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Abstract

This paper presents a tree construction approach to pricing a Bermudan swaption
with an efficient calibration method. The Bermudan swaption is an option, which at
each date in a schedule of exercise dates gives the holder the right to enter an interest
swap, provided that this right has not been exercised at any previous time in the
schedule. Assuming a common diffusion short rate dynamics, the Hull–White model,
we propose a dynamic programming approach for their risk neutral evaluation. We
derive a BGM, Brace–Ga̧tarek–Musiela, like equation from the Hull–White model,
that is, each forward LIBOR with an additive constant follows log–normal martingale
under the corresponding probability measure. Using the result we can easily derive
theoretical prices of an European swaption by the Black–Scholes formula and the
Rebonato’s approximation. Utilizing the theoretical prices, we succeed to make
the calibration easy and fast. We also derive theoretical conditions, under which the
option holder does not exercise the Bermudan swaption. We can utilize this property
for making profitable exercise strategies.

Keywords: Bermudan swaption, calibration, dynamic programming, Hull–White
model, risk neutral evaluation.

1 Introduction

As various types of financial instruments have been developed, more flexible instruments
are needed for hedging their risk. Exotic interest rate derivatives are flexible financial
instruments which satisfy such demands in the financial market. One of the most traded
exotic interest rate derivatives is a Bermudan swaption. The Bermudan swaption is an
option, which at each date in a schedule of exercise dates gives the holder the right to
enter an interest swap, provided that this right has not been exercised at any previous
time in the schedule. Because of its usefulness as hedges for callable bonds, the Bermudan
swaption is probably the most liquid interest rate instrument with a built-in early exercise
feature. Its trade volume has increased for recent years in the market.

There are many papers for pricing the Bermudan swaption because of its popularity
in the market. But pricing the instruments with the early exercise features is more com-
plicated than pricing other plain type options. The pricing method used in most papers
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is a Monte Carlo simulation because of its simplicity and applicability for a multifactor
model and long maturity instruments. In spite of its usefulness, the Monte Carlo simula-
tion has a weakness to be applied for pricing exotic derivatives. The important weakness
is that the Monte Carlo simulation has difficulty in dealing with derivatives that contain
early exercise features, like an American option and the Bermudan option. So we need
improvement of the Monte Carlo method to price the early exercise derivatives. Longstaff
and Schwartz (1998) developed the least square method to overcome the weakness of the
Monte Carlo simulation for pricing American option. Andersen (1999) used the Monte
Carlo simulation for pricing the Bermudan swaption, and derived a lower bound on the
Bermudan swaption prices considering less advantage exercise strategies. Broadie and
Glasserman (1997a, 1997b) developed the stochastic mesh method. Carr and Yang (1997)
developed a method based on the stratification technique.

Another choice of the pricing method is the dynamic programming approach. Pedersen
and Sidenius (1998) used optimality equations of the dynamic programming approach to
price a chooser flexible cap, another exotic interest rate derivative. This method is rather
appropriate for pricing exotic derivatives because we can solve the pricing problem by a
backward induction setting up a recombining tree. In Ito, Ohnishi and Tamba (2004) we
extend the method to price the chooser flexible cap focusing on its efficient calibration
method so that the derived price reflects real market data. But because the Bermudan
swaption has different features compared to the chooser flexible cap in such as an exer-
cisable number, a payoff number and exercise decision–making for the option, we need
to consider another procedure of the pricing calculation. To price the Bermudan option,
many banks use one– or two–factor short rate model, in which the dynamic programming
approach is used. But we have seen no paper discussing the theoretically appropriate and
efficient calibration method. On the other hand, there is no research discussing Bermudan
swaption’s properties which can be utilized for profitable exercise strategies.

In this paper we focus on the pricing problem of the Bermudan swaption based on the
observed market prices of rather simple interest rate derivatives, the European swaption.
For the calibration it is appropriate to adopt instruments with similar features as the
target instrument. We use the same model setting, the Hull–White model, as Ito, Ohnishi
and Tamba (2004) for pricing the Bermudan swaption. Because the Bermudan swaption
has some different features from the chooser flexible cap as we describe above, we improve
the pricing and calibration methods for the Bermudan swaption. One of the important
contributions of this paper is that we derive BGM, Brace et al. (1997), like equation from
the Hull–White model, that is, each forward LIBOR with an additive constant follows
log–normal martingale under the corresponding forward probability measure. Using the
result we can easily derive the theoretical price of the European swaption utilizing the
Black–Scholes formula, Black and Scholes (1973), and the Rebonato’s approximation,
Rebonato (1998), under the forward swap probability measure. Utilizing these theoretical
prices, we can make the calibration very easy and fast. This is an important point for
calculation of complicated instruments like exotic options in practice. Another important
contribution is that we derive theoretical conditions, under which the option holder does
not exercise the Bermudan swaption. The conditions are derived by optimality equations
under varying forward neutral probabilities, which has not been used before. We can
utilize this property for making profitable exercise strategies. We also show numerical
examples and comparative statics for each model parameter, and discuss properties of the
Bermudan swaption.

The paper is organized as follows. In Section 2, we introduce various notations about
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interest rate. In Section 3, we derive the theoretical no-arbitrage price of the discount
bond and the European swaption under the Hull–White model. We also show the cali-
bration method for model parameters. In Section 4, we discuss the pricing method of the
Bermudan swaption with optimality equations. In Section 5, we describe a construction of
a trinomial tree for the Bermudan swaption pricing. We also show numerical examples and
discuss comparative statics. In Section 6 we derive theoretical conditions, under which the
option holder does not exercise the Bermudan swaption. Section 7 concludes the paper.

