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The General Hull-White Model and Super Calibration 

There are two major approaches to modeling the term structure of interest rates. One 

approach is to model the evolution of either forward rates or discount bond prices. This 

approach was first developed by Heath, Jarrow and Morton (HJM, 1992). In this paper 

they model the behavior of instantaneous forward rates. The method is both powerful (it 

contains many other term structure models as special cases) and easy to understand. It 

exactly fits the initial term structure of interest rates, it permits as complex a volatility 

structure as desired, and it can readily be extended to as many sources of risk as desired.  

More recently the HJM model has been modified by Brace, Gatarek and Musiella (1997), 

Jamshidian (1997), and Miltersen, Sandmann, and Sondermann (1997) to apply to non-

instantaneous forward rates. This modification has come to be known as the Libor Market 

Model (LMM). In one version, 3-month forward rates are modeled. This allows the 

model to exactly replicate observed cap prices that depend on 3-month forward rates. In 

another version forward swap rates are modeled. This allows the model to exactly 

replicate observed European swap option prices. The main difficulty with the HJM – 

LMM models is that they are difficult to implement by any means other then Monte 

Carlo simulation. As a result they are computationally slow and difficult to use for 

American or Bermudan style options. 

The other major approach to modeling the term structure is to describe the evolution of 

the instantaneous rate of interest, the rate that applies over the next short interval of time. 

Short rate models are often more difficult to understand than models of the forward rate. 

However, they are implemented in the form of a recombining tree similar to the stock 
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price tree first developed by Cox, Ross, and Rubinstein (1979). This makes them 

computationally fast and useful for valuing all types of interest-rate derivatives. 

The Generalized Model 

The generalized Hull-White model is a model in which some function of the short-rate 

obeys a Gaussian diffusion process of the following form 

 ( ) ( ) ( ) ( ) ( )df r t a t f r dt t dzθ σ= − +    (1) 

The function θ(t) is selected so that the model fits the initial term structure. The functions 

a(t) and σ(t) are volatility parameters that are chosen to fit the market prices of a set of 

actively traded interest-rate options.  

The generalized Hull-White model contains many popular term structure models as 

special cases. When f(r) = r, a(t) = 0 and σ is constant it is the Ho-Lee (1986) model. 

When f(r) = r and a(t) is not zero it is the original Hull-White (1990) model. In both these 

models future interest rates of all maturities are normally distributed and there are many 

analytic solutions for the prices of bonds and options on bonds. When ( )f r r=  it is a 

model developed by Pelsser (1996) and when f(r) = ln r it is the Black-Karasinski (1991) 

model which is perhaps the most popular version currently in use. In this model the future 

short-rate is log-normally distributed and rates of all other maturities are approximately 

log normally distributed. 

In the next section of the paper we will describe how this class of models is implemented 

using a recombining trinomial tree. In the section on calibration we will discuss how the 
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model parameters are chosen and finally, in the section on super-calibration we will show 

how the functional form f(r) can be selected. 

Implementation 

In this section we will describe how the generalized model is implemented in a 

recombining trinomial tree. Initially we will assume that the volatility parameters, a(t) 

and σ(t), and the functional form, f(r), have been selected. Later we describe how these 

are chosen.  

First we set the current time to 0 and define a deterministic function g, which satisfies 

 ( ) ( ) ( )dg t a t g t dtθ= −    

We then define a new variable, x, that is 

 ( ) ( ) ( ),x r t f r g t= −  

The new variable obeys a much simpler diffusion process 

 ( ) ( )dx a t xdt t dzσ= − +  

The initial value of g is chosen so that the initial value of x is 0.1 This process is mean 

reverting to 0 so that if x starts at 0 the unconditional expected value of x at all future 

times is 0.  

