The Pricing of Bermudan Swaptions by
Simulation
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A Bermudan Swaption (BS)

A Bermudan Swaption (BS) is an option on a swap ¢an only be
exercised at discrete points in times. Usuallyeghiaaes coincide with
the payment datesontheswap T_ < T, < T

 Can be defined by 3 dates - where

— T - First strike date (called the lockout period)
— T, - Last strike date
— T - Maturity of the swap
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 Remark: Under these assumptions a Bermudan Swaptiof8S) is equal to a
Bermudan option on a coupon bond with a strike equeao the par value of the bond

 Remark: Another type of Bermudan Swaption (BS) is &onstant Maturity
—_ Bermudan Swaption (CMBS)
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Free Boundary problems - |

 We can formulate the free-boundary problem agvat

« Ateverytime t- T¢ (for t belonging to the finite set of stopping tisne
) up until the final exercise date There will be some critical value
P*(t) of the underlying security such that it igiomal to exercise the
option if P(t) falls below this critical value. Thset of critical values

P*(t) forms the early exercise boundary.

» —Remark: Where by nature this optimal exercise boundry is a free boundary - that
Is the boundary is not given explicitly, but has tde determined as an integral part
—_ of the pricing process
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Free Boundary problems - I

* Free boundary problems are handled straightforwalcttice models
because pricing is done by backward-Induction:

G =max(g- (R t.T-t)—K);d-Gq]

o liseither-1or 1. (if equal to -1 => we are coesing a payer
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swaption)

» Remark: As Monte Carlo works by evolving the underying state variable/s forward
through time it cannot know when it is optimal to eercise - that is it cannot locate
the free boundary
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| The Traditional modelling Approach -
spot-rate models

* Popular interest models in the Market is:

— one-factor models - for example Hull and White (H{#4990), Black and
Karasinski (BK) (1991) and Black, Derman and To{p{B (1990) - or
some two-factor models like Hull and White (1996 Ritchken and
Sankarasubramanian (1995)
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 Remark: All these models can be implemented numeratly in low-dimensional
lattices (such as finite differences or binomial &es) - which makes the pricing of

american style securities straightforward
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| Spot-Rate models and the Volatility
Structure - |

Volatility Structure
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Flat Vol% Years
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* Flat-Volatility: Sometimes called Black volatility - is the one quoted by brokers.
(Assume that each caplet is priced by the same valdy)

« Spot-Volatility: The volatility that prices each of the caplets in a Cap
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| Spot-Rate models and the Volatility
Structure -

« Implying the volatility parameters from Market @BaHere we have two
different approaches
— Introduce either a time-dependent mean-reversi@pat-volatility
parameter in the diffusion process
* Pros: Allows for exact fit of the observed Volstture

* Problems: Introduce non-stationarity in the VaigtiStructure. (The
hump usually encountered in the Vol.structure g)sap as times
goes)

— Perform a best-fit of the observed Vol. Structure
* Pros: The Vol. Structure “remains” constant - stadiry
* Problems: An exact fit is in general not possiblgee next slide
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« For spot-rate models | prefer the second approach
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The Libor Market Model (LM) - |

e Some stylized facts:

— Itis expressed in terms of discrete time forwates (as opposed to the
HJM with is formulated in continuous time)

— In the classic form it assume that forward-rates@gnormal
— Extension to multiple factors are straightforward

e It turns out that closed form solutions for caplean be derived —
which are similar to Black’s formula — see slide 1V

« It also turns out that an approximate Black foraniar swaptions can
be derived — see slide IV
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 Observed Cap volatility is automatically matchgdliire LM model

» Remark: Originally introduced by Brace, Gatarek and Musiela (BGM) (1997) and
Miltersen, Sandmann and Sondermann (MSS) (1997) anthmshidian (1997).
Sometimes the Libor Market Model is referred to agshe BGM-model.
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The Libor Market Model (LM) - 1l

e Inthe LM model the focus is on discretely compaeh forward rates,
f(t,T,0) for the period [T, T 4] as seen from time t. f(t,3) can be
expressed as:

_1 P(LT)
f(t’T’S)_s(P(t, T+39) 1)

e Combining this result with the assumption thatphee of a discount
bond is governed by the following risk-neutral gehn&DE:

APt D=r)RtTHdt- Rt ¢t D dwW
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* And assuming log-normal diffusion for the forwamates gives us the
process for the forward-rates in the LM model —rs&d slide
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The Libor Market Model - Il

 The process for the forward-rates can be writgen a

fE,T,8)=F¢,T,O)yeTWETHt+f €T ) €T UW,

« Where the bond-price volatility function — v(t,T)s-defined as:
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SF(LT,8)y (t.T —Kd)
vt T)= Z 1+ 5F(t,T.8)

* For the purpose of pricing it is convenient to kwander the forward
adjusted risk-measure. Under the following transfatron the forward-
rates f(t, T9) beC{)mes martingales under thedferward measure:

. WO = Wt+jv(s,T+8)ds
0
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The Libor Market Model - IV

Using Black’s formula - closed form solutions fapdets exist — where the
volatility is definedras:
) 2 1 2
OBlack = IY(S’ T~ds
Tt
t
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e Again using Black’s formula an approximate clogmaun solution for
swaptions can be derived — because of lack of spadéed here - see James
and Webber (2000) section 8.3.1 page 210

 Remark: This approximate swaption formula is quiteaccurate in practice — see
BGM (1997) or Hull (2000)

« An even better approximation - the shape-corrector rathod of Jaeckel and
—_ Rebonato (2000)
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Volatility Stationarity - |

Stationarity means:

v, T)=v(T-1)
« That is — the volatility is only a function of tinte maturity
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» The stationarity assumption imply one of the twtdwing sentences:
— Volatilities are identical for all fixed time toaturities
— Volatilities change over time as the time to m&whanges

« Remark: The good news is that the observed volatiji structure in this case will not
change as time goes

 Remark: Much work on the BGM model has however beeon the non-stationary
case, for example Hull and White (2000) and Rebonat(1999). It though seems that
recently focus has changed in favor for the stationg models
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Libor Market Models — the last slide

* In generel the LM model can be calibrated to lswhaption-and cap-
volatilities (see Rebonato (1999), Sidenius (200@) Brace and
Womersley (2000)) even in the case of stationaribytat the expense
of introducing multiple factors. (As an examplenst mention that
Sidenius (2000) consider 10 factors) - see thesptation “The Libor
Market Model - calibration to market prices”.

 However, the flexibility of the LM model does nmime for free:

— The high dimensionality means that pricing hase¢aone by Monte Carlo
simulation
— This fact leads to 2 problems
» Slow convergence
* How to handle free boundary problems
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« Remark: The problem of slow convergence can in priciple be more or less handled
by one or more so-called variance-reduction techniges
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| Monte Carlo Simulation of Libor Market
Models

Using the Euler discretization method we can satauthe forward-rates using
the following equation:

Ft+AT)=f(t ,T)exp{y T —t )-(sﬂ+[v (T )—;y T —t ))Aﬂ

 As mentioned in Sidenius (2000) we have to recogthat in continuous time
v(t,T) does not specify the value for T=t. This twut to indicate that for the
purpose of simulation v(t,T) has to be defined as:
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T t+1
N
B SF(t, T —K)y(T —k)
vt.T)= ;0 1+ 8f (t,T — k)

* N s the number of time-steps in the simulatiod afN are the length of the
time-steps

» Remark: A good extension is the predictor-correctormethod of Jaeckel, Joshi and
Hunter (2000) - which models the drift as indirectlystochastic
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| Bermudan Swaptions in the Libor
Market Model

« The question s - Is it possible to price Americdyle securities on a
Libor Market Model simulation?

