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Abstract

The focus of this thesis is on the risk neutral valuation of Bermudan swaptions
and its application to pricing situations where observed market data used for
calibration is limited. By exploring the properties of the solution to the optimal
stopping problem that speci�es the price process of these instruments, a general
valuation method suited for practical computations is suggested. The valuation
method is based on restricting the evolution of the short rate process to that
of a recombining binomial tree and is able to produce fast price estimates of
Bermudan swaptions based on limited input data when specifying the dynamics
of the short rate process to the Ho-Lee model.
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Chapter 1

Introduction

In recent years a lot of attention has been drawn to the problem of accurately
and e�ectively pricing Bermudan swaptions. A number of pricing procedures,
such as those described in [1], [3], [8], [9] and [10], have resulted from this
research. All these methods have a common property in that they require fairly
advanced market data for calibration and furthermore employ computationally
intense procedures when calibrating. For a �nancial institution, the complexity
of these procedures is generally manageable, but for non-�nancial corporates
having positions in Bermudan swaptions, it may quickly become a hard problem.
For these parties, gathering and processing the extensive collection of market
data (such as prices for caps, �oors and interest rate swaps) needed to make the
pricing procedures work as well as performing and �ne tuning the calculations,
usually results in a time consuming, or at worst, an impossible task. As a
consequence of this, they are thus more or less left without a means to value
and assess the risk of their position.
Assuming that these parties receive valuations from the counter party of the
Bermudan swaption on regular intervals and that they are able to access widely
quoted interest rate curves, there is however as will be revealed, a way for them
to retrieve an estimate of the sought information.
The purpose of this thesis is twofold. Firstly, the optimal stopping problem of
pricing the Bermudan swaption through risk neutral valuation will be studied
and solved as the optimum of a deterministic dynamic programming problem.
Secondly, the properties of the derived solution will be explored in order to
�nd a means to convert the theoretical results into a pricing procedure suit-
able for practical purposes. A specialization of this method, adjusted to the
previously described calibration circumstances, will then �nally be proposed us-
ing the Ho-Lee binomial tree representation of the short rate. Although, this
method generally is considered to generate relatively crude results, it will pro-
vide a quickly calculated estimate of the price of the Bermudan swaption to the
parties lacking the possibility of using more complex models.
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8 Chapter 1. Introduction

The remainder of this thesis is organized as follows. Chapter 2 gives a brief
introduction to the concepts used throughout the rest of this thesis when de-
riving results regarding the pricing of Bermudan swaptions. Chapter 3 provides
a de�nition of the interest rate swap as well as a de�nition of the Bermudan
swaption and its price process. In Chapters 4 and 5 we derive and discuss the
theoretical solution to the pricing problem and study how these results may be
used in practical pricing situations. In Chapter 6 we then study a special case
of the previously derived pricing procedure having a calibration procedure ad-
justed to the aforementioned limitations in observed market data. This pricing
method is obtained by modelling the evolution of the short rate according to
the Ho-Lee model in discrete time. Chapter 7 presents some numerical results
on the behaviour of the �Ho-Lee pricing method� as well as its calibration pro-
cedure. Chapter 8 �nally summarizes and discusses the material covered in the
thesis and suggests topics that remain to be studied.



Chapter 2

Preliminaries

The purpose of this chapter is to give a brief introduction to the concepts as
well as the notation that will be used throughout the rest of this thesis. The
interested reader is referred to [2] for a thorough treatment of the covered ma-
terial.

2.1 Zero coupon bonds

The market we will be working with in subsequent chapters is a complete market
free of arbitrage characterized by having zero coupon bonds as its only asset.
On a complete and �ltered probability space (Ω,F , (Ft)t≥0) these instruments
are de�ned as follows.

De�nition 1. A zero coupon bond with maturity T is a contract which at time

T pays one unit of currency to its holder. The price at time 0 ≤ t ≤ T of a zero

coupon bond maturing at time T is denoted by p(t, T ), where (p(t, T ) ∈ Ft)0≤t≤T

and p(t, t) = 1 for all t ≥ 0.

2.2 The bank account

Given the previously introduced bond market, we now construct a derived in-
strument that will be frequently used in chapters to come. This instrument
represents an investment free of risk continuously growing according to an in-
terest rate � the short rate � and is commonly referred to as the bank account.

9



10 Chapter 2. Preliminaries

De�nition 2. The bank account process, B = (Bt ∈ Ft)t≥0, is de�ned according

to the dynamics

dBt = rtBtdt

B0 = 1

or equivalently

Bt = e
∫ t
0 rsds,

where the short rate process, r = (rt ∈ Ft)t≥0, at the time t is given by

rt = −∂ log p(t, T )
∂T

∣∣∣
T=t

.

The bank account process will be used as a pricing numeraire when performing
risk neutral valuation in subsequent chapters. The unique measure under which
this numeraire de�ates price processes into martingales is denoted by Q. The
existence of this martingale measure follows from the assumption that the bond
market is free of arbitrage and complete.
Having introduced the bank account process and the measure Q, the price pro-
cess of a zero coupon bond may be calculated through risk neutral valuation
according to the expression presented below. This valuation will be of key im-
portance and used frequently in chapters to come.

Theorem 1. The price process at the time t of a zero coupon bond having

maturity T ≥ t ≥ 0 is given by the expression

p(t, T ) = EQ
[ Bt

BT
· 1

∣∣Ft

]
= EQ

[
e−

∫ T
t

rsds
∣∣Ft

]
.

2.3 LIBOR spot rates

LIBOR spot rates are frequently used when constructing interest rate derivatives
characterized by payments calculated according to �oating rates. These rates
will be used when introducing interest rate swaps and Bermudan swaptions in
the next chapter.



2.4. E�ective zero rates 11

De�nition 3. The LIBOR spot rate for the time interval [t, T ] where t ≥ 0 is

de�ned as

L(t, T ) =
1

(T − t)

(p(t, t)− p(t, T )
p(t, T )

)
=

1
(T − t)

( 1
p(t, T )

− 1
)

or equivalently

p(t, T ) =
1

1 + (T − t)L(t, T )
.

LIBOR spot rates may in a sense be interpreted as �discrete versions� of the short
rate process, r. By comparing the above de�nition with that of the short rate
process, it is clear that L(t, T ) is related to rt through �rst order approximations
of the derivative and the logarithm.
As a �nal remark it is worth pointing out that the LIBOR spot rate is actually
a special case of an interest rate commonly known as the LIBOR forward rate.
Since this rate will not be explicitly used in coming chapters, its de�nition is
omitted in order to avoid any confusion. Interested readers are referred to [3].

2.4 E�ective zero rates

E�ective zero rates may be regarded as internal rates of interest of zero coupon
bonds, i.e. rates describing the bonds' increase in value as time passes, and
will be used when performing sensitivity analysis in the chapter covering the
behavior of the �Ho-Lee pricing method�.

De�nition 4. The e�ective zero rate, y(t, T ), for the time interval [t, T ] where
t ≥ 0 is de�ned as

y(t, T ) =
([ 1

p(t, T )

] 1
T−t − 1

)
or equivalently

p(t, T ) =
1

(1 + y(t, T ))T−t
.



Chapter 3

De�nition of instruments

In this chapter we de�ne the transactions and instruments studied in this the-
sis and present expressions for their corresponding price processes. Although
the time structures used in the presentation are somewhat limited in order to
maintain manageable expressions, all derived results may easily be adjusted to
a more general setup.

3.1 The interest rate swap

An interest rate swap, henceforth abbreviated as an IRS, is a contractual agree-
ment between two parties under which each party agrees to make periodic in-
terest payments to the other for an agreed period of time. The agreement in
its most common form states that a series of payments calculated by applying
a �xed rate of interest to a notional amount are exchanged for another series
of payments calculated at the same notional amount using a �oating rate of
interest. The �xed rate payment stream is traditionally called the �xed leg,
while the �oating payments are referred to as the �oating leg.
Depending on whether a participant of an IRS agreement receives/pays the �xed
leg he is said to hold a receiver/payer swap. That is, the di�erence between the
two setups lies in the sign of the net �ow of payments. As a consequence of this,
once the price of one type of IRS is known, the price of the other is instantly
known by reverting the sign of the �rst price. Since the di�erence in prices
indeed is minor, we only provide the derivation of the price of the payer swap.