                                                 

1 When the reversion rate is constant the form of g is ( ) ( ) ( ) ( )
0

0
t a t satg t g e s e dsθ − −−= + ∫ . While this 

looks ominous we do not actually ever have to determine its exact form. The addition of this function to the 
process is just a device that makes the implementation simpler. 
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Building a tree for f(r) involves 4 steps. The first step is to select the spacing of the tree 

nodes in the time dimension. The second step is to decide on the spacing of the nodes in 

the interest-rate dimension. The third step is to choose the branching process for x(r, t) 

through the grid of nodes. Once this is complete, the fourth step involves shifting the tree 

by the value of g at each point in time. This then results in a tree for f. 

1. Choosing the times at which nodes are placed 

When a term structure model is implemented it is usually for some specific purpose such 

as pricing an option on a swap. As a result it is convenient to construct the tree in such a 

way that we have nodes on specified dates such as payment and exercise dates. Suppose 

we wish to build an n-step tree with nodes at times t0, t1, t2, …, tn where t0 = 0, ti > ti-1 and 

tn = T, the longest date to be considered. Since the values of all bonds, swaps and other 

instruments are computed by discounting their payoffs back through the tree, T must be 

chosen so that no payments occur after T.  We should also ensure that we have chosen 

our node times, ti, so that there is a set of nodes on every payment date. Other node times 

can be selected to increase the resolution of the tree. 

2. Choosing the values of x where nodes are to be placed 

Once the times at which nodes are to be placed have been chosen, at each time step we 

must choose the values of x where nodes are to be placed. First we place a node at x = 0 

at each time step. Then at each time step ti (i = 1, …, n) we place nodes at ,ix±∆  2 ,ix± ∆  

…, i im x± ∆ . The determination of the value of mi will be explained in the following 

section. In choosing the ix∆ , the only constraint we face is that the spacing of the nodes 
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must be wide enough to represent the volatility of x at that time. This is achieved by 

setting the x-spacing at time ti to2  

 ( ) ( )1 13i i i ix t t tσ − −∆ = −  (2) 

The next stage of the implementation is to determine how the nodes in (x, t) space will be 

connected together. This will also determine the mi’s, the indices of the highest and 

lowest nodes that are attainable at each time step. 

3. Choosing the branching process 

We choose the branching through the tree so that at every point in the tree we are 

mimicking the diffusion process as closely as possible. This is done by ensuring that the 

expected change and the variance of the change in x seen on the tree are the same as 

predicted by the diffusion process for x. At each node in the tree we select the branching 

process and the branching probabilities accordingly. 

Suppose that we are at some node ij x∆  at step i and propose to branch to nodes 

( ) 11 ik x +− ∆ , 1ik x +∆ , and ( ) 11 ik x ++ ∆  at step i+1. From the diffusion process for x we 

calculate the expected mean change in x over the next time interval, ( )E dx M= , and the 

second moment of x, ( )2 2E dx V M= + .3 Let the probability of branching to ( ) 11 ik x +− ∆ , 

                                                 

2 The node spacing can be set to ( ) ( )1 1i i i ix t n t tσ − −∆ = −  for a range of values of n without impairing 

the numerical procedure. The choice n = 3 is made because this allows the numerical procedure to exactly 
replicate the first 5 moments of the distribution of x(ti)|x(ti-1) when the reversion rate is zero. This produces 
a slightly more rapid convergence than do other values of n. 

3 A reasonable approximation is ( ) ( ) ( )( )1 1i i i i i i iM xa t t t j x a t t t+ += − − = − ∆ −  and 

( ) ( )2
1i i iV t t tσ += − . When a and σ are constant more exact calculations are possible. 
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1ik x +∆ , and ( ) 11 ik x ++ ∆  be pd, pm, and pu respectively. Matching the mean and variance 

gives 
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is the distance from the expected value of x to the central node to which we are 

branching. If ( ) ( )2
1i i iV t t tσ += −  and ( ) ( )1 13i i i ix t t tσ+ +∆ = −  it can be shown that all 

the branching probabilities are positive if 2 / 3 2 / 3α− < < . That is, when branching 

from a point ij x∆ , we should choose as the central node of the 3 successor nodes a node 

within 12 / 3 ix +∆  of the expected outcome. Usually we choose the node closest to the 