* A lot of information in simulation:
— We have arbitrage-free samples of a number ofi\galves

— We have unconditional probability information -ttieawe can produce
unconditional probability expectations
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* For most instrument we can calculate the pricedaslely on the
simulation yield-curves

« However: To value American style securities we also need the
conditional expectations of the pay-off for to meato figure out if it is
£ optimal to exercise or not
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Latticed based approaches

.. m+1)Nt—1]
 Non-recombining trees - see for example GatareBEULé -

— Problems: The number of nodes grows exponentralige number of time
steps. For N time-steps and in an m-factor modehaye
nodes - which makes the method unfeasible
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« However it is possible to specify a feasible neaembining tree
method - see later
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| The Markov Chain Model (MCM) of
Carr and Yang (CY)

* Relies on the Stratification method of Barraguand Martineau
(1995)
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—~_

 They bundle paths together for the money-marketaat
« ~The yield-curve for a given state is defined asdkierage of all the

—_ Yyield-curves that pass through a particulary bucket
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| The method of Clewlow and Strickland
(CS) (1998)

— As Carr and Yang they also reduce the exercisendg the state
of a single variable

— More precisely they use a one-factor Hull and & hibdel
Implemented in a lattice and obtain the early agerboundary by
determining the critical bond price via backwarddntion

— This boundary are then afterwards used in a folhtd Carlo
simulation of multi-factor models (in their cas@-factor model)
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| The Stochastic Mesh method from
Broadie and Glasserman (BG) (1997)
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 The conditional expectation is estimated as thighted average of the
pay-offs one step further on. (Ratio of the condi#il density function
and the unconditional density function)

Remark: Pedersen (1999) suggest using digital cafdan determining the weights.
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I Longstaff and Schwartz (LS) and Andersen’s
boundary optimization technigue

« Both models have the following in common: Decisoonthe early
exercise depends on the intrinsic value of theoopdind the values of

still active european options

 Andersen’s method works as follows:

— step 1: Specify the functional form for the exeecstrategy: (Good choice
Is to exercise if C(t) > H(t) (Which is only optilna a one-factor setting)

— step 2: Run a MC and store for all times and atlhg the intrinsic value +
the discount factor

— step 3: Compute the time-dependent function High<hat the value of the
Bermudan option is maximised

— step 4: Generate a new and larger simulation (@r@u) to price the
Bermudan option under the exercise strategy in3tep

» -Longstaff and Schwartz’s is a regression basethodetvith contrary to
Andersen focus on simulating the holding value
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Jaeckel’'s method - |

« Jaeckel’'s method follows structurally along the edimes as
Andersen’s method. However Jaeckel’'s method doeesenqoire
approximative evaluations of option values durimg $simulation itself
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* Instead a parametric exercise decision functiapexified as follows:

XiZS+1(O) :| _ fi (t| )j

= (1) = ‘D( T T

 where® = -1 for a payer swaption adel = +1 for a receiver swaption.
(This function is hyperbolic in;3)
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Jaeckel’s method - Il

 The reason for chosen that functional form forap&gmal exercise
region was in order to obtain a reasonable separafiexercise and
non-exercise regions as much as possible
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e In that connection it seems that there are evielémat a projection of
the first forward-rate, fon the swaprate S do manage to do the job
guite well
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Some observations - |

 In MCM a better approach than bundling the yialives (as also
pointed out by CY) would be to bundle the payotiapinstead of the
state space. Overall conclusion seems to indibatetie MCM is better
suited for one-factor models

 With BG’s Stochastic Mesh method there is theassiucomputational
time (see for example BG table 4).
— Results from Pedersen (1999) however indicatatiatomputationally
much better to use digital caplets - (for a 50/5@3Im- 50 times faster)
* With respect to the CS method it can be argueitiieaoptimal
exercise region derived from a one-factor settiag) Ihmited use in a
multi-factor framework (at least in some cases)
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Some observations - Il

 Andersen’s method is in principle related to tr& i@Gethod - however
here the optimal exercise boundary is determingdarsame model
that are used for pricing

 LS’s method differ mainly from Andersen’s methodhe sense that
step 4 is omitted here. That is we use the samaaied paths to
determine the value of the security in question Weuse to compute
the optimal exercise decision
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 Remark: Andersen’s decide to separate the simulatianin order to prevent what he
calles “perfect foresigth biases” - see footnote 9 padl4.