3.1.1 The payer swap

Consider a �xed set of equidistantly spaced dates T0, T1, . . . , TN such that δ =
Ti − Ti−1 for all i = 1, 2, . . . , N . The payer swap is de�ned according to the
following agreement:

12



3.1. The interest rate swap 13

• All cash �ows will be paid and received at the dates T1, T2, . . . , TN .
• At the beginning of each period, [Ti−1, Ti], the LIBOR spot rate, L(Ti−1, Ti),is set and the amount κδL(Ti−1, Ti) is received by the holder at the date

Ti where i = 1, . . . , N . The amount κ is called the notional amount.
• For the same period, [Ti−1, Ti], the holder pays the amount κδR, at the
date Ti where i = 1, . . . , N and R is constant. The rate at which these
payments are made, R, is called the swap rate.

Using the above speci�cs of the contract together with the de�nition of the
LIBOR spot rate, the net cash �ow of the payer swap at the date Ti can be
expressed as

κδ
(
L(Ti−1, Ti)−R

)
= κ

( 1
p(Ti−1, Ti)

− (1 + δR)
)
. (3.1)

We now wish to determine the value of this net income, denoted Ni(t), at atime t ≤ T0, i.e. before the �rst settlement date. Risk neutral valuation gives

Ni(t) = EQ
[e− ∫ Ti

t rsdsκ
(

1
p(Ti−1,Ti)

− (1 + δR)
)∣∣∣Ft

]
= κ

(
EQ

[e− ∫ Ti
t rsds 1

p(Ti−1,Ti)

∣∣∣Ft

]
− (1 + δR)p(t, Ti)

) (3.2)

where the cash �ow κ(1 + δR) obviously may be interpreted as the face value
of a zero-coupon bond maturing at the date of the net transaction. In order
to price the �rst term in the net income, we need to perform some further
calculations. By conditioning the expectation on a larger σ-algebra, FTi−1 ⊇ Ft,and extracting the information stored therein we get

EQ
[e− ∫ Ti

t rsds 1
p(Ti−1,Ti)

∣∣Ft

]
=

EQ
[
EQ

[e− ∫ Ti−1
t rsdse−

∫ Ti
Ti−1

rsds 1
p(Ti−1,Ti)

∣∣FTi−1

]∣∣∣Ft

]
=

EQ
[e− ∫ Ti−1

t rsds 1
p(Ti−1,Ti)

EQ
[e− ∫ Ti

Ti−1
rsds∣∣FTi−1

]∣∣∣Ft

]
=

EQ
[e− ∫ Ti−1

t rsds
∣∣Ft

]
.

From the above calculation, it becomes clear that the �rst term in the expression
for the net cash �ow, (3.2), is valued as κp(t, Ti−1) at the date t ≤ T0. Using
this fact together with earlier calculations, we �nally end up at the net income
valuation

Ni(t) = κ
(
p(t, Ti−1)− (1 + δR)p(t, Ti)

)
. (3.3)

Determining the total value at the time t ≤ T0 of the payer swap, PS(t;κ, δ, R),
now amounts to summing up all the values of the net incomes and thus we get
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PS(t;κ, δ, R) =
N∑

i=1

Ni(t) = κ
N∑

i=1

(
p(t, Ti−1)− (1 + δR)p(t, Ti)

)

which simpli�es to

PS(t;κ, δ, R) = κ
(
p(t, T0)− p(t, TN )− δR

N∑
i=1

p(t, Ti)
)
. (3.4)

A few remarks are in order. First of all, the valuation formula above is valid
only at times prior to the �rst settlement date, i.e. t ≤ T0. At later instants,
the value of the IRS is determined by summing up the discounted values of all
yet unsettled net cash �ows. If for instance, T0 ≤ Tk−1 < t ≤ Tk ≤ TN , the
value of the payer swap would equal

PS(t;κ, δ, R) = κ
(
p(t, Tk)− p(t, TN )− δR

N∑
i=k+1

p(t, Ti)
)
.

Secondly, the swap rate, R, is not to be mistaken for the par swap rate. The
par swap rate, Rp(t), is the swap rate at which the price of the IRS equals zero
and is calculated using (3.4) as

Rp(t) =
p(t, T0)− p(t, TN )

δ
N∑

i=1

p(t, Ti)
. (3.5)

Although, IRS contracts in practice are formulated to have an initial price of
zero, swap rates do not necessarily have to be calculated at par, i.e. where
R = Rp.

3.2 The Bermudan swaption

A swaption is an option on an IRS, i.e. an instrument providing its holder the
right, but not the obligation, to enter an IRS at a pre-speci�ed date in the
future. As the name suggests, an option with the Bermudan characteristic, may
be considered as being situated somewhere in the gap between the European
option � having a single exercise date � and the American option � having a
continuous range of exercise dates � in terms of its set of possible exercise dates.
That is to say, a Bermudan swaption is a swaption having multiple discretely
positioned exercise dates.
The following section provides a closer de�nition of the Bermudan swaption
in terms of its typical setup and risk neutral valuation. The focus will be on
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swaptions having a payer swap as its underlying instrument. These types of
swaptions are henceforth referred to as payer swaptions.

3.2.1 The Bermudan payer swaption

Before getting into details about the exercise features of the Bermudan swaption
we need to consider the underlying payer swap of the option. Using the setup
and results described in the previous section we similarly de�ne this swap as:

• The underlying payer swap has N equidistantly spaced dates, T1, T2, . . . , TNwhere cash �ows occur. The cash �ows are identical to those described in
the previous section with the exception that the �xed leg follows the swap
rate Rs. This swap rate is called the swaption's strike rate.

• The value process of the swap at the time t ≤ TN−1 is PS(t;κ, δ, Rs).

There are several possible ways of constructing a Bermudan swaption when it
comes to deciding the setup of exercise dates. The arrangement that is used in
this thesis is basically the same as described in [3]:

• The swaption may be exercised at one of M + 1 number of �xed exercise
dates. These dates are denoted T e

i and all coincide with settlement dates
of the underlying IRS, i.e. T e

i ∈ {T0, T1, . . . , TN−1}, i = 0, 1, . . . ,M .
• The �rst exercise date of the swaption equals1 the �rst settlement date of
the underlying IRS, i.e. T e

0 = T0.

Before continuing with the risk neutral valuation of the Bermudan swaption
we need to determine the option's payo� function. Unlike for instance options
on stock, swaptions, are not characterized by strike prices. Instead, swaptions
use strike rates specifying the swap rate, R = Rs, of the underlying IRS of the
option. To make matters more speci�c, consider for instance the case when
the swaption is exercised at the date T e

i for some i = 0, 1, . . . ,M . The payo�
function generated as a consequence of the exercise is then given by

max{PS(T e
i ;κ, δ, Rs), 0

}
.

As is clear from the payo� function, one could claim that swaptions use strike
prices equalling zero. Remembering that market practice is to construct swaps
using par swap rates in order to achieve an initial value of zero, a possible
interpretation of this choice of �strike price� is that the holder chooses to exercise

1This might seem like a limitation to generality at �rst, but assuming that T e
0 > T0 would

in fact be pointless since the holder of the swaption wouldn't be able to access any cash �ows
settled earlier than T e

0 , which in the context of pricing the swaption makes all settlement dates
earlier than T e

0 redundant.
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the option only when the strike rate is su�ciently low compared to the par swap
rate (the swap rate used for trading an identical swap on the market). In that
case, the value of the payer swap would be positive implying that the owner of
the swaption would make pro�t entering the IRS agreement.
Having de�ned the underlying IRS and the exercise feature of the Bermudan
swaption it is possible to calculate its price, BPS(T e

0 ;κ, δ, Rs), at the time T e
0using risk neutral valuation as

BPS(T e
0 ;κ, δ, Rs) = sup

τ∈S
EQ

[ e− ∫ τ
T e
0

rsds max{PS(τ ;κ, δ, Rs), 0
}∣∣FT e

0

] (3.6)

where the supremum is taken over the set, S, of all E-stopping times with values
in the set {T e

i , i = 0, 1, . . . ,M}. The �ltration E is de�ned as

E = (FT e
i
)M
i=0. (3.7)

The concept of stopping times will be de�ned and studied more closely in the
next chapter which has its focus on solving, i.e. �nding the supremum of, the
above pricing problem. Until then, the reader may think of these variables
as exercise strategies adapted to the stochastic movements of the interest rate
market, i.e. strategies deciding at which of the times T e

0 , T e
1 , . . . , T e

M the option
should be exercised.
As a �nal remark it is important to point out that although studying the pricing
of Bermudan swaptions at the instant T e

0 might seem like a large limitation to
generality, retrieving the price at any time prior to the �rst exercise date is
in fact quite easily accomplished. The price at any instant t ≤ T e

0 is simply
calculated as the expectation of the discounted swaption valuation at T e

0 (cf.
calculating the price of European options) and the reason we choose to focus
on the valuation at the �rst exercise date is only motivated by the fact that it
eases up the notation and keeps focus on the essentials.