expected outcome by setting k to the value of ( ) 1/i ij x M x +∆ + ∆  rounded to the nearest 

integer. This ensures we are within 1/ 2ix +∆  of the expected outcome and the condition 

for positive probabilities is satisfied. 
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The procedure we have just described determines the tree branches and branching 

probabilities. It also defines the highest and lowest possible node at each step. The 

highest node at step i+1, mi+1, is determined by the branching from the highest node at 

step i, mi. Similarly, the lowest node at step i+1, –mi+1, is determined by the branching 

from the lowest node at step i, –mi.  Since at step 0 there is only one node m0 = 0. From 

this the highest and lowest nodes at step 1 and all subsequent steps can be determined. 

We illustrate the calculation with an extreme example. We suppose that t0=0, t1=1.5, 

t2=1.6, and t3=2.0 so that the time steps are of widely varying lengths. (In most 

applications they are much more equal than this.) We suppose that the volatility 

parameters are a(t)=1.0 and σ(t)=0.30 for all t. The node spacing at each step is 

determined using equation (2). This gives ∆x1=0.6364, ∆x2=0.1643, and ∆x3=0.3286. The 

grid of nodes on the tree is therefore as shown in Table 1.  

The next step is to compute the branching process. Starting at the root node (t=0 and 

x=0), we compute x+M=x-ax×1.5=0 and 20.30 1.5 0.135V = × = . The node closest to the 

expected outcome is the node k = 0 at t = 1.5. For this node α = 0 and using equation (4) 

the branching probabilities are pd = 0.1667, pm = 0.6667 and pu = 0.1667. Similarly at the 

highest node at step 1 (t = 1.5 and x = 0.6364), 0.1 0.5728x M x ax+ = − × = , 

20.30 0.1 0.009V = × = , ( ) 1/ 3.486ix M x ++ ∆ =  so k = 3, and 

( )0.5728 3 0.1643 /0.1643 0.4857α = − × = . The results for every node are in the Table 2 

and the shape of the tree is shown in Figure 1. 
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4. Adjusting the tree 

The final stage of the tree building process involves adding the function g(t) to the value 

of x at each node. Since g(t) is a function of θ(t) and the function θ(t) is selected so that 

the model fits the term structure, the de facto process is to adjust the nodes in the tree so 

that it correctly prices discount bonds of all maturities. This is done in a sequential 

process starting at the root node.  

We denote node (i, j) as the node on the tree at time ti for which x=j∆xi (0 ≤ i ≤ n; –mi ≤ j 

≤ mi) and define 

gi: g(ti) 

xij: value of x at node (i, j) 

fij: value of f(r) at node (i, j). This is xij + gi. 

rij: interest rate at node (i, j) . This is f –1(xij + gi) 

Q(i, j|h, k): value at node (h, k) of a security that pays off $1 at node (i, j) and nothing at 

any other node. 4  

p(i, j|h, k): the probability of transiting from node (h, k) to node (i, j) 

Qij: Q(i, j|0, 0) 

The variable Q(i, j|h, k) is known as an Arrow-Debreu (AD) price. We will refer to the Qij 

as the root AD price for node (i, j). 

                                                 
4 The value of any security with deterministic payoffs can be easily computed using the AD prices. Letting 
Cij be the payment received at the ij’th node the value of the security at the hk ’th node is then 
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The root AD price for node (i, j) can be determined once the root AD prices for all nodes 

at time ti–1 have been determined. To see this we note that 

 ( ) ( ) ( )1, 1, | 1, , | 1, exp i k i iQ i j i k p i j i k r t t− − − = − − −   

and 
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where the summation is over all nodes at time step ti–1.  

Now consider a discount bond that pays $1 at every node at time step i+1. Let Pi+1 be the 

price at node (0, 0) of this discount bond and let Vij be the value of this bond at node (i, j). 

The process for determining the adjustment gi at step i involves two stages. First we 

determine Qij for every node j at step i.  Using these root AD prices we then compute the 

value of Pi+1. Since the discount bond pays $1 at every node at ti+1 the value at the ij’th 

node is 
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and the present value is 
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i h j

Q i j h k C
>
∑∑  where the summation is taken over all time steps, i, later than h and all nodes at 

each time step, j. 
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The value of gi is adjusted until the value computed using equation (6) matches the price 

of the discount bond computed from the current term structure. 