2 Notations of Interest Rates

2.1 Notations of Interest Rates

In this subsection we explain notations of various interest rates. Let D(t, T ) 0 ≤ t ≤ T ≤
T ∗ be the time t price of the discount bond (or zero–coupon bond) with maturity T , in
brief T–bond, which pays 1–unit of money at the maturity T (where D(T, T ) = 1 for any
T ∈ T∗). For 0 ≤ t ≤ S < T ≤ T ∗,

R(t; S, T ) := − ln D(t, T )− ln D(t, S)

T − S
(1)

is the (continuous compounding based) forward rate prevailing at time t which covers time
interval (S, T ]. For 0 ≤ t < T ≤ T ∗,

Y (t, T ) := R(t; t, T ) = − 1

T − t
ln D(t, T ) (2)

is the (continuous compounding based) spot rate prevailing at current time t or yield which
covers time interval (t, T ]. The map T 7→ Y (t, T ) is called the yield curve at time t. For
0 ≤ t ≤ T ≤ T ∗,

f(t, T ) := lim
U↓T

R(t; T, U) = − ∂

∂T
ln D(t, T ) (3)

is the (instantaneous) forward rate prevailing at current time t with the maturity time T .
The map T 7→ f(t, T ) is called the forward rate curve at time t. For t ∈ T∗,

r(t) := f(t, t) = lim
T↓t

Y (t, T ) = − ∂

∂T
ln D(t, T )

∣∣∣∣
T=t

(4)

is the short rate at time t. For 0 ≤ t ≤ T ≤ T ∗,

B(t, T ) := exp

{∫ T

t

r(s)ds

}
(5)

is the risk–free bank account at time T with unit investment capital at time t (where
B(t, t) = 1).

For N ∈ Z+, let

0 ≤ T0 < T1 < · · · < Ti < Ti+1 < · · · < TN−1 < TN ≤ T ∗ (6)

be the sequence of setting times and payment times of floating interest rates, that is, for
i = 0, · · · , N − 1, the floating interest rate which covers time interval (Ti, Ti+1], is set at
time Ti and paid at time Ti+1. For convenience, we let

Ti+1 − Ti = δ (= constant ∈ R++), i = 0, · · · , N − 1. (7)
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For i = 0, · · · , N − 1, we define the simple (or simple compounding based) interest rate
which covers time interval (Ti, Ti+1] by

LTi
(Ti) :=

1

δ

{
1

D(Ti, Ti+1)
− 1

}
. (8)

This amount is set at time Ti, paid at time Ti+1, and is conventionally called a spot LIBOR
(London Inter–Bank Offer Rate). For i = 0, · · · , N − 1,

LTi
(t) :=

1

δ

{
D(t, Ti)

D(t, Ti+1)
− 1

}
(9)

is the simple (or simple compounding based) interest rate prevailing at time t (∈ [0, Ti])
which covers time interval (Ti, Ti+1], and is called a forward LIBOR.

An interest rate swap is a contract where two parties agree to exchange a set of floating
interest rate, LIBOR, payments for a set of fixed interest rate payments. In the market,
swaps are not quoted as prices for different fixed rates K, but only the fixed rate K is
quoted for each swap such that the present value of the swap is equal to zero. This rate,
called the par swap rate S(t) at t, with the payments from T1 to Tn is calculated as

S(t) =
D(t, T0)−D(t, Tn)∑n

k=1 δD(t, Tk)
. (10)

2.2 European Swaption

An European swaption gives the holder the right to enter at time TN into a swap with
fixed rate K. The value of the European swaption at TN with n payments from TN+1 to
TN+n is

δ(S(TN)−K)+

N+n∑

k=N+1

D(TN , Tk). (11)

3 No–Arbitrage Prices of the Discount Bond and the

European Swaption, and the Calibration

3.1 No–Arbitrage Prices of Discount Bonds in Hull–White Model

We consider a continuous trading economy with a finite time horizon given by T∗ := [0, T ∗]
(T ∗ ∈ R++). The uncertainty is modelled by a filtered probability space (Ω,F ,P;F). In
this notation, Ω denotes a sample space with elements ω ∈ Ω; F denotes a σ-algebra on
Ω ; and P denotes a probability measure on (Ω,F). The uncertainty is resolved over T∗
according to a 1–dimensional Brownian (motion) filtration F := (F(t) : t ∈ T∗) satisfying
the usual conditions. W := (W (t) : t ∈ T∗) denotes a 1–dimensional standard (P;F)–
Brownian motion. Consistent with the no-arbitrage and complete market paradigm, we
assume the existence of the risk neutral equivalent martingale measure P∗ with a bank
account as a numéraire in this economy.