Chapter 4

Pricing Bermudan swaptions

In the previous chapter, the price at T e
0 of a Bermudan payer swaption was

stated according to the risk neutral valuation expression

BPS(T e
0 ;κ, δ, Rs) = sup

τ∈S
EQ

[ e− ∫ τ
T e
0

rsds max{PS(τ ;κ, δ, Rs), 0
}∣∣FT e

0

]
, (4.1)

where the supremum is taken over all E-stopping times. Though this expression
sure enough uniquely determines the price of the option, it cannot be evaluated
using straightforward calculations since the price is determined as a solution to
a stochastic optimization problem. This particular optimization problem is the
focus of this chapter where we introduce the concepts of stopping times and
Snell envelopes and solve the above stated valuation problem.
In order to ease up the notation when solving (4.1) the rest of this chapter is
focused on the treatment of the problem

V = sup
τ∈S0

EQ
[
fτ

∣∣F0

] (4.2)

where f = (fi ∈ Fi)M
i=0 is a stochastic process in discrete time and S0 belongs tothe set (Si)M

i=0 where Si denotes the set of all F i-stopping times. The �ltration
F i is a member of the set (F i)M

i=0 speci�ed by

F i = (Fk)M
k=i, i = 0, 1, . . . ,M.

The process f represents the discounted payo� process of the Bermudan payer
swaption and is assumed to be limited by the constraint

EQ [ |fi| ] < ∞, i = 0, 1, . . . ,M.

17



18 Chapter 4. Pricing Bermudan swaptions

As a �nal remark its worth emphasizing that solving (4.1) by working with (4.2)
not only simpli�es the notation but also generalizes the results somewhat. Even
though the process f in this thesis is de�ned in the context of pricing Bermudan
swaptions, the solution to the problem (4.2) is of course valid for any discrete
time process limited by the above stated integrability constraint. In other words,
by �nding the optimal stopping time and the solution to this problem, we have
in fact found the solution to the risk neutral valuation problem of any option
having a �nite set of pointwise positioned exercise dates.

4.1 Stopping times

The solution to the pricing problem (4.2) is found by optimizing on a set of
stopping times. In order to �nd the optimum we thus need to get a proper
understanding of these variables.
De�nition 5. A random variable, τ , taking values in {i, i+1, . . . ,M} is called

a F i-stopping time or a stopping time for the �ltration F i if

{τ ≤ k} ∈ Fk, k = i, i + 1, . . . ,M

Stopping times are frequently used in the context of decision making under
uncertainty, where they serve as variables determining when particular measures
are to be taken, e.g. when to leave a gambling table or when to exercise an
option having multiple exercise dates. By de�nition, a stopping time can only
determine whether a certain measure is to be taken at a time provided that the
information generated up to that time is available. It can not with certainty
assume values corresponding to times yet to come based on what has happened
up to present time.

4.1.1 Stopping times and Bermudan swaptions

Knowing the de�nition of stopping times, a natural question to pose is what
motivates the approach of pricing Bermudan swaptions (or any other derivate
having an early exercise feature for that matter) using these variables. A key
observation needed in order to answer that question, is that some way of rep-
resenting a strategy determining when to exercise the option, needs to be es-
tablished. As more money is assumed to be associated with higher utility than
less money for all actors in a derivates market according to arbitrage theory,
this strategy should furthermore strive to maximize the payo� received when
exercising the swaption.
Bermudan swaptions are instruments traded on an interest rate market asso-
ciated with uncertainty. As an exercise strategy should take the stochastic
movements of this market into consideration a reasonable model of this strat-
egy would be through the use of random variables. Furthermore, the strategy
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should have the property that an exercise decision should be made based on all
information generated by the market up to that point in time. There would, for
instance, be no point in deciding to exercise the swaption in a year from now,
as that decision should needless to say be made then, not now. Taking these
model demands into account together with the previous discussion on choosing
an exercise strategy maximizing the received payo�, the reason why Bermudan
swaptions are priced as optimal stopping problems is motivated. The properties
of an exercise strategy coincide with those of a stopping time and the task of
obtaining a price for the Bermudan swaption becomes equivalent with �nding a
strategy that maximizes the expectation of the discounted payo� of the option.

4.2 Derivation of an optimal stopping time

We now turn to the problem of �nding an optimal stopping for the pricing
problem (4.2) and begin by introducing the stochastic process v = (vi ∈ Fi)M

i=0given by

vM = fM

vi = max{ fi , EQ
[
vi+1

∣∣Fi

]}
, i = 0, 1, . . . ,M − 1.

(4.3)

Using this process we furthermore introduce the F i-stopping times θi ∈ Si for
i = 0, 1, . . . ,M de�ned by

θi = min{
k = i, i + 1, . . . ,M : fk = vk

}
, i = 0, 1, . . . ,M. (4.4)

The process, v, is commonly referred to as a Snell envelope for the stochastic
process f and plays an important role in the problem of pricing Bermudan
swaptions as will be revealed shortly. Before reaching this result however, we
need to make an important observation.

Lemma 1. For i = 0, 1, . . . ,M , the process v satis�es the relation

vi = EQ
[
fθi

∣∣Fi

]
≥ EQ

[
fτ

∣∣Fi

]
, τ ∈ Si.

Proof. The proof is given by an inductive argument. We begin by noting that
the relation by de�nition is satis�ed with equality for i = M and furthermore
make the assumption that the relation is valid for the times i = M,M−1, . . . , k.
Showing that this assumption implies that the relation is valid for k − 1 then
concludes the proof.
Letting τ ∈ Sk−1 be an arbitrary Fk−1-stopping time and introducing τ ∈ Sksuch that τ = max{τ, k} we make the following observation for some event
A ∈ Fk−1
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EQ
[
1Afτ

]
= EQ

[
1A∩{τ=k−1}fτ

]
+ EQ

[
1A∩{τ≥k}fτ

]
= EQ

[
1A∩{τ=k−1}fk−1

]
+ EQ

[
EQ

[
1A∩{τ≥k}fτ

∣∣Fk−1

]]
= EQ

[
1A∩{τ=k−1}fk−1

]
+ EQ

[
EQ

[
1A∩{τ≥k}fτ

∣∣Fk−1

]]
.

Since {τ = k − 1} ∈ Fk−1, conditioning on a smaller σ-algebra implies that

EQ
[
1Afτ

]
= EQ

[
1A∩{τ=k−1}fk−1

]
+ EQ

[
1A∩{τ≥k}EQ

[
fτ

∣∣Fk−1

]]
= EQ

[
1A∩{τ=k−1}fk−1

]
+ EQ

[
1{A∩τ≥k}EQ

[
EQ[ fτ |Fk]

∣∣Fk−1

]]
≤ EQ

[
1A∩{τ=k−1}fk−1

]
+ EQ

[
1A∩{τ≥k}EQ

[
vk

∣∣Fk−1

]]
≤ EQ

[
1Avk−1

]
where the second last inequality follows from the induction hypothesis and the
last inequality is an immediate consequence of the de�nition of the Snell enve-
lope. As the above inequality is valid for all events A ∈ Fk−1, conditioning the
above expectations on Fk−1 necessarily results in

vk−1 ≥ EQ
[
fτ

∣∣Fk−1

]
which proves the inequality relation stated in the lemma. It remains to verify
that this inequality is satis�ed with equality for the Fk−1-stopping time θk−1.Returning to the chain of inequalities above, we conclude that

EQ
[
1Afθk−1

]
= EQ

[
1A∩{θk−1=k−1}fk−1

]
+ EQ

[
1A∩{θk−1≥k}EQ

[
vk

∣∣Fk−1

]]
.

as a consequence of the induction hypothesis. Furthermore the equality relation

EQ
[
1A∩{θk−1=k−1}fk−1

]
+ EQ

[
1A∩{θk−1≥k}EQ

[
vk

∣∣Fk−1

]]
= EQ

[
1Avk−1

]
must necessarily hold since vk−1 = fk−1 for the event {θk−1 = k−1} and vk−1 =
EQ[vk|Fk−1] for the complementary event {θk−1 ≥ k} where vk−1 6= fk−1. Asa �nal consequence, conditioning the expectation on Fk−1 and using the fact
that the above relation holds for all events A ∈ Fk−1 results in
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vk−1 = EQ
[
fθk−1

∣∣Fk−1

]
which completes the proof.