The implementation of this two-stage process proceeds in the following way. The value 

of a security that pays $1 at the root node is $1 so Q00 = 1. Based on the value of Q00 

equation (6) is used to compute g0 to match the price of a discount bond maturing at t1. 

This allows us to use equation (5) to compute Q1j for every node j, which then allows us 

to use equation (6) to compute g1 and so on. 

To complete the illustration of the tree-building process we will now fit our example tree 

to a term structure. Suppose that x = f(r) = ln r ( )( )1 xr f x e−= = and that the term 

structure of continuously compounded discount bond yields is given in Table 3. The tree 

adjustment process is to first set Q00 = 1. Then solving equation (6) at the root node 
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we find g0 = –2.9957 and ( ) ( )1
00 00 0 exp 2.9957 0.05r f x g−= + = − = . This rate is used to 

calculate 
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where the probabilities, pu, pm and pd, are the probabilities of transiting from the root 

node to the 3 nodes at time step 1. With this in hand equation (6) is used to find g1 and so 

on. The results of the calculations are shown in the Table 4 

This completes the construction of the tree for a log-normally distributed short-rate that 

exactly fits the term structure. It is worth noting at this point that the functional form, f(r), 

only comes into play at the stage where the term structure is being fit (although as we 

will show, it does have an impact on the volatility parameters chosen). Prior to the term-

structure fitting stage, the tree building process is completely generic. Also note that 

when the tree was being fit to the term-structure, in order to compute the interest rates at 

the fourth time step we had to specify a fifth time step at time 2.5 years. This was 

necessary to allow us to define the term of the rates that are being determined at the 

fourth step. In this case they are 0.5-year rates. 

Calibration 

Calibration is the process of determining the volatility parameters that are used in the 

term structure model. It is analogous to selecting the volatility that will be used when 

implementing the Black-Scholes model to price equity options. In the case of the 

generalized Hull-White model the volatility parameters that are to be chosen are the 

functions a(t) and σ(t). The procedure is to choose the volatility parameters so that the 

tree implementation of the term structure model accurately replicates the market prices of 

actively traded options. Specifically we use a numerical procedure such as the 

Levenberg-Marquardt algorithm to find the set of volatility parameters that minimizes the 
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sum of the squares of the differences between the model prices and market prices for 

these options. 

Because the volatility parameters are functions it is necessary to parameterize them 

before starting the calibration process. Typically we approximate the volatility functions 

with piecewise linear functions. This corresponds to selecting a set of times T0, T1, T2, …, 

Tm where T0 = 0, Ti > Ti-1 and then defining the reversion rate function as 

 
( ) 1

1 1 1 1 0

subject to
, 0, 0

i i i i

i i i i i i m

a t t T t T

T T

α β

α β α β β β

+

+ + + +

= + ≤ <

+ = + = =
 

The first condition ensures that the function is continuous and the second and third ensure 

that it is constant in the first time interval and beyond the last specified date.5 These 

constraints ensure that there are m degrees of freedom in the parameter set. The volatility 

function is defined in an analogous way as 

 
( ) 1

1 1 1 1 0

subject to
, 0, 0

i i i i

i i i i i i m

t t T t T

T T

σ γ δ

γ δ γ δ δ δ

+

+ + + +

= + ≤ <

+ = + = =
 

The choice of the number of corner points in the volatility functions and at what times the 

corners should be placed is more of an art than a science. Using more corner points gives 

more degrees of freedom and permits a better fit to the observed market prices. Often the 

number and timing of the corner points are determined by the terms of the options that 

are used in the calibration. If we have m calibrating options with m distinct maturity dates 

                                                 
5 Neither of these conditions is required. They are used only because of a belief that the volatility functions 
should be continuous and bounded. An alternative parameterization that seems to work well is a step 
function in which the parameters are piecewise constant. Note that the time divisions used for the two 
volatility functions do not need to be the same. 
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then holding one volatility function constant (usually the reversion rate) and choosing the 

corner points of the other to be the option maturity times ensures that we can fit the 

option prices exactly. 