The Hull–White model, Hull and White (1990), is one of the most popular short rate
models with the Affine Term Structure (ATS) feature in practice because it has desirable
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characters of the interest rate such as mean reversion property. It can also be fitted with
an observable initial term structure. The Hull–White model assumes that, under the risk
neutral probability measure P∗, the short rate process r = (r(t) : t ∈ T∗) satisfies the
following special form of SDE with the ATS property:

dr(t) = {α(t)− βr(t)}dt + σdW ∗(t), t ∈ T∗, (12)

that is,

m0(t) = α(t), m1(t) = −β; (13)

s0(t) =
σ2

2
, s1(t) = 0. (14)

Under the Hull–White model, the time t price of T–bond can be explicitly derived as
follows:

D(t, T ; r(t)) = exp{−a(t, T )− b(t, T )r(t)}, 0 ≤ t ≤ T ≤ T ∗, (15)

where

a(t, T ) = −σ2

2

∫ T

t

{b(s, T )}2ds +

∫ T

t

α(s)b(s, T )ds; (16)

b(t, T ) =
1− e−β(T−t)

β
. (17)

Then, the initial forward rate can be derived explicitly as:

f(0, T ; r(0)) =
∂

∂T
a(0, T ) + r(0)

∂

∂T
b(0, T )

= − σ2

2β2
(e−βT − 1)2 +

∫ T

0

α(s)
∂

∂T
b(s, T )ds

+r(0)
∂

∂T
b(0, T ), 0 ≤ T ≤ T ∗. (18)

3.2 No–Arbitrage Price of the European swaption in the Hull–
White Model

To calculate the price of the Bermudan swaption in the Hull–White model, we need to
decide the values of the model parameters. The parameters are decided as observable
simple derivatives, the European swaption, fit theoretical prices derived by the model. So,
for the calibration we need to derive theoretical prices of the European swaption based on
the Hull–White model. We assume that the short rate r(t) follows the Hull–White model
(12). From the results (15), (16) and (17) the forward LIBOR LTi

(t) can be represented
as

LTi
(t) :=

D(t, Ti)−D(t, Ti+1)

δD(t, Ti+1)

= −1

δ
+

1

δ
exp

{
− a(t, Ti) + a(t, Ti+1)− b(t, Ti) + b(t, Ti+1)

}
r(t). (19)
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Defining

g(t, Ti, Ti+1) :=
1

δ
exp

{
− a(t, Ti) + a(t, Ti+1)

}
; (20)

h(t, Ti, Ti+1) := −b(t, Ti) + b(t, Ti+1); (21)

LTi
(t) := LTi

(t) +
1

δ
, (22)

we can represent LTi
(t) as

LTi
(t) = g(t, Ti, Ti+1)e

h(t,Ti,Ti+1)r(t). (23)

From the Itô’s Lemma LTi
(t) follows the SDE

dLTi
(t)

LTi
(t)

=
{g(t, Ti, Ti+1)t

g(t, Ti, Ti+1)
+ h(t, Ti, Ti+1)tr(t) + h(t, Ti, Ti+1)(α(t)− βr(t))

+
1

2
h(t, Ti, Ti+1)

2σ2
}

dt + h(t, Ti, Ti+1)σdW ∗(t), (24)

where g(t, Ti, Ti+1)t and h(t, Ti, Ti+1)t are partial differentials of g(t, Ti, Ti+1) and h(t, Ti, Ti+1)
with respect to t. g(t, Ti, Ti+1)t and h(t, Ti, Ti+1)t can be calculated as

g(t, Ti, Ti+1)t =
[σ2

2

{
b(t, Ti) + b(t, Ti+1)

}
− α(t)

]
h(t, Ti, Ti+1)g(t, Ti, Ti+1); (25)

h(t, Ti, Ti+1)t = h(t, Ti, Ti+1)β. (26)

Hence, we obtain

dLTi
(t)

LTi
(t)

=
[h(t, Ti, Ti+1)σ

2

2

{
b(t, Ti) + b(t, Ti+1)

}
+

1

2
h(t, Ti, Ti+1)

2σ2
]
dt

+h(t, Ti, Ti+1)σdW ∗(t)

= h(t, Ti, Ti+1)σ
[{σ

2

(
b(t, Ti) + b(t, Ti+1)

)
+

1

2
h(t, Ti, Ti+1)σ

}
dt + dW ∗(t)

]

= h(t, Ti, Ti+1)σ
{

σb(t, Ti+1)dt + dW ∗(t)
}

. (27)

Changing the probability measure by

dW Ti+1(t) = σb(t, Ti+1)dt + dW ∗(t), (28)

we obtain that LTi
(t) follows the SDE

dLTi
(t)

LTi
(t)

= h(t, Ti, Ti+1)σdW Ti+1(t), 0 ≤ t ≤ Ti, (29)

where W Ti+1(t) is the Brownian motion under the forward neutral probability PTi+1 .
By utilizing the swap neutral evaluation method, we know that the fair (no–arbitrage)

price of the European swaption at time t (∈ [0, Ti]), ESTi
(t), is given by the expectation

under the forward swap probability measure Ps, under which the swap rate follows log–
normal martingale (See Filipović (2002)):

ESTi
(t) = δ

i+n∑

k=i+1

D(t, Tk)E
S
[
(S(Ti)−K)+

∣∣∣F(t)
]
, 0 ≤ t ≤ Ti. (30)
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Using the same calculation as the Black–Scholes formula and the approximation of the
Black–like swaption volatility by Rebonato (1998), we obtain

ESTi
(t) = δ

i+n∑

k=i+1

D(t, Tk)[S(t)Φ(dTi
(t))−KΦ(dTi

(t)− νTi
(t))], (31)

where dTi
(t), Φ(d) and νTi

(t) are defined as follows:

dTi
(t) :=

log(S(t)/K)

νTi
(t)

+
νTi

(t)

2
;

Φ(d) :=
1√
2π

∫ d

−∞
e−x2/2dx;

ν2
Ti

(t) :=
i+n∑

k,l=i+1

wk(0)wl(0)LTk−1
(0)LTl−1

(0)ρk,l

S(0)2

∫ Ti

0

σ2h(s, Tk, Tk+1)h(s, Tl, Tl+1)ds;

wl(t) :=

∏l
j=i+1

1
1+δLTj−1

(t)∑i+n
k=i+1

∏k
j=i+1

1
1+δLTj−1

(t)

=
D(t, Tl)∑i+n

k=i+1 D(t, Tk)
;

dW TidW Tj := d〈W Ti ,W Tj〉t = ρi,jdt.