Using this lemma we can now construct an optimal stopping time for the prob-
lem (4.2) and thereby obtain an explicit expression for the price process of the
Bermudan swaption in terms of the Snell envelope, v.

Theorem 2. The price process, V , satis�es the relation

V = EQ
[
fθ0

∣∣F0

]
= v0

where v0 is determined by the recursion

vM = fM

vi = max
{

fi , EQ
[
vi+1

∣∣Fi

]}
, i = 0, 1, . . . ,M − 1.

and the optimal F0-stopping time θ0 is given by

θ0 = min
{

k = 0, 1, . . . ,M : fk = vk

}
.

Proof. The proof follows from Lemma 1 since

v0 = EQ
[
fθ0

∣∣F0

]
≥ EQ

[
fτ

∣∣F0

]
, τ ∈ S0.

together with the de�nition of V implies that

V = sup
τ∈S0

EQ
[
fτ

∣∣F0

]
= EQ

[
fθ0

∣∣F0

]
= v0.

The theorem above provides an optimal stopping time for the problem (4.2)
and states the solution of the problem as a Snell envelope for the process f . In
the next chapter we discuss how this solution can be used in practice to price
Bermudan swaptions.



Chapter 5

Using the pricing envelope in

practice

According to the theorem presented in the previous chapter, a Bermudan swap-
tion could be priced through a �back stepping method�, i.e. a method where the
price V = v0 is calculated by iteratively constructing the process v in descend-
ing order of time. A problem with this procedure is that it typically results in
complex and time consuming computations, since it relies on calculating chains
of expected values represented by multidimensional integrals. Calculating these
integrals using numerical methods is known to be a notoriously cumbersome
task (see [6] for further discussion).
In order to avoid this problem a simpli�ed pricing method based on using dis-
crete approximations of the continuous processes v and f is commonly used in
practice. The discrete approximations are obtained by restricting the evolution
of the stochastic processes to tree structures, which only allow each process to
evolve to one of a �nite number of states at a given point in time. When applying
these approximations, the above discussed continuous integrals are transformed
to ordinary sums which considerably lowers the complexity of the calculations.
The focus of this chapter is to study how one of these tree methods can be
used to price Bermudan swaptions by restricting the evolution of the short rate
process to that of a recombining binomial tree.

5.1 Introducing a new pricing envelope

Using the results presented in the previous chapter together with an adjustment
of the set of admissible exercise dates, the initial price of a Bermudan swaption
is given as

22
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BPS(T e
0 ;κ, δ, Rs) = v0

where v is rede�ned as

vi = max{fi,EQ
[
vi+1

∣∣FT e
i

]}
, i = 0, 1, . . . ,M − 1

vM = fM

and the process f is identi�ed as

fi = e−
∫ T e

i
T e
0

rsds max{PS(T e
i ;κ, δ, Rs), 0

}
, i = 0, 1, . . . ,M.

We now introduce the envelope u = (ui ∈ FT e
i
)M
i=0 given by

ui = max{Fi,EQ
[ e− ∫ T e

i+1
T e

i
rsds

ui+1

∣∣FT e
i

]}
, i = 0, 1, . . . ,M − 1

uM = FM

(5.1)

where the process F = (Fi ∈ FT e
i
)M
i=0 is de�ned by

Fi = max{PS(T e
i ;κ, δ, Rs), 0

}
, i = 0, 1, . . . ,M. (5.2)

In order to be able to introduce the binomial tree pricing method as it is typically
used in practice (see [3]), we will abandon the pricing of Bermudan swaptions
through the use of the process v in favour of the process u. The following
theorem veri�es the legality of this alternative pricing method.
Theorem 3. The initial price of the Bermudan swaption is given by the pro-

cesses u and F de�ned by (5.1) and (5.2) as

BPS(T e
0 ;κ, δ, Rs) = u0.

Proof. The proof is constructed by an induction argument verifying the relation

vi = uie−
∫ T e

i
T e
0

rsds
, i = 0, 1, . . . ,M

which implies that the new pricing method is valid since v0 = u0. We be-
gin by concluding that the relation by de�nition of f and F is true at the
time T e

M and furthermore make the assumption that the relation holds for
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T e
M , T e

M−1, . . . , T
e
k+1 for some k = 0, 1, . . . ,M − 2. This assumption however

implies that the relation is valid at T e
k since

vk = max{fk,EQ
[
vk+1

∣∣FT e
k

]}
= max{e− ∫ T e

k
T e
0

rsds
Fk,EQ

[
uk+1e−

∫ T e
k+1

T e
0

rsds∣∣FT e
k

]}
= max{e− ∫ T e

k
T e
0

rsds
Fk,EQ

[
uk+1e−

∫ T e
k

T e
0

rsds−
∫ T e

k+1
T e

k
rsds∣∣FT e

k

]}
= e−

∫ T e
k

T e
0

rsdsmax{Fk,EQ
[
uk+1e−

∫ T e
k+1

T e
k

rsds∣∣FT e
k

]}
= uke−

∫ T e
k

T e
0

rsds

which proves the induction hypothesis and thereby the theorem.

5.1.1 Interpretation of the envelope

As was previously stated, the price of a Bermudan swaption may be retrieved
using the envelope u through the relation BPS(T e

0 ;κ, δ, Rs) = u0 where

u0 = max{F0,EQ
[ e− ∫ T e

1
T e
0

rsds
u1

∣∣FT e
0

]}
u1 = max{F1,EQ

[ e− ∫ T e
2

T e
1

rsds
u2

∣∣FT e
1

]}
...

uM−1 = max{FM−1,EQ
[ e− ∫ T e

M
T e

M−1
rsds

uM

∣∣FT e
M

]}
uM = FM

According to this recursion, we may interpret the calculation of the initial price
of the swaption, u0, as �nding the maximum value of either exercising the option
immediately and thereby receiving the payo� F0, or postponing the exercise
decision until later. The value of choosing not to exercise the option at T e

0 is
according to the above relations calculated as the discounted initial value of a
Bermudan swaption having its �rst exercise date at T e

1 . The initial value of thisoption, u1, is correspondingly calculated using the same procedure as for u0, i.e.by comparing which of the alternatives �exercising immediately� or �postponing
the exercise decision� that is associated with the highest expected value.
By repeating this pricing procedure until reaching the last exercise date, T e

M , the
price of the Bermudan swaption is obtained through a dynamic programming
relation. The value of uM , representing the initial (initial meaning the time T e

M )
price of a swaption having its �rst and only exercise date at T e

M , must necessarily



5.1. Introducing a new pricing envelope 25

satisfy the equality uM = FM , i.e. the initial price of the option equals the value
of its immediate payo�. Since uM can be calculated explicitly, the sequence
uM−1, uM−2, . . . , u0 may be calculated as well in an iterative fashion.
Pricing Bermudan swaptions using the process u could be argued to be more
intuitive than the pricing procedure based on the envelope v. Sure enough,
both methods are identical in the sense that they render the same valuation by
comparing which of the alternatives �immediate exercise� or �postponed exer-
cise� that is more pro�table. What separates them, however, is the way these
alternatives are quanti�ed. When using the original pricing method based on
the processes v and f , the comparison is always done by discounting all val-
ues to the time T e

0 . The new method, on the other hand, always performs the
discounting to the time of the comparison, which might be considered as more
appealing from an intuitive point of view.

