikeLow,StrikeUp,N)

Morris=CPe(alpha,tau,t,vol,f,StrikeLow,N)-CPe(alpha,tau,t,vol,f,StrikeUp,N);

%RCpeEnd- RCpe for beta=1

function Rachel=RCPeEnd(alpha,t,vol,f, StrikeLow,StrikeUp)

Rachel=CPeEnd(alpha,t,vol,f,StrikeLow)-CPeEnd(alpha,t,vol,f,StrikeUp);

3.3.4 Evaluating Vj

Denote Vj by V single.

function

Arthur=Vsingle(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

t_i=[To+1/360:1/360:To+alpha-1/360]; Zend=t_i+alpha;

tau=To+alpha-t_i; t=t_i-tvalue;

f=(DiscountFactor(t_i)./DiscountFactor(Zend)-1)./alpha;

fend=(DiscountFactor(To+alpha)./DiscountFactor(To+2.*alpha)-1)./alpha;

Z=DiscountFactor(Zend);

RCP=RCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N); RN=Z.*RCP;

Arthur=(Nominal.*rate/360).*(sum(RN)+

DiscountFactor(To+alpha).*

RCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));
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3.3.5 Evaluating V for t < T0

function

Timothy=VBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

if tvalue>To

disp([’Error:tvalue>To. Use function V2Mid’])

else

PeriodValue=0;

for j=0:m-1

T=To+j.*alpha;

PeriodValue=PeriodValue +

Vsingle(T,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N);

end

Timothy=PeriodValue+DiscountFactor(To+m.*alpha).*Nominal;

end

3.3.6 Evaluating V for Tn < t ≤ Tn+1

We first calculate the value of the broken period

function

Allan=VBroken(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

t_i=[tvalue+1/360:1/360:To+alpha-1/360]; Zend=t_i+alpha;

tau=To+alpha-t_i; t=t_i-tvalue; Z=DiscountFactor(Zend);

f=(DiscountFactor(t_i)./DiscountFactor(Zend)-1)./alpha;

fend=(DiscountFactor(To+alpha)./DiscountFactor(To+2.*alpha)-1)./alpha;

RCP=RCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N); RN=Z.*RCP;

Allan=(Nominal.*rate/360).*(sum(RN)+DiscountFactor(To+alpha).*

RCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));

Which is used in the calculation of V mid

function

Walter=VMid(m,Days,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

if tvalue<=To

disp([’Error: tvalue<=To. Use function V’])

else

Nodes=[To:alpha:To+(m-1)*alpha];

NodeStart=max(Nodes.*(tvalue>=Nodes));

n=(NodeStart-To)./alpha;
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Broken=VBroken(NodeStart,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N);

Known=DiscountFactor(NodeStart+alpha).*Days.*rate.*Nominal/360;

Rest=VBefore(m-n-1,NodeStart+alpha,tvalue,alpha,vol

,StrikeLow,StrikeUp,Nominal,rate,N);

Walter=Broken+Known+Rest;

end

3.4 Graphing a Value Surface: Flat Yield Curve

The underlyings of the range note are the MANY forward rates for the ref-
erence rate on the remaining ’active’ days of the note. As such the pricing of
the note in a market with any realistic structure is not amenable to graphical
representation. Instead we use the current yield curve for the discounting
and a flat yield curve to obtain the single forward rate. The value of the
range note is then plotted against this forward rate and time to obtain a
surface that illustrates the fundamentals of the pricing surprisingly well.

The matlab code for this involved some tampering with the previous code:

• CPe and RCPe remain unchanged

• The old DiscountFactor is renamed currentdiscount

• The function DiscountFactor now has the flat yield as an extra argument
and gives the corresponding discount curve

• VSingle, VBroken, VBefore and VMid now have this flat yield as an extra
input

• The forward rates f and fend appearing in VSingle and VBroken are now
obtained from the new function in DiscountFactor

This code together with that for section 4.3 is given in appendix A. The
surface generated by ValueSurf is given below:
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Figure 3.4: Value surface of a 5-period range note as a function of time and
constant forward rate for a flat yield curve with initiation time 0.2, period
0.25, flat vol 0.1, upper strike 0.085, lower strike 0.07, nominal 100, fixed
rate 0.08 and Days 2

The first thing one notices is the jump at a day after the initiation date
of the first period time = 0.201. This arises due to the fact that at this
date we swap from using V Before to V Mid which now has a deterministic
input representing the number of in the money days we have observed in
the current period. As such it is natural to distinguish between these two
surfaces in the analysis.