(32)

3.3 Calibration

Unknown parameters α(·), β, σ could be estimated as follows. In the Hull–White model by
solving the theoretical value formula of the forward rate (18) with respect to the function
α(·) and substituting the observed forward rate curve at current time 0, fmkt(0, T ), we
have

αmkt(T ) :=
∂

∂T

[
fmkt(0, T ) +

σ2

2β2
(e−βT − 1)2

]

−β

[
fmkt(0, T ) +

σ2

2β2
(e−βT − 1)2

]
, 0 ≤ T ≤ T ∗. (33)

This function includes unknown parameters β and σ. Accordingly, the remaining unknown
parameters β and σ could be determined, for example, by the minimizers of the following
criterion function:

C(β, σ) := w1

∑
i

|D(t, Ti)mkt −D(t, Ti)mdl|2

+w2

∑
i

|ESTi
(t)mkt − ESTi

(t)mdl|2 , (34)

where D(t, Ti)mkt, ESTi
(t)mkt: the observed prices of the i–th discount bond and the

European swaption, respectively; D(t, Ti)mdl, ESTi
(t)mdl: the theoretical prices of the i–

th discount bond and the European swaption, respectively; w1, w2 (∈ R+) (w1 + w2 =
1): weighting coefficients. We can take weighting coefficients in other ways like taking
summation after we put weighting coefficients on each difference between the market
data and the theoretical price of each i-th instrument. We can also use other financial
instruments for this calibration.
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4 Pricing the Bermudan Swaption

4.1 Pricing the Bermudan Swaption under the Risk Neutral
Probability P∗

Let W (Ti, r(Ti)), i = 0, · · · , N − 1 be the fair (no–arbitrage) price of the Bermudan swap-
tion at time Ti. In this paper we deal with the Bermudan swaption with a constant length
of its payoff period after the exercise. The optimal equation can be derived using the
Bellman principle. We can use the short rate as the state variable instead of the swap rate
because the swap rate is the increasing function in the short rate and these are in one to
one relation as we see below in equation (41). From (10) with the Hull–White model swap
rate, explicitly shown as the function of t and r(t), is represented as

S(t, r(t)) =
D(t, T0; r(t))−D(t, Tn; r(t))∑n

k=1 δD(t, Tk; r(t))

=
exp{−a(t, T0)− b(t, T0)r(t)} − exp{−a(t, Tn)− b(t, Tn)r(t)}∑n

k=1 δ exp{−a(t, Tk)− b(t, Tk)r(t)}
:=

g0(t, r(t))− gn(t, r(t))

δf(t, r(t))
, (35)

where

f(t, r(t)) =
n∑

k=1

exp{−a(t, Tk)− b(t, Tk)r(t)}

=
n∑

k=1

gk(t, r(t)); (36)

gk(t, r(t)) = exp{−a(t, Tk)− b(t, Tk)r(t)}, k = 0, 1, · · · , n. (37)

Then we have

∂

∂r(t)
f(t, r(t)) = −

n∑

k=1

b(t, Tk)gk(r(t)); (38)

∂

∂r(t)
gk(t, r(t)) = −b(t, Tk)gk(r(t)). (39)

∂

∂r(t)
S(t, r(t)) = 1

δf2(r(t))
[{−b(t, T0)g0(t, r(t)) + b(t, Tn)gn(t, r(t))}∑n

k=1 gk(t, r(t))

+{g0(t, r(t))− gn(t, r(t))}∑n
k=1 b(t, Tk)gk(t, r(t))]

= 1
δf2(r(t))

[g0(t, r(t)){−b(t, T0)
∑n

k=1 gk(t, r(t)) +
∑n

k=1 b(t, Tk)gk(t, r(t))}
+gn(t, r(t)){b(t, Tn)

∑n
k=1 gk(t, r(t))−

∑n
k=1 b(t, Tk)gk(t, r(t))}] (40)

From (17) we know b(t, Tk) < b(t, Tk+1) k = 0, 1, · · · , n− 1. As the result we could prove

∂

∂r(t)
S(t) > 0, (41)
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which means that the swap rate is the increasing function in the short rate and these are
one to one relations between them.

Next we derive the optimality equation under the risk neutral probability measure P∗
with a bank account as a numéraire.
Optimality Equation:

(i) For i = N − 1 (Terminal Condition):

W (S(TN−1)) = δ[S(TN−1)−K]+

n−1∑

k=0

D(TN−1, TN+k) (42)

(ii) For i = N − 2, · · · , 0:

W (S(Ti)) = max
{

E∗
[δ[S(Ti)−K]+

∑i+n
k=i+1 D(Ti+1, Tk)

B(Ti, Ti+1)

∣∣∣S(Ti)
]
,

E∗
[W (S(Ti+1))

B(Ti, Ti+1)

∣∣∣S(Ti)
]}

(43)

4.2 Pricing the Bermudan Swaption under the Forward Neutral
Probability PTN

We can also derive the optimality equation under the forward neutral probability PTN with
a TN–bond as a numéraire.
Optimality Equation:

(i) For i = N − 1 (Terminal Condition):

W (S(TN−1)) = δ[S(TN−1)−K]+

n−1∑

k=0

D(TN−1, TN+k)

(44)

(ii) For i = N − 2, · · · , 0:

W (S(Ti)) = max
{

δ[S(Ti)−K]+

i+n∑

k=i+1

D(Ti, Tk),

D(Ti, TN)ETN

[W (S(Ti+1))

D(Ti+1, TN)

∣∣∣S(Ti)
]}

(45)

4.3 Pricing the Bermudan Swaption under Varying Forward Neu-
tral Probabilities PTi(1 ≤ i ≤ N)

In this subsection we write the optimality equation under forward neutral probabilities
PTi varying at each period with a Ti–bond as a numéraire. This optimality equation
is different from both the optimality equations of Subsection 4.1 and 4.2 that have the
fixed probability measures at all periods. We will use this method for proofs of the later
propositions in Section 6.
Optimality Equation:

9



(i) For i = N − 1 (Terminal Condition):

W (S(TN−1)) = δ[S(TN−1)−K]+

n−1∑

k=0

D(TN−1, TN+k)

(46)

(ii) For i = N − 2, · · · , 0:

W (S(Ti)) = max
{

δ[S(Ti)−K]+

i+n∑

k=i+1

D(Ti, Tk),

D(Ti, Ti+1)E
Ti+1

[
W (S(Ti+1))

∣∣∣S(Ti)
]}

(47)

5 Construction of the Trinomial Tree of the Bermu-

dan Swaption Price, Numerical Example and Com-

parative Statics

5.1 Backward Induction of the Bermudan Swaption Price

Using a trinomial tree of the short rate r(t) that follows the Hull–White model, we con-
struct the trinomial tree of the short rate and the Bermudan swaption price in the discrete
time setting under the risk neutral probability P∗. We can also construct the trees under
the forward neutral probabilities PTN and PTi in the same way. We construct the short
rate trinomial tree based on Hull–White (1994). For the simplicity of the calculation, we
set ∆t = δ = Ti+1 − Ti as constant for all i. (i, j) represents a node at t = i∆t and
r = j∆r. We define D(i, i + 1, j) as the (i + 1)∆t-bond price at (i, j), L(i, i, j) as the spot
LIBOR at Ti with the payment time (i + 1)∆t, L(i, i + k, j) as the forward LIBOR from
Ti+k to Ti+k+1 at Ti, Si,j as the swap rate value at the node (i, j), and ri,j as the short
rate value at the node (i, j). Under the Hull–White model from (16) and (17) we have

a(Ti, Ti+1) = −σ2

2

∫ Ti+1

Ti

{b(s, Ti+1)}2ds +

∫ Ti+1

Ti

α(s)b(s, Ti+1)ds

∼= −σ2

2

∫ Ti+1

Ti

{b(s, Ti+1)}2ds + αi

∫ Ti+1

Ti

b(s, Ti+1)ds

= − σ2

2β2

(
(Ti+1 − Ti) +

2

β
e−β(Ti+1−Ti) − 1

2β
e−2β(Ti+1−Ti) − 3

2β

)

+αi
1

β2

(
β(Ti+1 − Ti) + e−β(Ti+1−Ti) − 1

)

=: a(i, i + 1), (48)

b(Ti, Ti+1) =
1− e−β(Ti+1−Ti)

β
=: b(i, i + 1). (49)

Then the bond price D(i, i+1, j), the spot LIBOR L(i, i, j), the forward LIBOR L(i, i+k, j)
and the swap rate Si,j are represented respectively as

D(i, i + 1, j) = e−a(i,i+1)−b(i,i+1)ri,j ; (50)
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L(i, i, j) = −1

δ
+

1

δD(i, i + 1, j)
; (51)

L(i, i + k, j) = −1

δ
+

D(i, i + k, j)

δD(i, i + k + 1, j)
; (52)

Si,j ≈
n−1∑

k=0

wi+k+1(0)L(i, i + k, j), (53)

where

wi(0) =
D(0, i, j)∑n−1

k=0 D(0, i + k + 1, j)
. (54)

See Brigo and Mercurio (2000) for the above approximation of the swap rate. The bank
account B(Ti, Ti+1) with r(Ti) transiting from a node (i, j) to a node (i + 1, j′) can be
approximated utilizing the trapezoidal rule as

B(Ti, Ti+1) = exp
{ ∫ Ti+1

Ti

r(s)ds
} ∼= exp

{ri,j + ri+1,j′

2
δ
}

.

(55)

We define pu(i, j), pm(i, j), pd(i, j) as the transition probabilities from the node (i, j)
to up, same, and down states at t = (i + 1)∆t respectively, W (i, j) as the Bermudan
swaption price at the node (i, j), and W (i + 1, j + 1),W (i + 1, j),W (i + 1, j − 1) as the
Bermudan swaption prices at each state, j + 1, j, and j − 1, at time (i + 1)∆t with
above corresponding transition probabilities from (i, j), and Bu(i, j), Bm(i, j), Bd(i, j) as
the bank account values at each state, j + 1, j, and j − 1, at time (i + 1)∆t with above
corresponding transition probabilities from (i, j). The Bermudan swaption price at (i, j) ,
W (i, j), can be derived as

W (i, j) = max
{

δ(Si,j −K)+
(
pu(i, j)

∑i+n
k=i+1 D(i + 1, k, j + 1)

Bu(i, j)

+pm(i, j)

∑i+n
k=i+1 D(i + 1, k, j)

Bm(i, j)
+ pd(i, j)

∑i+n
k=i+1 D(i + 1, k, j − 1)

Bd(i, j)

)
,

pu(i, j)
W (i + 1, j + 1)

Bu(i, j)
+ pm(i, j)

W (i + 1, j)

Bm(i, j)
+ pd(i, j)

W (i + 1, j − 1)

Bd(i, j)

}
..