5.1.2 Extension of the envelope

It will prove useful to know the value of the process u at all settlement dates
between the �rst and the last exercise date1 of the Bermudan swaption. For this
reason, the envelope is extended to be de�ned on these dates in this section. As
a �rst step in doing so, we begin by de�ning the index K (cf. �gure 5.1 below)
as

K =
{
l = 1, 2, . . . , N : Tl = T e

M

} (5.3)

and rede�ne the process u as u = (ui ∈ FTi
)K
i=0. In order to calculate the value

of this envelope at a certain time, we furthermore need to establish a means
to identify if this time corresponds to an exercise date or not, as ui necessarilymust be valued di�erently than (5.1) at non-exercise dates. This is achieved by
introducing the indicators Ei de�ned by

Ei = 1{
Ti∈{T e

0 ,T e
1 ,...,T e

M}
}, i = 0, 1, . . . ,K. (5.4)

When Ei = 1, the date Ti corresponds to an exercise date and ui is calculatedin the same manner as before the extension, i.e. through equation (5.1). In
the opposite case when Ei = 0, the variable ui however represents the price
of a Bermudan swaption having its �rst exercise date at a later instant than
Ti, and should be calculated as the value of (necessarily) keeping the swaption
until at least the time Ti+1. This value is obtained by excluding the alternative
�immediate exercise� in expression (5.1), i.e.

ui = EQ
[ e− ∫ Ti+1

Ti
rsds

ui+1

∣∣FTi

]
, Ei = 0

1Recall from the de�nition in the previous chapter that the exercise dates are assumed to
coincide with settlement dates of the underlying IRS.
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Figure 5.1: Example of a set of exercise dates of the Bermudan swaption together
with its underlying IRS's set of settlement dates. Note that the settlement date
TK is de�ned as the last exercise date of the swaption, i.e. TK = T e

M .

Using this result, the extended process u is completely speci�ed as

ui =

 max{Fi,EQ
[ e− ∫ Ti+1

Ti
rsds

ui+1

∣∣FTi

]}
, Ei = 1

EQ
[ e− ∫ Ti+1

Ti
rsds

ui+1

∣∣FTi

]
, Ei = 0

uK = FK

(5.5)

where the index i is de�ned on the set i = 0, 1, . . . ,K and the process F is
extended to F = (Fi ∈ FTi

)K
i=0 and de�ned as

Fi = max{PS(Ti;κ, δ, Rs), 0
}

, i = 0, 1, . . . ,K. (5.6)

As before, the price of the Bermudan swaption is given by the value of the
envelope at the time T e

0 = T0, i.e. as

BPS(T e
0 ;κ, δ, Rs) = u0. (5.7)

5.2 Pricing with a binomial tree

The approximate pricing method that is the focus of this chapter is based on
restricting the evolution of the short rate process to that of a recombining bi-
nomial tree. In the following section we provide a closer examination on how
this discretization a�ects the extended pricing procedure (5.5)-(5.6).
In order to make matters more speci�c, the short rate process, r, is replaced
with the �nite state process r̂ = (r̂i ∈ FTi)

N−1
i=0 . Furthermore the notation r̂i,jis introduced, having the interpretation that the process on the time interval

[Ti, Ti+1) is in the state j, i.e. the value of r̂i is determined by the index j.
Unlike all stochastic processes de�ned up to this point, r̂ is de�ned on the set
of dates (Ti)N−1

i=0 , where the index N − 1 denotes the ordinal number of the last
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settlement date of the swaption's underlying IRS (cf. Chapter 3). The reason
for de�ning the process up to this point in time is that limiting the existence
of r̂ to a smaller partition of the time axis, causes the value process of the
underlying IRS (and thereby the value process of the Bermudan swaption) to
be unde�ned2.

r
0,0

^

r
1,1

^

r
2,2

^

r
3,3

^

r
1,−1

^

r
2,−2

^

r
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^
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^
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3,1

^

r
3,−1

^

Figure 5.2: Schematic example of a recombining binomial tree evolution of the
short rate process r̂. The probability of transcending to a state associated with
higher ordinal number equals pu, while the probability of transition to a state
with lower ordinal number is given by 1− pu.
The idea behind using a recombining binomial tree to approximate the short
rate process, r, is to limit the number of possible transitions at any given instant
of time. This is achieved by only letting the process evolve to one of two states,
j + 1 and j − 1, between the times Ti and Ti+1 given that it is in state j at Ti(cf. �gure 5.2). The probability3 of a transition to the state j +1 is denoted pu,and the probability of a transition to the j − 1 is given by 1− pu. As the shortrate is assumed to be known through observation at the time of the pricing, i.e.
at T0 = T e

0 , and thus only has one state, the construction of the recombining
binomial tree bounds the indices i and j as

i = 0, 1, . . . , N − 1 (5.8)
j = −i,−i + 2, . . . , i− 2, i. (5.9)

2This follows from the fact that the value process of the IRS regardless of time contains a
term corresponding to the value of a zero coupon bond with maturity TN .

3This probability is given under the risk neutral measure Q.
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5.2.1 Approximating the pricing procedure

We now turn to the question of how the processes u and F are approximated
when restricting the evolution of the short rate process to that of a recombining
binomial tree. As F by de�nition is given by

Fi = max{PS(Ti;κ, δ, Rs), 0
}

, i = 0, 1, . . . ,K

the short rate discretization must necessarily cause an approximation, since the
value process PS(T e

i ;κ, δ, Rs) according to (3.4) is constructed as a sum of short
rate dependent zero coupon bonds with varying maturities. In order to further
investigate the properties of this approximation, we thus need to �nd out how
the price process of a zero coupon bond is approximated as a consequence of
introducing the binomial tree. As this task typically generates a somewhat
messy notation unless the process r̂ is further speci�ed, we postpone the details
of this calculation to the next chapter. Until then, we settle with introducing
the process F̂ = (F̂i ∈ FTi

)K
i=0 as the approximation of F leaving all details

aside. As in the case with the approximated short rate process, F̂i,j denotes
that the process F̂ is in the state j on the interval [Ti, Ti+1), where j is bounded
by (5.9).
It remains to investigate what e�ect the binomial tree has on the envelope u
de�ned as

ui =

 max{Fi,EQ
[ e− ∫ Ti+1

Ti
rsds

ui+1

∣∣FTi

]}
, Ei = 1

EQ
[ e− ∫ Ti+1

Ti
rsds

ui+1

∣∣FTi

]
, Ei = 0

uK = FK

where i = 0, 1, . . . ,K. As was pointed out earlier, the reason for introducing an
approximate pricing method based on a binomial tree is motivated by the fact
that the process u is partly constructed from an expectation of a continuous
random variable. In order to deduce the simpli�cations induced by this tree,
we introduce the process û = (ûi ∈ FTi

)K
i=0 approximating u, and furthermore

let ûi,j denote that the value of ûi is given by the state index j on the interval
[Ti, Ti+1).
By observing the above expression for u, it stands clear that we need to decide
on how the stochastic integral over the short rate process (the discount factor) is
valued before approximating the aforementioned expected value. This however,
turns out to be a relatively easy task since the approximated short rate process r̂
by de�nition is constant over the period [Ti, Ti+1) at any given state j, meaning
that the integral reasonably should be discretized as

e(Ti+1−Ti)r̂i ∈ FTi
.



5.2. Pricing with a binomial tree 29

Using this approximation, the process û should then suitably discretize u at all
instants of time and states as

ûi,j =

{ max{F̂i,j , e(Ti+1−Ti)r̂i,j
(
puûi+1,j+1 + (1− pu)ûi+1,j−1

)}
, Ei = 1

e(Ti+1−Ti)r̂i,j
(
puûi+1,j+1 + (1− pu)ûi+1,j−1

)
, Ei = 0

ûK,j = F̂K,j (5.10)
where the indices i and j are bounded by equations (5.8)-(5.9). Besides relying
upon the previously stated discretization of the discount factor, this approxima-
tion uses the fact that restricting the short rate evolution to that of a recombin-
ing binomial tree implies that the expectation could be discretely approximated
by a weighted sum. This sum consists of the terms ûi+1,j+1 and ûi+1,j−1 rep-
resenting the two possible states the process û may transcend to at the time
Ti+1.