The most common source of option prices for calibration purposes are quotes that are 

available from brokers on European-style swap options and caps and floors. Table 5 

shows a typical panel of USD swap option quotes for August 6, 1999. This table contains 

the volatilities for a range of at-the-money swap options. These are the volatilities that if 

used in the market standard Black’s swap option-pricing model, result in the mid-market 

prices for the options. The market prices of the options range from $0.12 for the 30-day 

option on a $100 notional 1-year swap to $5.45 for the 5-year option on a 10-year swap. 

The results of fitting both the normal and the lognormal versions of the model to this data 

using only a single reversion rate and a single volatility are shown in Table 6. This table 

shows the best-fit reversion rate, the best-fit volatility and the root mean square pricing 

error6 (RMSE). The fit of the model to the option prices is moderately good for both 

versions of the model although the normal version fits somewhat better than the 

lognormal version. The mean absolute percentage pricing error (the average of the 

absolute price error divided by the market price) is about 2.5%. Those who are not 

familiar with the various forms of term structure models should also note that the 

magnitude of the volatility parameter is dependent on the functional form of the model. 

In the normal model the volatility parameter corresponds to the standard deviation of 

                                                 

6 The root mean square error is defined as ( )2
model market

1

/
n

i

P P n
=

−∑  where n is the number of option 

prices being fit. 
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annual changes in the short-term rate of interest while in the lognormal model it is the 

standard deviation of proportional changes in the rate. Thus, if interest rates are about 7% 

a 1.4% annual standard deviation roughly corresponds to an annual standard deviation of 

proportional changes of 20%. 

To improve the fit we can use more volatility parameters. Table 7 shows the results of 

increasing the parameter set so that there is a corner in both the reversion rate and 

volatility functions at every option maturity date. Comparing Tables 6 and 7, we see that 

increasing the number of volatility parameter from 2 to 16 does improve the fit, but not 

dramatically so. The volatility parameter for the normal model is relatively constant and 

the reversion rate changes only five times suggesting that about the same fit could be 

achieved with far fewer parameters. In the lognormal model, by contrast, both a(t) and 

σ(t) are highly variable. 

Some experimentation reveals that it is not possible to fit this full panel of option prices 

using our model or indeed any one-factor Markov model of the term structure. As a result 

when these types of models are used in practice they are calibrated in the same way that 

equity and F/X option pricing models are calibrated. A different volatility parameter set is 

used for every different option or for every different type of option. Usually the 

volatilities of the European options that are used to hedge the option in question will be 

used for calibration. 

For example, a common use of these models is the pricing of Bermudan swap options. To 

calibrate our model to price Bermudan swap options we use a diagonal strip of volatilities 

from Table 5 for calibration. If we are interested in pricing a 5-year Bermudan swap 

option we note that if it is exercised at the 1-year point in its life it is similar to a 1-year 
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European option on a 4-year swap. Similarly exercise at the 2-year point is similar to a 2-

year European option on a 3-year swap, and so on. As a result we use the 1x4, 2x3, 3x2 

and 4x1 swap option volatilities to calibrate the model and we will likely use these 

options to hedge the Bermudan option. By using 4 volatility parameters we can exactly fit 

the calibrating option prices with our model and achieve a good hedge – or at least a good 

hedge for the prices calculated by the model. 

Super Calibration 

In the previous section we discussed how the volatility parameters for a particular form of 

the model could be determined from market prices of options. In this section we describe 

how the functional form of the model can also be determined from the market prices of 

options. 

Black’s model, the market standard for caps and European swap options, assumes that 

interest rates are lognormally distributed. If rates really were lognormally distributed, the 

volatility used to price a cap or a swap option would be independent of the option strike 

rate. In the last year the USD cap market has developed to the point that brokers are now 

able to provide volatility quotes for in- and out-of-the-money caps and floors. The usual 

practice is to provide at-the-money volatility quotes for the standard set of caps and to 

provide a table of spreads to be added to the volatilities of in- and out-of-the-money caps. 