The top of the V Mid surface jumps above that of V Before since in the
plot I set Days equal to 2 throughout the calculation. For the first few days
of the first period this input of 2 is greater than the probability of being in
the money as predicted in V Before. Accruing a payment for 2 days after
the first day of the period will certainly push the surface up here! This
constant input also has the effect of making the V Mid surface very smooth.
In practice, the discrete, changing nature of Days will create an effect very
similar to that at time = 0.201 throughout the surface.
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The lines of constant time for both surfaces look like a normal density func-
tion with mean near the middle of the in the money corridor flattening out
very quickly at the limits of the corridor. The current forward value is the
expected value of the spot at the ’pay day’ meaning the closer to this mean
the forward rate is, the more area of its marginal distribution will fall in the
money and vice versa for the tails at the edge of the corridor limits. This
example is plotted with a low volatility and so the tails are quite thin, how-
ever higher volatility inputs will result in fatter tails. The non-zero constant
value the tails peteer off to is the present value of the bullet.

For lines of constant forward rate, we distinguish between the evolution
of the flat base and that of the peaks. The base moves up quite linearly
with time, this is just the fact that the present value of the bullet becomes
greater having the net effect of adding a positive constant to the minimum
value of the note to the time period before. This is true for both surfaces.
Additionally, the peaks of these lines narrow as one moves forward in time.
This is also true of both surfaces and occurs because the volatility of the
forward rates decrease with time to maturity as in any theory with a geo-
metric brownian motion assumption. Now the lines of constant f appearing
on the peaks of both surface differ quite noticeably. They are increasing for
V Before and decreasing for V Mid. For the time period before the initiation
of the first period, there are an equal number of days from which we might
receive payment and the present value of these possible payments increase
in time in such a way as they dominate the fluctuations in the ’possibility’ of
these payments. However on the V Mid surface these lines decrease for two
reasons. During the periods, they decrease because we have a constant input
of 2 for Days meaning after the first two days there are no more observed
in the money days. Between periods this peak will always drop as there are
fewer possible payments left as compared to the period before.

Most of these properties elucidate on what we can expect for the ∆ sur-
face of the range note. This surface and its properties appear in section

4.3.
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Chapter 4

Delta of the Range Note

In this section we solve for ∆ in an analogous fashion to the numerical
scheme set out for the pricing.

4.1 Evaluating Delta

The underlyings of the range note are the many forward rates fi(T ). Delta
is obtained by summing the partial derivatives of the range note with re-
spect to each of these forward rates. Of course differentiating the numerical
approximation for the value of the range note will not result in an accurate
approximation for the first derivative. Instead we use the Leibnitz integral
rule to differentiate the integral expression for the range note and then em-
ploy the same procedure as in the previous section for approximating the
integrals appearing in the expression for ∆ for the range note. The only
dependence on fi(T ) for the value of the range note is contained in the in-
tegral CPE.

Before this evaluation, we use (2.15) and (3.7) to set up the following sum-
mary for finding ∆ of the range note
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∣
∣
∣
∣
∣
∣
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∣
∣
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∣
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂
∂fi

CP (t;T, T ′, α, k) = Z(t, ti + α) ∂
∂fi

CPE (t; ti, T + α,α, k)

∆RCP (t;T, T ′, α, kL, kU ) = ∂
∂fi

CP (t;T, T ′, α, kL) − ∂
∂fi

CP (t;T, T ′, α, kU )

∆Vj (t;Tj−1, Tj , R, kL, kU ) = RN
D

∑nj

i=0 ∆RCP (t;Tj−1 + i, Tj , α, kL, kU )

For t < T0

∆V (t;T0, Tm, R, kL, kU ) =
∑m

j=1 ∆Vj (t;Tj−1, Tj , R, kL, kU )

And for Tn < t ≤ Tn+1, we have

∆V (t;Tn, Tm, R, kL, kU ) =
∑m

j=n+1 ∆Vj (t;Tj−1, Tj , R, kL, kU )

Where

∆Vn+1 (t;Tn, Tn+1, R, kL, kU ) = RN
D

∑nn+1

i=p+1 ∆RCP (t;Tn + i, Tn+1, α, kL, kU )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.1)
Hence in order to solve for ∆ we need to approximate ∂CPE

∂fi
.We begin by

stating the Leibnitz integral rule:

Theorem (Leibnitz Integral Rule): For a Riemann-integrable function f :
R2 → R and differentiable functions a(y) and b(y), we have

∂

∂y

∫ b(y)

a(y)
f(y, z)dz =

∫ b(y)

a(y)

∂f(y, z)

∂y
dz +

∂f

∂y
f(y, a(y)) − ∂f

∂y
f(y, b(y))

Applying the Leibnitz integral rule to (3.8) gives

∂

∂fi
CPE (t; ti, T + α,α, k) = EQ

[
∂

∂fi
g(fi, z)θ (j(ti;α) − k)

]

−∂DL

∂fi
g(fi,DL) (4.2)

Where g(fi, z) = (1 + j(ti;α)α)(1−
τi
α ) exp

(
−1

2z2
)

√
2π

DL =
1

σi

√
∆ti

[

ln

(
k

fi(t)