» Inasense the LS method is similar to the stochastmesh method - but with
regression weights rather than likelihood ration weghts
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Some observations - ||

« Jaeckel's method differ only from Andersen’s metivedause of the
following 2 things:

— No approximative option values are used in estmgatne optimal exercise
boundary

— The exercise decision is designed in order to @bdi@ave a reasonable
separation of exercise and non-exercise regions
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* In general it is concluded that non-Recombinimg$rare not
recommendable - however as we will see shortlyfeasible (see
Jaeckel 2000))
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MC and the optimal exercise boundary

 When we wish to price options of American stylaern we really need
to compare the expected payoff as seen from ang wittl the intrinsic
value. This entails that the only method that dae gn unbiased result
IS @ non-recombining tree.
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 Recently Broadie (2001) has come up with a metbatktermine the
lower bound of the american style securities vausdg Monte Carlo
simulation

 Remark: Andersen and Broadie is currently working an how to asses the upper
bound of Bermudan swaptions in the Libor Market Model - but no work has been

published so far
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A non-recombining tree approach - |

» A feasible non-recombining tree method for thedciMarket Model:

* Lets assume we have a matrixdyiRdMwhose rows consist of the
vectorse to be used for each realisation of the evolvedlyoelrve as
given by slide 14 (We have an m-factor model)
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« If we wish to assign equal probability to eachhad d realisations it
turns out that the elements of the matrix M desctiie Cartesian
coordinates of a perfect simplex (all the angle=gigal) in m
dimensions

 The smallest d for which it is possible to constithe M-matrix so it
satisfies the above requirements is m + 1 — thateis@ed a minimum
of m + 1 branches out of each node
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A non-recombining tree approach - |

« Cartesian Coordinate system:

m+1 .
- ffor ] =
Vi(j+1)
Cij: Mforj:i_l
’ \/ ] +1

0 for j<i-1
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-1.7321 1] 07071 -0.5477] -0.4472
1.7321 1 07071 -0.5477 -0.4472

0 2 07071 -0.5477 -0.4472

 Example matrix form =5 0 0 21213 05477 -0.4472
0 0 0 21909 -0.4472

0 0 0 0 22361

* _—~Remark: For m =1 we get the M-matrixto be: ¢,=-1,¢,,=1
 Remark: Extending to more branches than m + 1 is saightforward
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A non-recombining tree approach - llI

« However, in order to benefit for the adding ofrioraes we might want to
spread them as evenly as possible. One naturaidedads a matrix were each
column are symmetric around O (zero) — this carnbadht of as a suitable
alignment of the simplex
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e The result for the matrix from the last slide is:

 Remark: Further improvement can be achived by commming the simulation
procedure with a technique called Alternative Simpex Direction (ASD) - which
entails switching the signs of all the simplex codimnates in every step
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Some Preliminary Conclusions - |

* In generel the results reported looks promisingasumnentioned by
James and Webber (2000) - section 13.1.5 page 353

— *“..on the whole these methods are computationalinlly intensive, and
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allthough promising their value is yet to be proved

* Another interesting question is the factor depaagidor Bermudan
swaption where no clear and general accepted 1®stdr has
appeared. The issue here is: is the price of a B#mmswaption
sensitive to the number of factors?
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Some Preliminary Conclusions - lI

* A last interesting observation iss most of the value in an American
swaption lies in the exercise opportunity immediag@ior to reset (payment
dates on the swap) - we can approximate the valaa émerican swaption by
a Bermudan swaption that can be exercised at treesigp immediately prior
to reset
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 Remark: We are in the process of performing a moreletailed analyses of the
practical use both in terms of computational time ad results for some of the
approaches mentioned here. We expect that an updatslide-show will be available
around december 2001. Anyone interested in receivirg copy can e-mail me at:

claus. a_madsen@yahoo.com
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