5.2.2 The approximation error

Pricing Bermudan swaptions using a recombining binomial tree (or any other
tree structure for that matter) naturally generates a valuation error as a conse-
quence of limiting the evolution of all involved processes to a �nite set of states.
The magnitude of this error does however not only depend on the number of
states each process is restricted to. A large contribution of the error is in fact
due to the �neness of the mesh on which the approximated short rate process
is de�ned, since this process is assumed to be constant on every interval on
the mesh. Even though, we have de�ned the process r̂ to exist only on the
settlement dates of the Bermudan swaption's underlying IRS throughout this
chapter, this particular partition is in no way the only alternative available when
constructing r̂. As a matter of fact, any mesh having equidistant4 nodes will do
as long as it reaches as far as to the settlement date of the last transaction of
the IRS, i.e. the time TN−1. The choice of introducing the approximate pricing
method based on a mesh consisting solely of settlement dates, is only motivated
by the fact that it eases up the notation and keeps the focus on the essential
steps of the method. Though this partition will be used in the next chapter as
well for the same reasons, the reader is advised to employ a �ner mesh when
using the method in practical situations.
As a �nal comment, it's worth pointing out that choosing to re�ne the mesh on
which the process r̂ is constructed, not only limits the pricing error due to the
discretization of the time axis. By increasing the number of nodes, the number
of states represented in the binomial tree multiplies. This causes a reduction in
the error induced by the restriction set on the evolution of the process as well.

4In order to produce a binomial tree with the property of being recombining, all points on
which the approximated short rate process is de�ned, need to be equidistantly spaced.



Chapter 6

Pricing according to the

Ho-Lee short rate model

The purpose of this chapter is to make the previously introduced approximate
pricing method explicit by specifying a model of the short rate process. The
model in question was suggested in the seminal article [7] and has since then
become widely celebrated as it due to its parameterization, was the �rst model
of the short rate guaranteeing absence of arbitrage.
Besides introducing the Ho-Lee model and presenting its valuation of Bermudan
swaptions, this chapter furthermore presents a way of calibrating the parameters
of the model given limited observed market data as discussed in the introduction
of this thesis. Despite the fact that the Ho-Lee model was introduced some 20
years ago and lack many desirable features of today's short rate models (see [3]
for a survey), it still is a competitive alternative when dealing with situations
such as these due to the simplicity of its construction.

6.1 The Ho-Lee short rate model

When reading about the Ho-Lee model in recent literature on �nancial math-
ematics, the short rate process is usually presented having continuous time
dynamics. In the original setup presented by the authors, the dynamics were
di�erent however, as the short rate process was de�ned in a discrete setting and
having an evolution given by a recombining binomial tree. As the previously
proposed approximate pricing method is constructed through the use of a bi-
nomial tree, the model used in this chapter will be constructed similarly to the
original Ho-Lee model.
Using the same notation and partition of the time axis as in the previous chapter,
the short rate process in discrete time, r̂ = (r̂i ∈ FTi

)N−1
i=0 , is de�ned according

to the Q-dynamics

30
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r̂i = θi +
√

δσ2

i∑
k=1

BQ
k , i = 0, 1, . . . , N − 1 (6.1)

where δ (cf. Chapter 3) represents the equidistant time period between two
settlement dates of the underlying IRS of the Bermudan swaption and (BQ

k )N−1
k=1is a stochastic sequence consisting of IID symmetric Bernoulli random variables

under the measure Q, i.e.

Q(BQ
k = +1) = 1/2,

Q(BQ
k = −1) = 1/2,

k = 1, 2, . . . , N − 1. (6.2)

In the above de�nition, the volatility, σ, of short rate process is de�ned as a
strictly positive deterministic constant, i.e. σ > 0, while the drift of the process,
(θi)N−1

i=0 , is de�ned as a deterministic sequence on R.

Figure 6.1: Example of the Ho-Lee short rate evolution in a binomial tree.
Using the de�nition (6.1), the construction (cf. �gure 6.1 for a typical example)
of the process r̂ implies that r̂i,j is given by

r̂i,j = θi + j
√

δσ2,
i = 0, 1, . . . , N − 1
j = −i,−i + 2, . . . , i− 2, i

(6.3)

where r̂i,j as earlier denotes the value of the short rate process at time Ti whenits state is given by the index j. We may furthermore observe that the Ho-Lee
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model through its use of symmetric Bernoulli distributed variables, speci�es the
transition probability from state j to state j + 1 (and j − 1 for that matter) as
pu = 1/2 regardless of the time of the transition.

6.2 Pricing the Bermudan swaption

Given the short rate model (6.1) we are now able to explicitly specify the pricing
procedure of Bermudan swaptions according to the method introduced in the
previous chapter. Using the same notation as earlier together with the above
de�nitions of r̂i,j and pu the approximate envelope u is calculated as

ûi,j =

{ max{F̂i,j ,
1
2 eδθi+jσδ3/2 (

ûi+1,j+1 + ûi+1,j−1

)}
, Ei = 1

1
2 eδθi+jσδ3/2 (

ûi+1,j+1 + ûi+1,j−1

)
, Ei = 0

ûK,j = F̂K,j (6.4)
where the indices i, j and K are de�ned as

i = 0, 1, . . . ,K
j = −i,−i + 2, . . . , i− 2, i

K =
{

l = 1, 2, . . . , N : Tl = T e
M

}
.

(6.5)

Since the process F̂ up to this point has not been de�ned, the above pricing
expression is yet to be complete. As was discussed previously, specifying this
process requires the calculation of the price of zero coupon bonds, which up
until now has been postponed. Having parameterized the short rate model,
this can however be with more ease and we begin by introducing the process
p̂m = (p̂m

i ∈ FTi
)N
i=0 denoting the approximated value process at time Ti of azero coupon bond having maturity Tm, where

i ≤ m, i,m = 0, 1, . . . , N. (6.6)

Using the same convention as for the process r̂, the variable p̂m
i,j denotes that

the price process at time Ti of the zero coupon bond has a value corresponding
to the state j. As a consequence of having speci�ed the process r̂, the value
of p̂m

i,j is calculated as (the interested reader is referred to the derivation in the
appendix)

p̂m
i,j = e−δ

m−1∑
k=i

θk−δ3/2σj(m−i)
m−1∏

k=i+1

cosh(
δ3/2σ(m− k)

) (6.7)
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which using the expression for the price process of the underlying IRS of the
Bermudan swaption as described by equation (3.4) determines F̂ as

F̂i,j = max{κ
(
p̂i

i,j − p̂N
i,j − δRs

N∑
k=i+1

p̂k
i,j

)
, 0

}

Simplifying the above expression somewhat �nally results in

F̂i,j = max{κ
(
1− p̂N

i,j − δRs

N∑
k=i+1

p̂k
i,j

)
, 0

} (6.8)

which completely speci�es the process û and thereby the price of the Bermudan
swaption as

BPS(T e
0 ;κ, δ, Rs) = û0,0 (6.9)

with û and F̂ constructed using relations (6.4)-(6.8).

6.3 Calibrating the model using limited data

As was stated in the introduction to this chapter, the Ho-Lee short rate model
may be calibrated using relatively simple and easily accessible market data. In
this section we aim to motivate this assertion by assign values to all parameters
of the model using only:

• The initial term structure, i.e. the curve p? =
{
p?(T0, T ) : T ≥ T0

}
observed on the market.

• A counter party's valuation at T e
0 = T0 of the Bermudan swaption, i.e.

the price BPS?.

We begin by determining what role the initial term structure plays in the cali-
bration procedure. Using relation (6.7), the initial price of a zero coupon bond
having maturity Tm is given by

p̂m
0,0 = e−δ

m−1∑
k=0

θk
m−1∏
k=1

cosh(
δ3/2σ(m− k)

)

where we have made use of the fact that the only possible state of the short rate
process r̂ at T0 is given by j = 0. By forming the quotient of this price at two
consecutive maturity dates, Tk and Tk+1, we furthermore observe that



34 Chapter 6. Pricing according to the Ho-Lee short rate model

p̂k+1
0,0

p̂k
0,0

= e−δθkcosh(
kσδ3/2

)
.