)

+
1

2
σ2

i ∆ti

]
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4.1.1 Solving for the Boundary Term

We first do the easy bit and solve for the boundary term

∂DL

∂fi
= − 1

fi(t)σi

√
∆ti

(4.3)

g(fi,DL) =

(

1 + fi(t)α exp

(

−1

2
σ2

i ∆ti + σi

√

∆tiDL

))(1− τi
α ) exp

(
−1

2D2
L

)

√
2π

= (1 + kα)1−
τ
α

exp
(
−1

2D2
L

)

√
2π

Where the last step follows from the fact that

exp
(

σi

√
∆t
)

= exp

(

(ln

(
k

fi(t)

)

+
1

2
σ2

i ∆t

)

=
k

fi(t)
exp

(
1

2
σ2

i ∆t

)

Thus

∂g

∂fi
g(fi,DL) =

1

fi(t)σi

√
∆ti

(1 + kα)1−
τ
α

exp
(
−1

2D2
L

)

√
2π

(4.4)

4.1.2 Solving for the Integral Term

We now begin the task of approximating the expectation in (4.2). Define

∆CPE
= EQ

[
∂

∂fi
g(fi, z)θ (j(ti;α) − k)

]

(4.5)

Differentiating g gives

∂g

∂fi
= α

(

1 − τ

α

)(

1 + fi(t)α exp

(

−1

2
σ2

i ∆ti + σi

√

∆tiz

))− τ
α exp

(

−1
2

(
z − σi

√
ti
)2
)

√
2π

Showing

∆CPE
= (α − τ)

∫ ∞

DL

(

1 + fi(t)α exp

(

−1

2
σ2

i ∆ti + σi

√

∆tiz

))− τ
α exp

(
−1

2z2
)

√
2π

dz

≈ (α − τ)√
2π

∫ Du

DL

∞∑

n=0

(
τ
α

)

n

n!

(

−fiα exp

(

−1

2
σ2

i ∆ti

))n

exp

(

σi

√

∆tizn − 1

2

(

z − σi

√

∆ti

)2
)

dz

=
(α − τ)√

2π

∫ Du

DL

∞∑

n=0

(
τ
α

)

n

n!
(−fiα)n exp

(

−1

2

(
z − σi

√
ti(n + 1)

)2
)

dz (4.6)
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Where the last line follows from grouping the exponentials and then com-
pleting the square. The approximation follows from the truncation of the
integral to Du as given in (3.11) in order for the binomial series to be con-
vergent over the integral. The justification for neglecting the rest of the
domain is exactly the same as the discussion preceding figure 3.3. In or-
der to interchange summation and integral we check that the conditions in
the theorem on term-by-term integration are satisfied. To this end we set

hn(z) =
( τ

α)
n

n! (−fiα)n exp
(

−1
2

(
z − σi

√
ti(n + 1)

)2
)

and note

• Γ(x) is convex on (0, 1) implying that Γ(τ/α) has a minimum, call it
Γ∗. In addition Γ(x) ≤ 1 on [1, 2] and increasing on (2,∞) showing that for
n ≥ 1 we have Γ(n + τ/α) ≤ Γ(n + 1) = n! since τ/α < 1. Thus for n ≥ 1,
(τ/α)n

n! = Γ(n+τ/α)
Γ(τ/α)n! ≤ 1

Γ∗ . Also (τ/α)n

n! = 1 for n=1. Now set γ∗ = max{ 1
Γ∗ , 1},

then |hn(z)| ≤ γ∗(fiα)n exp
(
−1

2(z − σi

√
∆ti(n + 1))

)
≤ ϕn < ∞ on z ∈

(DL,DU ) since ϕ < 1 on this domain. Thus by the Weierstrass M-test we
can conclude that hn(z) is uniformly convergent on (DL,DU ).

•
∫ DU

DL

|hn(z)| dz√
2π

< γ∗
∫ DU

DL

exp

(

−1

2
z2

)
dz√
2π

< γ∗
∫ ∞

−∞
exp

(

−1

2
z2

)
dz√
2π

< ∞ (for fiα < 1)

Hence

∆CPE
≈ (α − τ)√

2π

∞∑

n=0

(
τ
α

)

n

n!
(−fiα)n

∫ Du

DL

exp

(

−1

2

(

z − σi

√

∆ti(n + 1)
)2
)

dz

=
(α − τ)√

2π

∞∑

n=0

(
τ
α

)

n

n!
(−fiα)n

∫ Du−σi

√
∆ti(n+1)

DL−σi

√
∆ti(n+1)

exp

(

−1

2
z2

)

dz

= (α − τ)
∞∑

n=0

(
τ
α

)

n

n!
(−fiα)n

[

N(Dn′

U ) − N(Dn′

L )
]

= (α − τ)

∞∑

n=0

Γ
(
n + τ

α

)

Γ
(

τ
α

)
n!