(56)

By the backward induction from the terminal condition, we can calculate the current
Bermudan swaption price at (0, 0).

5.2 Numerical Examples and Comparative Statics

Following Hull and White (1994), we construct the trinomial tree of the short rate and
the spot LIBOR and calculate the Bermudan swaption price in Fig.1 and Fig.2. We
discuss how each parameter and an initial condition affect the price of the Bermudan
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swaption. The Table 1 shows the Bermudan swaption price calculated with only one
parameter changed where other parameters and initial conditions are fixed on the bench
mark values, β=0.3, R : increasing 0.0025 in each period starting from 0.1, σ = 0.01,
N = 8, T = 2, δ = 0.25 and K = 0.8. We set the time interval δ = 0.25 for both of the
short rate and the spot LIBOR in this example. But we can set different time intervals for
each rate. For example, we can set the shorter time interval for the short rate tree than
the spot LIBOR. We use MATLAB for the calculation.

ri,j

LTi
(Ti)

0.1137

0.1050

0.0963

0.1242

0.1156

0.1070

0.1273

0.1187

0.1100

0.1014

0.0927

0.1410

0.1323

0.1237

0.1150

0.1064

0.0977

0.6001

0.5915

0.5828

0.5741

0.5655

0.5568

0.6534

0.6448

0.6361

0.6274

0.6188

0.6101

0.6015

0.6796

0.6710

0.6623

0.6536

0.6450

0.6363

0.6277

0.6928

0.6841

0.6755

0.6668

0.6582

0.6495

0.6408

0.0890
0.5482

0.1

0.1384

0.1298

0.1212

0.1126

0.1040

0.1527

0.1441

0.1354

0.1268

0.1182

0.1096

0.7036

0.6938

0.6841

0.6743

0.6646

0.6548

0.7722

0.7622

0.7523

0.7424

0.7325

0.7227

0.7128

0.8062

0.7962

0.7862

0.7762

0.7663

0.7564

0.7464

0.8234

0.8134

0.8034

0.7934

0.7834

0.7734

0.7635

0.1011
0.6451

0.11
0

1

2

3

-1

-2

-3

j

i 0 1 2 3 4 5 6 7

Figure 1: The Trinomial Tree of the Short Rate and the Spot LIBOR. We construct the
tree following Hull–White (1994) based on the parameter set, β = 0.3, R : increasing
0.0025 in each period starting from 0.1, σ = 0.01, N = 8, T = 2 and δ = 0.25. The upper
nodal values, ri,j, are the short rates and lower values, LTi

(Ti), are the spot LIBORs at
each node (i, j).
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W (i, j)
Exercise(E) or Not(X)

E

E

E

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

0.5841

0.5955

0.6070

0.6475

0.6553

0.6631

0.6709

0.6787

0.7333
1.0623

1.1724
1.2383

1.4425

0.7363
1.0575

1.1690
1.2356

1.4116

0.7393
1.0525

1.2327
1.3812

0.7421
1.0474

1.1617
1.2296

0.7448
1.0421

1.1578
1.2263

0.5375

1.1654

1.3513

1.3219

0.7473

0.7498

1.0365

1.0308

1.1537

1.1494

1.2229

1.2193

1.2929

1.6516

Exercise

Figure 2: The Trinomial Tree of Bermudan Swaption Values. The tree is built calculating
the Bermudan swaption prices backwardly based on the interest rate tree of the Figure 1.
The upper nodal values, W (i, j), are the Bermudan swaption prices at each node (i, j).
The lower rows show whether the option holder exercises the Bermudan swaption, E, at
each node or not, X. Furthermore, the surrounded area with the thick line represents the
exercise nodes in this example.
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The result shows that as n(number of payoff periods) is bigger, the Bermudan swaption
price is bigger. This is because the total amount of the payoff gets bigger. The Bermudan
swaption price is smaller as β(parameter of HW model) is bigger. The value of β affects
the level and speed of the mean reversion of the short rate. The larger β is, the smaller
the mean reversion level is. This keeps the values of the short rate and swap rate small,
and causes the small Bermudan swaption price. The Bermudan swaption price is larger as
σ(parameter of HW model) is bigger. The reason is the same as the result of the simple
Black-Scholes formula. As σ is bigger, the value of the instruments, with which we can
hedge the floating interest rate risk, is highly evaluated by buyers of the option. The
Bermudan swaption price is smaller as K(exercise rate) is bigger. This result is caused by
the payoff function, δ(S(Ti)−K)+. As the value of K increases, the payment gets smaller.
The Bermudan swaption price is larger as T (option maturity) is bigger. Because we can
replicate the Bermudan swaption with the short maturity by the longer one, the longer one
is at least more expensive than the shorter one. Finally, we examine six patterns of the
initial yield curve such as increasing curves and decreasing curves at different yield levels.
Among the six initial yield curve examples, the price of the case of R3(the increasing,
0.005 at each period, curve starting from 0.1) is most expensive, and the prices of R2(the
decreasing, 0.005 at each period, curve starting from 0.14) is cheapest in this example. But
the prices with other parameter set cases do not necessarily result in the same pattern.
Although the increasing initial yield curves cause the bigger values of the swap rate than
the decreasing one, the bigger values cause not only the bigger values of payments but
also the bigger values of the discount bonds, which are the discount values used on the
backward calculation. As we calculate the values of the Bermudan swaption backwardly,
the Bermudan swaption values are discounted more in the case of the increasing case
than the decreasing case. As the result, the price differences between the increasing and
decreasing cases get smaller and smaller on the backward calculation. As the result in
some cases, we see that the option price with the decreasing yield curve may be more
expensive than the increasing case.
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Table 1. Comparative Staticsa