A typical set of broker quotes for July 27, 1999 is shown in Table 8.  

Since the market volatilities for caps and floors are not independent of their strike rates 

we can conclude that the lognormal assumption does not reflect the market perception of 

the distribution of rates. Table 8 shows that volatilities for in-the-money caps are 
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significantly higher than those for at-the-money caps. Except for very long maturities, 

out-of-the-money caps also have somewhat higher volatilities that at-the-money caps. 

The market’s perception is therefore that very low rates and (to a lesser extent) very high 

rates are more likely than the lognormal distribution would suggest. 

The term structure models implied by equation (1) assumes that some function of the 

short rate, ( )x f r= , follows a normal mean-reverting process. To understand the role 

that the functional form, f(r), plays note that the process that the short rate, r, obeys is  

 
( ) ( )  

h x
dr dt t dz

x
∂

σ
∂

= +L  (7) 

where h is the inverse of the function f, that is, ( )r h x=  The primary effect of the choice 

of the functional form is in its impact on the volatility component of this process, 

( ) ( ) /t h x xσ ∂ ∂ . This determines the relation between the level of rates and the 

variability of rates. We now propose a more general model in which 

( ) ( ) ( ) ( )/t h x x t s rσ ∂ ∂ σ=  for some function of the level of rates, ( )s r . The function 

( ) ( )t s rσ  is known as the local standard deviation of the rate and ( ) ( ) /t s r rσ  is the 

local volatility. In this paper we have so far considered two cases: 

• ( ) ( ) or x f r r r h x x= = = =  for which ( ) ( ) ( )t s r tσ σ= , rates always have 

the same level of variability and future rates are normally distributed. This is 

the original Hull-White model.  
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• ( ) ( )ln  or expx r r x= =  for which ( ) ( ) ( )t s r t rσ σ= , the variability of rates 

is proportional to the level of rates and rates are log normally distributed. This 

is the Black-Karasinski model. 

These two models have ( )s r = 1  and ( )s r r= . Just as the volatility functions, a(t) and 

σ(t), are constructed as piecewise linear functions, s(r) can also be constructed as a 

piecewise linear function. This is done by selecting a number of different rates, ri > 0 for i 

= 1, 2, …, n, and the corresponding values of ( )s r > 0, si for i = 1, 2, …, n. We usually 

force ( )s r  to pass through the origin. This ensures that as r becomes small the variability 

of rates vanishes and negative rates do not occur. The form of ( ) /s r r  for the three 

models is shown in Figure 2. 

The selection of the values of si for i = 1, 2, …, n now becomes part of the calibration 

exercise. We choose the values that result in a term-structure model implementation that 

most closely replicates the market prices of the options. Our least squares best fit 

criterion is the same as before. Since the variability of the short rate in equation (7) is 

( ) ( )t s rσ  it is not possible to determine the forms of both ( )tσ  and ( )s r  

simultaneously. As a result, we first find the ( )tσ  that best fits the at-the-money options 

and then, holding that fixed, find the ( )s r  that best fits the prices of the in- and out-of-

the-money options. 

To illustrate the effect of calibrating the functional form to the volatility of in- and out-of-

the-money options we set ( ) 1tσ =  and find the best s(r) to fit the prices of 3-year caps 

and floors. The corner points of s(r) are set at the at-the-money rate ±0.5%, ±1%, and 
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±2%. This process is then repeated for the 7-year and 10-year caps and floors. The best-

fit functional form of the local volatility for each of the 3 maturities is shown in Figure 3. 

The overall result shown in Figure 3 is not surprising. In order to raise the price (and 

implied volatility) of in- and out-of-the-money caps and floors we have to increase the 

local volatility as we move away from the money. The shorter the life of the option, the 

more extreme the adjustment becomes. 