(−fiα)n
[

N(Dn′

U ) − N(Dn′

L )
]

(4.7)

Thus putting (4.4) and (4.7) together, we obtain for ti 6= T + α

∂

∂fi
CPE (t; ti, T + α,α, k) ≈ (α − τ)

∞∑

n=0

Γ
(
n + τ

α

)

Γ
(

τ
α

)
n!

(−fiα)n
[

N(Dn′

U ) − N(Dn′

L )
]

− 1

fi(t)σi

√
∆ti

(1 + kα)1−
τ
α

exp
(
−1

2D2
L

)

√
2π

(4.8)

Where

Dn′

L = DL − σi

√

∆ti(n + 1) = Dn
L − σi

√

∆ti (4.9)

Dn′

U = DU − σi

√

∆ti(n + 1) = Dn
U − σi

√

∆ti (4.10)
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For the case where τ = 0 ⇔ ti = T + α, we have an exact solution for CPE

and differentiating (3.18) gives

∂

∂fi
CPE (t;T + α, T + α,α, k) =

∂DL

∂fi

(

αfi(t)N
′(σi

√
T + α − t − DL) + N ′(−DL)

)

+αN(σi

√
T + α − t)

=
1

fi(t)σi

√
∆ti

(

αfi(t)N
′(σi

√
T + α − t − DL) + N ′(−DL)

)

=
exp

(
−1

2D2
L

)

fi(t)σi

√
2π∆ti

[

1 + αfi(t) exp

(

−1

2
σ2

i (T + α − t) − σi

√
T + α − tDL

)]

(4.11)

Where the first equality follows from (4.3) and the last equality follows from
rewriting N ′(σi

√
T + α − t − DL) in terms of N ′(−DL)

4.2 Matlab Implementation for Finding ∆

The above expression together with ∆-schematic (4.1) gives an algorithm
for finding ∆ of the range note. This section contains the implementation
of this scheme in matlab.

4.2.1 Evaluating ∂
∂fi

CPE

%DeltaCPe for 0<tau<1

function Meredith=DeltaCPe(alpha,tau,t,vol,f,strike,N)

Dlow=(log(strike./f)+0.5.*vol.^2.*t)./(vol.*sqrt(t));

a=tau./alpha; b=vol.*sqrt(t); c=log(strike./alpha); D=Dlow-c./b;

d=f.*alpha; g=gamma(a);

A=0;

for n=0:N

A=A+gamma(n+a)./(g.*factorial(n)).*(-d).^n.*(cdf(D-b.*(n+1))-cdf(Dlow-b.*(n+1)));

end

Meredith=(alpha-tau).*A

+(1./(f.*b.*sqrt(2*pi))).*(1+strike.*alpha).^(1-tau/alpha).*exp(-0.5.*Dlow.^2);

%DeltaCPe for tau=0

function Margeret=DeltaCPeEnd(alpha,t,vol,f,strike)

Dlow=(log(strike./f)+0.5.*vol.^2.*t)./(vol.*sqrt(t));

q=vol.*sqrt(t);
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Margeret=exp(-0.5.*Dlow.^2)./(f.*q*sqrt(2*pi))

.*(1+alpha.*f.*exp(-0.5.*q.^2+q.*Dlow))+alpha.*cdf(q-Dlow);

4.2.2 Evaluating ∆RCPE

%DeltaRCPe for 0<tau<1

function Kylie=DeltaRCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N)

Kylie=DeltaCPe(alpha,tau,t,vol,f,StrikeLow,N)

-DeltaCPe(alpha,tau,t,vol,f,StrikeUp,N);

%DeltaRCPe for tau=0

function Ralph=DeltaRCPeEnd(alpha,t,vol,f, StrikeLow,StrikeUp)

Ralph=DeltaCPeEnd(alpha,t,vol,f,StrikeLow)-DeltaCPeEnd(alpha,t,vol,f,StrikeUp);

4.2.3 Evaluating ∆Vj

function

Rachel=Vsingle(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

t_i=[To+1/360:1/360:To+alpha-1/360]; Zend=t_i+alpha;

tau=To+alpha-t_i; t=t_i-tvalue;

f=(DiscountFactor(tvalue,t_i)./DiscountFactor(tvalue,Zend)-1)./alpha

fend=(DiscountFactor(tvalue,To+alpha)./DiscountFactor(tvalue,To+2.*alpha)-1)./alpha;

Z=DiscountFactor(tvalue,Zend)

DeltaRCP=DeltaRCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N)

DeltaRN=Z.*DeltaRCP

Rachel=

(Nominal.*rate/360).*(sum(DeltaRN)+DiscountFactor(tvalue,To+alpha)

.*DeltaRCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));