β = 0.3

β = 0.6

σ = 0.01

σ = 0.5

K = 0.8

K = 0.1

T = 2, N = 8, δ = 0.25

T = 1, N = 4, δ = 0.25

R: gently increasing from 0.1

R1: flat at 0.1

R2: decreasing from 0.14

R3: increasing from 0.06

R4: decreasing from 0.1

R5: increasing from 0.1

0

β bigger ⇒ price smaller

R3 ⇒ price biggest

R2 ⇒ price smallest

σ bigger ⇒ price bigger

T (orN) bigger ⇒ price bigger

K bigger ⇒ price smaller

n bigger ⇒ price bigger

Change of the Price

n = 4

n = 2

0.5375

0.5375

0.5375

0.5375

0.5375

0.5375

0.0072

0.7099

0.7996

0.1964

0.5322

0.4777

0.5916

0.5135

0.5404

Price

a The Table 1 shows the Bermudan swaption prices calculated with only one parameter
changed where other parameters and initial conditions are fixed on the bench mark
values, n (payment number)= 4, β (parameter of HW model)= 0.3, σ (parameter of
HW model)= 0.01, K (exercise rate)= 0.8, T (option maturity)= 2, N (number of time
periods)= 8, δ (time interval)= 0.25, and R (initial yield curve): increasing 0.0025 in
each period starting from 0.1. The column of ”Price” shows the Bermudan swaption
price with each parameter. The column of ”Change of the Price” shows the change of
the Bermudan swaption price when each corresponding parameter is changed. R1 is
the flat curve at 0.1. R2 is the decreasing, 0.005 at each period, curve from 0.14. R3
is the increasing, 0.005 at each period, curve from 0.06. R4 is the decreasing, 0.005 at
each period, curve from 0.1. R5 is the increasing, 0.005 at each period, curve from 0.1.
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6 Conditions for Non Early Exercise of the Bermudan

Swaption

In this section we derive theoretical conditions, under which the option holder does not
exercise the Bermudan swaption at Ti for i = 0, · · · , N − 2.

Proposition 6.1. The holder of the Bermudan swaption does not exercise the Bermudan
swaption at t = TN−2 under the conditions

S(TN−2) <
1

1 + δLN+l−2(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2), l = 1, 2; (57)

S(TN−2) <

l+1∏
s=3

1

1 + δLN+s−3(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2), l = 3, 4, · · · , n. (58)

Proposition 6.2. The holder of the Bermudan swaption does not exercise the option at
t = Ti under the conditions

S(Ti) <
1

1 + δLi+l(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 1, 2; (59)

S(Ti) <

l+1∏
s=3

1

1 + δLi+s−1(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 3, 4, · · · , n. (60)

Proof. See Appendix.

7 Conclusion

In this paper we propose the pricing method of the Bermudan swaption. We have mainly
four features in this paper. Firstly, we utilize the dynamic programming approach with
the short rate model the Hull–White model. In particular, we derive the relation between
the Hull–White 1–factor model and a displaced–diffusion LMM. Secondly, deriving the
theoretical prices of the bond and the European swaption, we use the theoretical prices for
the calibration. Thirdly, we show the numerical examples and discuss comparative statics.
Fourthly, we derive the conditions for non early exercise of the Bermudan swaption.

The future plan of the research is to discuss if the derived theoretical forward rates
fit behavior of market data. We will hopefully price the Bermudan swaption after the
calibration thorough real market data. Moreover, we should verify if prices derived by the
model suit the Bermudan swaption prices of the real market data. One factor model like
this paper has only one driving Brownian motion and it implies perfect correlation of all
forward rates with different maturity dates. Furthermore, by working with the one factor
short rate as the primitive model, it is difficult to allow for a precise fit to processes of
quoted instruments (bond and European swaption) because of low degrees of freedom. We
can extend the one factor model of this paper to a multi factor model.
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A Proof of the Proposition 1

Proof. We derive theoretical conditions under which the option holder does not exercise
the Bermudan swaption at TN−2. The value of the Bermudan swaption at the terminal
period, TN−1, is

W (S(TN−1)) = δ[S(TN−1)−K]+

n−1∑

k=0

D(TN−1, TN+k).