Conclusion 

In this paper we have explained how a general model of the short-rate can be 

implemented and calibrated to market data. The calibration process includes the selection 

of the functional form of the term structure model that best fits the prices of in- and out-

of-the-money options. Although not discussed in this paper, the super calibration process 

is also useful in economies like Japan’s where interest rates are very low. In this situation 

if a normal model is used the probability of rates becoming negative is very large, while 

if a lognormal model is used the volatilities must be in excess of 100% to capture the 

observed variability of rates. A lognormal model with these large volatilities implies that 

rates will become extremely variable when they rise above 1%. This issue is discussed in 

more detail in Hull and White (1997). 

The super calibration procedure described in this paper is in the same spirit as the implied 

tree methodology for equity options developed by Derman, Kani and Chriss (1996), and 

Rubinstein (1994). These authors made the local volatility of the stock price a function of 

time and the stock price and developed procedures to infer the local volatility from option 

prices. The super calibration procedure also suffers from the same weakness as the 



 20

implied tree methodology, which is that we are adding many free parameters to our 

model in an attempt to force it to fit a complex data set. This does not result in a model 

that more accurately reflects the way the term structure actually evolves. It is a model that 

better reproduces observed market prices. 

There is a range of views on what is best in fitting a model to data. At one extreme is 

what we might call the academic’s view that simple, stationary models are best. This 

means that the volatility parameters should not be functions of time and that the 

functional form of the model should not change over time. The behavior of models with 

these properties will be the same in the future as it is now. However, if we restrict 

ourselves to stationary models we can only approximately fit observed market prices. At 

the other extreme is what we might call the trader’s view that the model should exactly fit 

all observed option prices. If this is done many free volatility parameters must be 

estimated and the model becomes highly non-stationary. The future behavior of the 

model may be very different from its current characteristics. In particular the future 

option volatilities implied by the model may be very different from the volatilities seen 

today. Our view is that a moderate approach should be taken in fitting a model to 

observed option prices. Modest non-stationarity does not seriously affect the future 

behavior of the model and allows a good fit to today’s prices. 
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Table 1 
Grid of Tree Nodes 

t = 0 t = 1.5 t = 1.6 t = 2.0 
 … … … 
 … 0.3286 0.6573 

 0.6364 0.1643 0.3286 
0.0000 0.0000 0.0000 0.0000 

 –0.6364 –0.1643 –0.3286 
 … –0.3286 –0.6573 
 … … … 

 

Table 2 
Tree branching calculations 

t x M V k α pu pm pd 

0 0 0 0.135 0 0.0000 0.1667 0.6667 0.1667 

         

1.5 0.6364 -0.0636 0.009 3 0.4857 0.5275 0.4308 0.0418 

1.5 0.0000 0.0000 0.009 0 0.0000 0.1667 0.6667 0.1667 

1.5 -0.6364 0.0636 0.009 -3 -0.4857 0.0418 0.4308 0.5275 

         

1.6 0.6573 -0.2629 0.036 1 0.2000 0.2867 0.6267 0.0867 

1.6 0.4930 -0.1972 0.036 1 -0.1000 0.1217 0.6567 0.2217 

1.6 0.3286 -0.1315 0.036 1 -0.4000 0.0467 0.5067 0.4467 

1.6 0.1643 -0.0657 0.036 0 0.3000 0.3617 0.5767 0.0617 

1.6 0.0000 0.0000 0.036 0 0.0000 0.1667 0.6667 0.1667 

1.6 -0.1643 0.0657 0.036 0 -0.3000 0.0617 0.5767 0.3617 

1.6 -0.3286 0.1315 0.036 -1 0.4000 0.4467 0.5067 0.0467 

1.6 -0.4930 0.1972 0.036 -1 0.1000 0.2217 0.6567 0.1217 

1.6 -0.6573 0.2629 0.036 -1 -0.2000 0.0867 0.6267 0.2867 
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Table 3 

The term structure of continuously 
compounded discount bond yields 

Time to Maturity Yield Bond Price 

1.5 5.00% 0.9277 
1.6 5.10% 0.9216 
2.0 5.25% 0.9003 
2.5 5.30% 0.8759 

 