4.2.4 Evaluating ∆V for t ≤ T0

function

Tobias=DeltaVBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

if tvalue>To

disp([’Error:tvalue>To. Use function DeltaVMid’])

else

PeriodValue=0;

for j=0:m-1

T=To+j.*alpha;

PeriodValue=PeriodValue

+DeltaVsingle(T,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N);
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end

end

Tobias=PeriodValue;

4.2.5 evaluating V for Tn < t ≤ Tn+1

We first calculate the value of the broken period

function

Howard=VBroken(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

t_i=[tvalue+1/360:1/360:To+alpha-1/360]; Zend=t_i+alpha;

tau=To+alpha-t_i; t=t_i-tvalue; Z=DiscountFactor(tvalue,Zend);

f=(DiscountFactor(tvalue,t_i)./DiscountFactor(tvalue,Zend)-1)./alpha;

fend=(DiscountFactor(To+alpha)./DiscountFactor(To+2.*alpha)-1)./alpha;

DeltaRCP=DeltaRCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N);

DeltaRN=Z.*DeltaRCP;

Howard=(Nominal.*rate/360).*(sum(DeltaRN)+DiscountFactor(tvalue,To+alpha)

.*DeltaRCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));

Which is used in the calculation of ∆V mid

function

Betty=DeltaVMid(m,Days,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N)

if tvalue<=To

disp([’Error: tvalue<=To. Use function DeltaVBefore’])

else

Nodes=[To:alpha:To+(m-1)*alpha];

NodeStart=max(Nodes.*(tvalue<=Nodes));

n=(NodeStart-To)./alpha;

DeltaBroken=DeltaVBroken(NodeStart,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal

,rate,N);

DeltaRest=DeltaVBefore(m-n-1,NodeStart+alpha,tvalue,alpha,vol,StrikeLow,StrikeUp

,Nominal,rate,N);

Betty=DeltaBroken+DeltaRest;

end
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4.3 Graphing ∆: Flat Yield Curve

The Delta surface is obtained in the same manner as the value surface in
section 3.4 and its code is given in the same appendix A. In addition
the function SolSurfSeperate plots line segments of the Delta and Value
surfaces.

The matlab code for this involved some tampering with the code of the
previous section:

• DeltaCPe and DeltaRCPe remain unchanged

• The old DiscountFactor is renamed currentdiscount

• The function DiscountFactor now has the flat yield as an extra argument
and gives the corresponding discount curve

• DeltaVSingle, DeltaVBroken, DeltaVBefore and DeltaVMid now have
this flat yield as an extra input

• The forward rates f and fend appearing in DeltaVSingle and DeltaVBroken

are now obtained from the new function in DiscountFactor

The surface given by DeltaSurf generates the ∆ corresponding to the value
surface given in section 3.4. Despite the look of it, the surface is quite neat
and is as expected. Three lines of constant time for ∆ are also given. These
were generated by running SolSurfSeperate
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Figure 4.1: ∆-surface of a 5-period range note as a function of time and
constant forward rate for a flat yield curve with initiation time 0.2, period
0.25, flat vol 0.1, upper strike 0.085, lower strike 0.07, nominal 100, fixed
rate 0.08 and Days 2 with lines of constant time for t = 0.12, 0.52 and 1.3
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The lines of constant t are exactly as expected. These lines on the value
surface look like a normal density function. Hence we would expect the ∆
of these lines to look like a derivative of the normal density function (up
to some scaling factor given by the chain rule) which is exactly what we
see. The additional structure can also be explained in relation to the value
surface:

• The non-linear decreasing (increasing) lips of ∆V Before can be explained
by the fact that as we move forward in time the peak of the ’normal distrib-
ution’ is increasing while the volatility is decreasing exaggerating the slopes
on either side of the peak.

• The (symmetric) hills of the surface both narrow as time evolves. This
is just a result of the fact that as we move forward in time, the ’normal
distributions’ narrow causing the tails to flatten earlier.

• The decreasing ridge formed by ∆V Mid is an indication that as we move
through time the peaks of the ’normal distributions’ begin to drop in such
a manner that it dominates the effect of the decreasing volatilities and, so,
eases the slopes on either side of the peaks.
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Chapter 5

FRAs as a Hedge Instrument

for the Range Note

We begin this chapter by using FRAs to construct a hedge portfolio for the
range note. We then derive an expression for the hedge slippage involved in
this replication.