Rearranging the terms in this relation and inserting prices stored in the observed
initial term structure, results in that the sequence of drift parameters, (θi)N−1

i=0 ,
reasonably should be estimated as

θest
i =

1
δ

[
log

(
p?(T0, Ti)

p?(T0, Ti+1)

)
+ log

(cosh(
iσestδ3/2

))]
, (6.10)

where (θest
i )N−1

i=0 denotes the estimation of the sequence (θi)N−1
i=0 and σest denotes

the estimation of the volatility of the short rate process. In order to be able to
be able to use this expression we obviously need a way of calculating σest. This
task is however quite easily dealt with using the given valuation of the Bermudan
swaption as this price implicitly determines the volatility as the solution to the
non-linear equation

BPS
(
T e

0 ;κ, δ, Rs, σ
est,

(
θest

i (σest)
)N−1

i=0

)
= BPS? (6.11)

which expresses the drift of the short rate process using relation (6.10) thus
leaving σest as the only unknown parameter. This equation is quite easily solved
using a numerical procedure, for instance the secant method (see the description
in [6]). As σ typically lies somewhere in the range of 0.5 · 10−2 to 1 · 10−2 in
most interest rate markets, quali�ed starting values for a numerical solver could
be extracted from this interval.
Solving equations (6.10)-(6.11) completely determines all parameters of the
short rate model based on the limited input data. As the drift of the short rate
process is calculated so as to accurately reproduce the initial term structure,
the short rate model obtained using the above presented calibration procedure,
is furthermore guaranteed to be absent of arbitrage possibilities1.

6.4 Disadvantages of the model

Unlike many of the short rate models introduced in the last decade, the Ho-Lee
model lacks a property that is commonly referred to as �mean reversion�. This
property guarantees that the short rate process constantly evolves towards a
time varying equilibrium and signi�cantly reduces the probability of the event
that the process becomes negative or grows unreasonably large. As the Ho-Lee

1This statement is on a �ner note actually only partly true as only the prices that are
actually used in the calibration procedure are correctly represented by the short rate model.
All other prices will only be reproduced approximately. In order to reduce the approximation
error the short rate process needs to be de�ned on a �ner partition of the time axis (cf. the
discussion in the previous chapter).
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model lacks mean reversion it thus, in comparison to more recent short rate
models, has a relatively high probability of exploding or turning negative at
some point in time.
Another disadvantage of the Ho-Lee model follows from the fact that it assumes
that the volatility of the short rate is constant in time as well as determinis-
tic. Several studies (see [3] and references therein) have shown that volatility
parameterizations such as these are over-simplistic and unable to for instance
handle notorious problems such as �volatility smiles�.



Chapter 7

Numerical results

In the following chapter we study the behaviour of the pricing method proposed
in the previous chapter in terms of its convergence, calibration to market data
and sensitivity to changes in parameter values. Two Bermudan payer swaptions
serve as the basis for our conclusions, the �rst one having an underlying IRS with
its last transaction in 5 years (referred to as the 5 year contract) and the second
one having an underlying IRS with its last transaction in 10 years (referred
to as the 10 year contract). As was pointed out in chapter 3, the presented
de�nitions of IRS agreements and Bermudan swaptions were not given in their
most general (or for that matter common) form. In order to construct the two
swaptions studied in this chapter according to typical market practice, we thus
deviate from our earlier framework somewhat. More speci�cally, we allow the
underlying IRS contracts of both options to make �oating rate payments four
times a year and �xed rate payments once a year. Furthermore, both swaptions
may only be exercised once a year, namely a couple of days before the �xed
leg settles. De�ning the two Bermudan swaptions according to these criterions,
obviously calls for an extension of the results derived up to this point. This
extension may however be performed with relative ease since the fundamental
properties of the pricing procedure still apply. All that needs to be reformulated
is the set of dates on which the pricing envelope and short rate process are
de�ned.
All pricing and calibration is performed on the �rst exercise date of the two
options. The strike rates of the options are calculated as the par swap rates
at the same date (Rs = 3.475% for the 5 year swaption and Rs = 4.120% for
the 10 year swaption). Finally, the curve containing the initial term structure
used for obtaining the short rate drift process, (θest

i )N−1
i=0 , as described in the

previous chapter was calculated implicitly using market prices of Swedish IRS
contracts and a bootstrapping technique (see [3] for an introduction).

36
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7.1 Convergence of the pricing procedure

Setting the short rate volatility to σ = 0.00751 and varying the equidistant time
step, δ, used when discretizing the short rate process, the convergence of the
pricing procedure is given by �gure 7.1.
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Figure 7.1: Convergence of the pricing procedure measured in relative error
when approximating the short rate process with a varying time discretization.
The solid curve corresponds to the pricing of the 10 year contract (valued at
5.781% of the notional amount, κ) and the dashed curve to the pricing of the 5
year contract (valued at 2.424% of the notional amount, κ).
As can be observed in the �gure, the relative error in price for both contracts
decreases steadily when shortening the time step. The error falls almost imme-
diately below the level 0.5% and when reducing the time step to the magnitude
of a couple of days (more speci�cally δ = 0.01) both contracts are valued with
a relative error at approximately 0.01%. Comparing these results with the time
consumption diagram below, �gure 7.2, the pricing of Bermudan swaption con-
tracts through a Ho-Lee binomial tree, could be claimed to produce results with
satisfactory accuracy and speed in the context of approximate valuation. In
order to retrieve results with an accuracy in the range of 0.5%, the pricing pro-
cedure requires less than a second of computation time for both contracts and
obtaining results with a relative error less than 0.1% takes approximately 20
seconds for the 10 year contract and 1 second for the 5 year contract.

1According to market experience, the short rate volatility typically lies somewhere in the
interval 0.5%− 1.0%, making the average value 0.75% a reasonable choice.
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Figure 7.2: Time consumption of the pricing procedure measured in ms when
approximating the short rate process with a varying time discretization. The
solid curve corresponds to the pricing of the 10 year contract and the dashed
curve to the pricing of the 5 year contract.

By studying �gure 7.2 we can furthermore conclude that the pricing procedure
has quadratic complexity in the sense that halving the time step, δ, results in
about a four times larger time consumption of the pricing procedure.

7.2 Convergence of the calibration procedure

By using accurate price data calculated in the same setting as in the previous
section, i.e. under the assumption that σ = 0.0075, the convergence of the
calibration procedure was measured by calculating the error in implied volatility
when varying the short rate process discretization. The results are presented in
�gure 7.3 for both contracts.
As can be observed in the �gure, the implied volatilities calculated by the cal-
ibration procedure converge to the true value when decreasing the time step
used when discretizing the short rate process. The convergence of the relative
error is however fairly slow as �gure 7.4 suggests. For instance, at time steps
corresponding to an error in the magnitude of 0.5%, the calibrating procedure
requires about 30 seconds of computation time when calibrating to the price of
the 10 year swaption and approximately 10 seconds of computation time when
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Figure 7.3: Convergence of the calibration procedure measured as relative error
in implied volatility when approximating the short rate process with a vary-
ing time discretization. The solid curve corresponds to results obtained when
calibrating to the price of the 10 year contract and the dashed curve when
calibrating to the price of the 5 year contract.

using the price of the 5 year swaption. The complexity of the method is as in
the case of the pricing method quadratic, although with a signi�cantly larger
growth factor.

7.3 Sensitivity measures

In the following section, we present some results on the pricing method's sen-
sitivity in changes in input data. As the results are more or less identical for
both swaptions, we only present the sensitivity measures obtained when work-
ing with the 10 year swaption in favour of briefness. All calculations have been
performed using the equidistant short rate discretization δ = 0.01.