Table 4 
Fitting the tree to the term structure 

rij (%)  10.664  Qij  0.0806  Vij  0.9582  

  9.048    0.0658    0.9645  

  7.677 10.238   0.0064 0.0302   0.9698 0.9501 

 11.663 6.514 7.370  0.1546 0.1024 0.2023  0.9884 0.9743 0.9638 

5.000 6.172 5.527 5.306 1.0000 0.6185 0.4098 0.4306 0.9277 0.9938 0.9781 0.9738 

 3.266 4.689 3.820  0.1546 0.1024 0.2059  0.9967 0.9814 0.9811 

  3.979 2.750   0.0064 0.0313   0.9842 0.9863 

  3.376    0.0664    0.9866  

  2.864    0.0813    0.9886  

g0 g1 g2 g3         

-2.9957 -2.7851 -2.8956 -2.9364         
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 Table 5 

Mid-market volatilities for at the money swap options. 
The swap is assumed to start at the expiry of the option 
so the total life of the transaction is the sum of the 
option life and the swap life. 

 Swap Life (Years) 

Option Life 1 2 3 4 5 7 10 
30-day 19.00 19.50 19.50 19.50 19.50 19.50 19.50 
3-month 19.50 20.13 20.13 20.13 19.98 19.98 19.98 
6-month 19.90 19.75 19.75 19.70 19.60 19.50 19.50 
1-year 21.55 20.80 20.20 19.90 19.60 19.20 18.78 
2-year 21.30 20.40 19.85 19.30 19.00 18.70 18.20 
3-year 20.80 19.75 19.20 18.85 18.60 18.20 17.63 
4-year 20.43 19.20 18.80 18.40 18.10 17.60 17.03 
5-year 19.85 18.73 18.28 17.93 17.58 16.98 16.43 

 

Table 6 
Best fit volatility parameters for the normal and log-
normal version of the model. 

Model Reversion rate, a Volatility, σ RMSE 

Normal 0.0267 0.0146 0.0564 
Lognormal 0.0243 0.2093 0.0745 
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Table 7 

Best fit volatility parameters for the normal and 
lognormal versions of the model 

 Normal Lognormal 

 a(t) σ(t) a(t) σ(t) 
05-Sep-99 0.1878 0.0147 0.0487 0.2144 

05-Nov-99 0.0205 0.0135 0.0596 0.2137 
04-Feb-00 0.0010 0.0135 0.0007 0.1669 
05-Aug-00 0.0010 0.0136 0.0002 0.2261 
05-Aug-01 0.0003 0.0133 0.0005 0.1513 
05-Aug-02 0.0003 0.0132 0.0002 0.2199 
05-Aug-03 0.0010 0.0130 0.0006 0.1436 
04-Aug-04 0.0212 0.0130 0.0140 0.2071 

RMSE 0.0310 0.0292 
 

Table 8 

Volatility adjustments for in- and our-of-the-money caps and 
floors for July 27, 1999. 

  Cap Strike – At-The-Money Strike (%) 
Cap Life ATM Vols -3 -2 -1 -0.5 0.5 1 2 3 

1-year 14.88 - - 1.00 0.50 0.00 1.00 - - 
2-year 18.38 3.00 2.00 1.00 0.50 0.50 1.00 1.25 1.50 
3-year 19.19 3.15 2.15 1.15 0.75 0.70 0.75 1.10 1.10 
4-year 19.50 3.50 2.50 1.50 0.75 0.50 0.50 1.00 1.00 
5-year 19.50 3.00 2.00 1.20 0.80 0.00 0.50 1.00 1.00 
7-year 18.88 3.00 2.00 1.00 0.50 0.00 0.00 0.00 0.00 
10-year 18.19 3.00 2.00 1.00 0.50 0.00 -0.25 -0.50 -0.50 
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Figure 1 

Tree Branching Structure 

 

 

 

 

Figure 2

The relation between the level of rates and local volatility
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Figure 3
Best-fit Local Volatility
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