5.1 Creating the Hedge Portfolio

In this section we derive a hedge portfolio for the range note. As is explicit
in the pricing, the range note can be decomposed into daily range contin-
gent payoffs for all remaining ’pay days’. The forward rates beginning on
each of these days over a period α are the stochastic drivers of these deriv-
atives. Hence it seems to natural to use FRAs as the hedge instrument.
The total hedge portfolio will consist of a position in each of these FRAs
and a position in a riskless money market account. That is each range con-
tingent payoff RCP (t; ti, T + α,α, kL, kU ) will be hedged with a position
in the FRA U(t; ti, ti + α) struck at Ri for the period ti to ti + α and a
position in the money market account M(t) = exp(r(t − t0) where t0 is the
initiation date of the hedge and r is the risk free rate. To be ∆-hedged at
every moment t we require:

V (t) =
RN

D

∑

i

RCP (t; ti, α, kL, kU ) =
∑

i

φi(t)U(t; ti, ti + α) + µ(t)M(t)

(5.1)

∆V (t) =
RN

D

∑

i

∆RCP (t; ti, α, kL, kU ) =
∑

i

φi(t)
∂

∂fi
U(t; ti, ti + α) (5.2)

Where the summation over i denotes summing over all remaining ’pay days’
of the range note. φi(t) and µ(t) denote the position at t in the FRA and
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money account respectively and are the variables we wish to solve for. We
begin by finding U(t; ti, ti + α) and ∂

∂fi
U(t; ti, ti + α).

The value of the FRA at time t is given by

U(t; ti, ti + α) = Z(t, ti) − Z(t, ti + α)
︸ ︷︷ ︸

floating leg

−RiαZ(t, ti + α)
︸ ︷︷ ︸

fixed leg

= Z(t, ti) − Z(t, ti)
1 + Riα

1 + αfi

=
Z(t, ti)

1 + αfi
[1 + αfi − 1 − Riα]

= α
Z(t, ti)

1 + αfi
[fi − Ri] (5.3)

and so

∂

∂fi
U(t; ti, ti + α) = −α2 Z(t, ti)

(1 + αfi)2
[fi − Ri] + α

Z(t, ti)

1 + αfi

= α
Z(t, ti)

(1 + αfi)2
[1 + αfi − αfi + αRi]

= α
Z(t, ti)

(1 + αfi)2
[1 + αRi] (5.4)

Putting (5.4) and (5.2) together and comparing term by term gives:

φi(t) =
RN

D

∆RCP (t; ti, α, kL, kU )
∂

∂fi
U(t; ti, ti + α)

=
RN

D

(1 + αfi)
2

αZ(t, ti)[1 + αRi]
∆RCP (t; ti, α, kL, kU ) (5.5)

Which together with (5.1) gives

µ(t) = exp(−r(t − t0))

[

V (t;T0, Tm, R, kL, kU ) −
∑

i

φi(t)U(ti, ti + α)

]

(5.6)
Thus the hedge portfolio Ω(t) is

Ω(t) =
∑

i

φi(t)U(t; ti, ti + α) + µ(t) exp(r(t − t0)) (5.7)

where φi(t) is given by (5.5), U(t; ti, ti + α) by (5.3) and µ(t) by (5.6).
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5.2 Cost of Refinancing

The first fundamental theorem of no arbitrage pricing says that a model is
arbitrage free if and only if there exists an equivalent martingale measure.
Hence with every martingale measure there exists a strategy that replicates
the derivative. In particular the price of the derivative is the cost of replica-
tion. This theory is developed in the world of continuous time and assumes
that one continuously rebalances the hedge portfolio. In practice this is
not possible and one can only rebalance the hedge in discrete time. This
introduces a hedge slippage with an associated cost referred to as the cost
of refinancing. This cost is the difference between the derivative and the
hedge portfolio just before rebalancing. Let Π(jt + δt) denote the cost of
refinancing associated with the period jt to jt + δt then

Π(jt + δt) = V (jt + δt) −
[
∑

i

φi(jt)U(jt + δt; ti, ti + α) + µ(jt) exp(r(jt + δt − t0))

]

= V (jt + δt) − exp(r(jt + δt))V (jt)

−
∑

i

φi(jt) [U(jt + δt; ti, ti + α) − exp(r(jt + δt))U(jt + δt; ti, ti + α)]

= δV (jt + δt) −
∑

i

φi(jt)δU(jt + δt; ti, ti + α) (5.8)

Where the first equality is a definition and the second follows from (5.6).
Now δV (jt + δt) is the difference between holding the derivative or sell-
ing it and investing the cash in a bank account over δt and, similarly,
δU(jt + δt; ti, ti + α) is the difference between holding the FRA or selling it
and investing the cash in a bank account over δt. This makes sense as if the
derivative and the underlying both grew at the risk free rate there would be
no need to adjust the hedge. In fact we would just invest the original cost
of the derivative in the bank.