7.3.1 Price sensitivity w.r.t. the short rate volatility

In order to get an understanding of what e�ect the relatively slow convergence
of the calibration procedure has on the price of the contract, it is interesting to
study the di�erence in valuation produced by the pricing procedure when vary-
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Figure 7.4: Time consumption of the calibration procedure measured in ms
when approximating the short rate process with a varying time discretization.
The solid curve corresponds to results obtained when calibrating to the price of
the 10 year contract and the dashed curve when calibrating to the price of the
5 year contract.

ing the short rate volatility. Figure 7.5 depicts this change in value measured
as per cent of the notional amount of the underlying IRS when varying the
volatility using σ = 0.0075 as reference. By studying the �gure it becomes clear
that the valuation calculated by the pricing procedure varies linearly with the
change in volatility. This result furthermore suggests that the calibration equa-
tion (6.11) should be fairly straightforward to solve using numerical methods,
e.g. the secant method proposed earlier.
Knowing the accuracy and speed of the calibration method as well as the pricing
procedure's sensitivity to changes in the short rate volatility, this sensitivity
measure could be used as an indicator suggesting whether a holder should or
should not use the proposed pricing and calibration method depending on the
required accuracy in pricing.

7.3.2 Price sensitivity w.r.t. the initial term structure

Another sensitivity measure often of interest to owners of Bermudan swaptions
is the so called ∆−measure2, which calculates the change in the price of the

2This measure is not to be confused with the ∆−measure used in the context of pricing
stock options (the interested reader is referred to [2]).
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Figure 7.5: Change in price of the 10 year contract measured as per cent of the
notional amount, κ, of the underlying IRS when varying the short rate volatility
using σ = 0.0075 as reference.

option due to a perturbation of the e�ective zero rates given by the initial term
structure. Typically the perturbation consists of a constant additive increment3
in the range of a few basis points, where a basis point is de�ned as 10−4. Figure
7.6 shows this change in price when varying the increment using the short rate
volatility σ = 0.0075. As is the case when measuring the sensitivity in price
towards changes in volatility, the �gure reveals a linear relation between the
∆-value and the size of the increment.
The ∆-measure plays a key role for the owner of a Bermudan swaption as it is
used for both producing risk estimates as well as constructing hedging positions.
Knowing that the value of the short rate volatility very well may alter over time
due to market changes and that the calibration procedure converges quite slowly
(and therefore most likely will produce implied volatilities associated with a
non-negligible error) it is therefore of interest to study how the ∆-value varies
when pricing the swaption using di�erent short rate volatilities. In �gure 7.7
the change in price due to a lift corresponding to one basis point is plotted for
di�erent choices of short rate volatilities. As can be observed in the �gure, the
absolute di�erence in ∆-value increases slightly as the di�erence in short rate
volatility becomes larger.

3Letting y?(0, T ) denote a market observed zero rate with maturity T , the ∆-value cor-
responding to an increment α measures the change in price of the Bermudan swaption when
letting y?(0, T )← y?(0, T ) + α for all T ≥ 0.
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More speci�cally, the change in the ∆-measure is in the magnitude of 0.001%
of the notional amount and is thus quite minor.
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Figure 7.6: Change in price of the 10 year contract measured as per cent of the
notional amount, κ, of the underlying IRS when adjusting the initial e�ective
zero curve with a constant increment measured in basis points.
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Figure 7.7: Change in price of the 10 year contract measured as per cent of the
notional amount, κ, of the underlying IRS when adjusting the initial e�ective
zero curve with a constant increment of one basis point. The di�erence in price
is plotted versus the short rate volatility used by the pricing procedure.



Chapter 8

Summary and conclusions

This thesis has focused on both theoretical and practical aspects of pricing
Bermudan swaptions. First of all, an exact pricing formula in terms of a Snell
envelope has been derived by solving the optimal stopping problem of pricing
the contract through risk neutral valuation. As this formula has no immediate
use in practical situations due to the fact that it relies on the evaluation of mul-
tidimensional integral expressions, a general approximate valuation procedure
based on a recombining binomial tree approximation of the short rate process
has been proposed.
Secondly, an explicit pricing formula suited for producing estimate prices of
Bermudan swaptions has been proposed by specializing the approximate valu-
ation procedure to the Ho-Lee short rate model. Apart from being computa-
tionally fast, this procedure also has the bene�t of being easily calibrated to
market data as its only required input consists of observed market prices of zero
coupon bonds (an observed discount function) as well as a previous valuation
of a Bermudan swaption contract. These properties make the pricing proce-
dure particularly useful in situations where estimate prices need to be obtained
quickly using limited market data. In situations such as these, methods used for
pricing Bermudan swaptions with high accuracy usually require computation-
ally intense procedures when calibrating their parameters to market data. In a
worst case scenario some of these methods might not even be able to produce
any price at all due to the lack of input needed for calibration.
Although some results concerning the behaviour of the specialized pricing method
have been presented, a topic that remains to be studied is the accuracy of this
method in terms of calculated price and sensitivity measures compared to more
sophisticated pricing procedures using closer approximations of the pricing prob-
lem as well as larger sets of observed market data when calibrating. Knowing
the limitations of the Ho-Lee model (cf. the discussion in Chapter 6), it is
however reasonable to expect that the prices rendered by the suggested pricing
procedure only should be considered as estimates of the true value.
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Appendix A

Pricing zero coupon bonds

using the Ho-Lee binomial

tree

In the following chapter, we provide a derivation of the valuation of zero coupon
bonds when specifying the dynamics of the short rate process to that suggested
by the Ho-Lee model. Using risk neutral valuation, the value, p̂m

i,j , at the time
Ti and state j of a zero coupon bond having maturity Tm is calculated as

p̂m
i,j = EQ

[e−(
r̂i(Ti+1−Ti)+r̂i+1(Ti+2−Ti+1)+...+r̂m−1(Tm−Tm−1)

)∣∣FTi

]
= EQ

[e−δ
(
r̂i+r̂i+1+...+r̂m−1

)∣∣FTi

]

where the relation between the indices i, j and m is given by

i,m = 0, 1, . . . , N
i ≤ m
j = −i,−i + 2, . . . , i− 2, i.

Using the de�nition of the process r̂ given by equation (6.1), we furthermore
get
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p̂m
i,j = EQ

[e−δ
m−1∑
k=i

θk e−δ3/2σ
( i∑

k=1
BQ

k +
i+1∑
k=1

BQ
k +...+

m−1∑
k=1

BQ
k

)∣∣FTi

]
= e−δ

m−1∑
k=i

θk

EQ
[e−δ3/2σ

( i∑
k=1

BQ
k +

i+1∑
k=1

BQ
k +...+

m−1∑
k=1

BQ
k

)∣∣FTi

]
= e−δ

m−1∑
k=i

θk

EQ
[e−δ3/2σ(m−i)

i∑
k=1

BQ
k e−δ3/2σ

( i+1∑
k=i+1

BQ
k +...+

m−1∑
k=i+1

BQ
k

)∣∣FTi

]
.

Since the value process at the time Ti is in state j, it must necessarily hold that

i∑
k=1

BQ
k = j Q-a.s.

and that

{ i∑
k=1

BQ
k = j

}
∈ FTi

.

which implies that the exponent storing this sum may be moved outside of the
expectation, i.e.

p̂m
i,j = e−δ

m−1∑
k=i

θk−δ3/2σj(m−i)
EQ

[e−δ3/2σ
( i+1∑

k=i+1
BQ

k +...+
m−1∑

k=i+1
BQ

k

)∣∣FTi

]
.

We proceed with the calculation by only focusing on the expectation. Restruc-
turing the summation results in

EQ
[e−δ3/2σ

( i+1∑
k=i+1

BQ
k +...+

m−1∑
k=i+1

BQ
k

)∣∣FTi

]
= EQ

[e−δ3/2σ
m−1∑

k=i+1
(m−k)BQ

k ∣∣FTi

]

As the stochastic sequence (Bk)m−1
k=i+1 by de�nition consists of IID symmetric

Bernoulli random variables, the expectation is �nally calculated as the product

EQ
[e−δ3/2σ

m−1∑
k=i+1

(m−k)BQ
k ∣∣FTi

]
=

m−1∏
k=i+1

EQ
[e−δ3/2σ(m−k)BQ

k

∣∣FTi

]

=
m−1∏

k=i+1

cosh(
δ3/2σ(m− k)

)
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which in turn determines the value of the process p̂m at the time Ti and state
j as

p̂m
i,j = e−δ

m−1∑
k=i

θk−δ3/2σj(m−i)
m−1∏

k=i+1

cosh(
δ3/2σ(m− k)

)

where the indices i, j and m are given according to the relation

i,m = 0, 1, . . . , N
i ≤ m
j = −i,−i + 2, . . . , i− 2, i.