The total cost of refinancing the range note Π(t,mt+δt) from t to mt+δt is
then obtained by summing over all of the readjustment points in this period

Π(t,mt + δt) =

m∑

j=1

Π(jt + δt) (5.9)
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Appendix A

Code for Sections 3.4 and 4.3

A.1 Discount Factors

function William=DiscountFactor(R,T_start,T_maturity)

William=exp(-R.*(T_maturity-T_start));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function earth=currentdiscount(T_start,T_maturity)

df= [1.000000 0.999812................... 0.342328];

T=[0............ 0.002739726 13.26027397];

Znow1=interp1(T,df,T_maturity); Znow2=interp1(T,df,T_start);

earth=Znow1./Znow2;

A.2 Value Functions

function

Arthur=Vsingle(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

t_i=[To+1/360:1/360:To+alpha-1/360];

Zend=t_i+alpha;

tau=To+alpha-t_i;

t=t_i-tvalue;

f=(DiscountFactor(R,tvalue,t_i)./DiscountFactor(R,tvalue,Zend)-1)./alpha;

fend=(DiscountFactor(R,tvalue,To+alpha)./DiscountFactor(R,tvalue,To+2.*alpha)-1)

./alpha;

Z=currentdiscount(tvalue,Zend);

RCP=RCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N); RN=Z.*RCP;
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Arthur=

(Nominal.*rate/360).*(sum(RN)+currentdiscount(tvalue,To+alpha)

.*RCPeEnd(alpha,To+alpha-tvalue,vol,fend, StrikeLow,StrikeUp));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

Allan=VBroken(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

t_i=[tvalue+1/360:1/360:To+alpha-1/360];

Zend=t_i+alpha;

tau=To+alpha-t_i;

t=t_i-tvalue;

Z=currentdiscount(tvalue,Zend);

f=(DiscountFactor(R,tvalue,t_i)./DiscountFactor(R,tvalue,Zend)-1)./alpha;

fend=(DiscountFactor(R,tvalue,To+alpha)./DiscountFactor(R,tvalue,To+2.*alpha)-1)

./alpha;

RCP=RCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N);

RN=Z.*RCP;

Allan=(Nominal.*rate/360).*(sum(RN)+currentdiscount(tvalue,To+alpha)

.*RCPeEnd(alpha,To+alpha-tvalue,vol,fend, StrikeLow,StrikeUp));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

Timothy=VBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

if tvalue>To

disp([’Error:tvalue>To. Use function V2Mid’])

else PeriodValue=0; for j=0:m-1 T=To+j.*alpha;

VSingle(T,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R);

PeriodValue=PeriodValue+Vsingle(T,tvalue,alpha,vol,StrikeLow,StrikeUp

,Nominal,rate,N,R);

end

Timothy=PeriodValue+currentdiscount(tvalue,To+m.*alpha).*Nominal;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

Walter=VMid(m,Days,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

if tvalue<=To
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disp([’Error: tvalue<=To. Use function V’])

else

Nodes=[To:alpha:To+(m-1)*alpha];

NodeStart=max(Nodes.*(tvalue>=Nodes));

n=(NodeStart-To)./alpha;

Broken=VBroken(NodeStart,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal

,rate,N,R);

Known=currentdiscount(tvalue,NodeStart+alpha).*Days.*rate.*Nominal/360;

Rest=VBefore(m-n-1,NodeStart+alpha,tvalue,alpha,vol,

StrikeLow,StrikeUp,Nominal,rate,N,R);

Walter=Broken+Known+Rest;

A.3 Delta Functions

function

Rachel=Vsingle(To,tvalue,alpha,vol,StrikeLow,StrikeUp

,Nominal,rate,N,R)

t_i=[To+1/360:1/360:To+alpha-1/360];

Zend=t_i+alpha;

tau=To+alpha-t_i; t=t_i-tvalue;

f=(DiscountFactor(R,tvalue,t_i)./DiscountFactor(R,tvalue,Zend)-1)./alpha;

fend=(DiscountFactor(R,tvalue,To+alpha)./DiscountFactor(R,tvalue,To+2.*alpha)-1)

./alpha;

Z=currentdiscount(tvalue,Zend);

DeltaRCP=DeltaRCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N);

DeltaRN=Z.*DeltaRCP;

Rachel=(Nominal.*rate/360).*(sum(DeltaRN)+currentdiscount(tvalue,To+alpha)

.*DeltaRCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

Howard=DeltaVBroken(To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

t_i=[tvalue+1/360:1/360:To+alpha-1/360];

Zend=t_i+alpha;

tau=To+alpha-t_i;

t=t_i-tvalue;
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Z=currentdiscount(tvalue,Zend);

f=(DiscountFactor(R,tvalue,t_i)./DiscountFactor(R,tvalue,Zend)-1)./alpha;

fend=(DiscountFactor(R,tvalue,To+alpha)./DiscountFactor(R,tvalue,To+2.*alpha)-1)

./alpha;

DeltaRCP=DeltaRCPe(alpha,tau,t,vol,f,StrikeLow,StrikeUp,N);

DeltaRN=Z.*DeltaRCP;

Howard=Nominal.*rate/360).*(sum(DeltaRN)+currentdiscount(tvalue,To+alpha)

.*DeltaRCPeEnd(alpha,To+alpha-tvalue,vol,fend,StrikeLow,StrikeUp));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

Tobias=DeltaVBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,R)

if tvalue>To

disp([’Error:tvalue>To. Use function DeltaVMid’])

else PeriodValue=0; for j=0:m-1 T=To+j.*alpha;

PeriodValue=PeriodValue+DeltaVsingle(T,tvalue,alpha,vol,StrikeLow,StrikeUp

,Nominal,rate,N,R);

end

end

Tobias=PeriodValue;

A.4 Plotting Value Surface

m=5; To=0.2;

alpha=0.25;

vol=0.1;

StrikeLow=0.07;

StrikeUp=0.085;

Nominal=100;

rate=0.08;

N=8;

Tend=To+m*alpha;

TMid=[To+0.01:0.01:Tend-2/360]; %time

TBefore=[0:0.01:To];

R=[0:0.0012:0.0012*(length(TMid)+length(TBefore)-1)]; length(TMid)

length(TBefore) length(R) D=zeros(length(R),length(R));

for i=1:length(R)
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for j=1:length(TBefore)

D(i,j)=DeltaVBefore(m,To,TBefore(j),alpha,vol,StrikeLow,StrikeUp

,Nominal,rate,N,R(i));

end

for j=1:length(TMid)

D(i,length(TBefore)+j)=DeltaVMid(m,2,To,TMid(j),alpha,vol,StrikeLow

,StrikeUp,Nominal,rate,N,R(i));

end

end

T=[TBefore,TMid];

surf(T,R,D)

ylabel(’Constant Forward Rate’)

xlabel(’Valuation Time’)

zlabel(’Delta’)

title(’Delta Vs ConstantForward Rate & Valuation Time’)

A.5 Plotting ∆-Surface

Exactly the same code is used as in previous section except now V Before
is replaced with DeltaV Before and V Mid is replaced by DeltaV Mid.

A.6 Plotting Lines of Constant Time

%Plotting Values and Deltas VS Forward for constant yield curve

%type1 denotes Before (0) or Mid (1)

%type2 denotes Value (1) Delta (2)

function shorty=solsurfseperate(type1,type2)

m=5;

To=0.2;

alpha=0.25;

vol=0.1;

StrikeLow=0.07;

StrikeUp=0.085;

Nominal=100;

rate=0.08;

N=8;

if type1==0 & type2==1

tvalue=0.12;
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k=0;

for j=0:0.0001:0.18

k=k+1;

A(k)=VBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,j);

end

x= (1/alpha).*(exp([0:0.0001:0.18].*alpha)-1);

plot(x,A)

xlabel(’Constant Forward Rate’)

ylabel(’VBefore’)

title(’VBefore VS Constant Forward Rate’)

elseif type1==0 & type2==2

tvalue=0.12;

k=0;

for j=0:0.0001:0.18

k=k+1;

A(k)=DeltaVBefore(m,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,j);

end

x= (1/alpha).*(exp([0:0.0001:0.18].*alpha)-1);

plot(x,A)

xlabel(’Constant Forward Rate’)

ylabel(’DeltaVBefore’)

title(’DeltaVBefore VS Constant Forward Rate’)

elseif type1==1 & type2==1

tvalue=1.3;

k=0;

for j=0:0.0001:0.18

k=k+1;

A(k)=VMid(m,2,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,j);

end

x= (1/alpha).*(exp([0:0.0001:0.18].*alpha)-1);

plot(x,A)

xlabel(’Constant Forward Rate’)

ylabel(’VMid’)

title(’VMid VS Constant Forward Rate’)

elseif type1==1 & type2==2

tvalue=1.3;

k=0;

for j=0:0.0001:0.18

k=k+1;

A(k)=DeltaVMid(m,2,To,tvalue,alpha,vol,StrikeLow,StrikeUp,Nominal,rate,N,j);

end

x= (1/alpha).*(exp([0:0.0001:0.18].*alpha)-1);

plot(x,A)

xlabel(’Constant Forward Rate’)
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ylabel(’DeltaVMid’)

title(’DeltaVMid VS Constant Forward Rate’)

end

48



Bibliography

[1] Turnbull, S.M. (1995): Interest Rate Digital Options and Range Notes,
Journal of Derivatives 3

[2] Taylor, D (2005): Interest Rate Modelling, Lecture notes, Honours in
Mathematics of Finance, University of the Witwatersrand, Johannes-
burg

[3] West, G (2005), The Mathematics of South African Financial Markets
and Instruments, Lecture notes, Honours in Mathematics of Finance,
University of the Witwatersrand, Johannesburg

[4] Lotter, G (2003), Undergraduate Real Analysis, Lecture notes, Maths
3, University of the Witwatersrand, Johannesburg

[5] http://mathworld.wolfram.com/BinomialSeries.html

49