(61)

The optimality equation at TN−2 is

W (S(TN−2)) = max
{

δ[S(TN−2)−K]+

n−1∑

k=0

D(TN−2, TN+k−1),

D(TN−2, TN)ETN

[W (S(TN−1))

D(TN−1, TN)

∣∣∣S(TN−2)
]}

= max
{

δ[S(TN−2)−K]+

n−1∑

k=0

D(TN−2, TN+k−1),

D(TN−2, TN)ETN

[δ[S(TN−1)−K]+
∑n−1

k=0 D(TN−1, TN+k)

D(TN−1, TN)

∣∣∣S(TN−2)
]}

. (62)

The condition, under which the option holder does not exercises the Bermudan swap-
tion at TN−2, is

δ[S(TN−2)−K]+

n−1∑

k=0

D(TN−2, TN+k−1)

< D(TN−2, TN)ETN

[δ[S(TN−1)−K]+
∑n−1

k=0 D(TN−1, TN+k)

D(TN−1, TN)

∣∣∣S(TN−2)
]}

. (63)

Using an approximation,

S(TN−1) ≈
n−1∑

k=0

wN+k(0)LN+k−1(TN−1), (64)

where

wi(t) =
D(t, Ti)∑n−1

k=0 D(t, Ti+k)
, (65)

we have the first term of the summation on the right hand side of (63), A, as

A = D(TN−2, TN)ETN

[
δ[S(TN−1)−K]+

∣∣∣S(TN−2)
]

≈ D(TN−2, TN)ETN

[
δ[

n−1∑

k=0

wN+k(0)LN+k−1(TN−1)−K]+

∣∣∣S(TN−2)
]

≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)ETN

[
LN+k−1(TN−1)

∣∣∣S(TN−2)
]
−K]+. (66)
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We evaluate the expectation terms of the equation (66). The first term of the summation
is evaluated as

ETN

[
LN−1(TN−1)

∣∣∣S(TN−2)
]

= LN−1(TN−2). (67)

Next we evaluate the second term of the summation, ETN

[
LN(TN−1)

∣∣∣S(TN−2)
]
. We con-

sider the payoff LN(TN−1) given at TN . We evaluate the payoff under each of the forward
neutral probability measure of PTN and PTN+1 . We define P as the evaluated value at TN−2

corresponding to the payoff.

P

D(TN−2, TN)
= ETN

[ LN(TN−1)

D(TN , TN)

∣∣∣S(TN−2)
]

(68)

P

D(TN−2, TN+1)
= ETN+1

[ LN(TN−1)

D(TN , TN+1)

∣∣∣S(TN−2)
]

(69)

So we have

ETN

[
LN(TN−1)

∣∣∣S(TN−2)
]

=
D(TN−2, TN+1)

D(TN−2, TN)
ETN+1

[ LN(TN−1)

D(TN , TN+1)

∣∣∣S(TN−2)
]
. (70)

Utilizing the facts that

D(TN , TN+1) =
1

1 + δLN(TN)
(71)

and the function

f(x) := x(1 + δx) (72)

is convex in x, we evaluate the expectation term in the equation (70) as

ETN+1

[ LN(TN−1)

D(TN , TN+1)

∣∣∣S(TN−2)
]

= ETN+1

[
LN(TN−1){1 + δLN(TN)}

∣∣∣S(TN−2)
]

≥ LN(TN−2)(1 + δLN(TN−2)). (73)

Hence we have the relationship

ETN

[
LN(TN−1)

∣∣∣S(TN−2)
]
≥ LN(TN−2). (74)

Next we evaluate the third term of the summation, ETN

[
LN+1(TN−1)

∣∣∣S(TN−2)
]
, in the

same way. We consider the payoff LN+1(TN−1) at TN . We evaluate the payoff under each
of the forward neutral probability measure of PTN and PTN+1 . We define Q as the evaluated
value at TN−2 corresponding to the payoff.

Q

D(TN−2, TN)
= ETN

[LN+1(TN−1)

D(TN , TN)

∣∣∣S(TN−2)
]

(75)

Q

D(TN−2, TN+1)
= ETN+1

[ LN+1(TN−1)

D(TN , TN+1)

∣∣∣S(TN−2)
]

(76)
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So we have

ETN

[
LN+1(TN−1)

∣∣∣S(TN−2)
]

= D(TN−2,TN+1)

D(TN−2,TN )
ETN+1

[
LN+1(TN−1)

D(TN ,TN+1)

∣∣∣S(TN−2)
]
. (77)

Assuming that the following Brownian motions are uncorrelated

dW TN+2(t)dW TN+1(t) = 0, (78)

where

dLN+1(t)

LN+1(t)
= σN+1(t)dW TN+2(t), t ∈ T∗ (79)

dLN(t)

LN(t)
= σN(t)dW TN+1(t), t ∈ T∗, (80)

we have the expectation term in (77) as

ETN+1

[ LN+1(TN−1)

D(TN , TN+1)

∣∣∣S(TN−2)
]

= ETN+1

[
1 + δLN(TN)

∣∣∣S(TN−2)
]
ETN+1

[
LN+1(TN−1)

∣∣∣S(TN−2)
]
. (81)

We evaluate the term ETN+1

[
LN+1(TN−1)

∣∣∣S(TN−2)
]

in (81). We consider the payoff

LN+1(TN−1) at TN+1. We evaluate the payoff under each of the forward neutral prob-
ability measure of PTN+1 and PTN+2 . We define R as the evaluated value at TN−2.

R

D(TN−2, TN+1)
= ETN+1

[ LN+1(TN−1)

D(TN+1, TN+1)

∣∣∣S(TN−2)
]

(82)

R

D(TN−2, TN+2)
= ETN+2

[ LN+1(TN−1)

D(TN+1, TN+2)

∣∣∣S(TN−2)
]

(83)

So we have

ETN+1

[
LN+1(TN−1)

∣∣∣S(TN−2)
]

=
D(TN−2, TN+2)

D(TN−2, TN+1)
ETN+2

[ LN+1(TN−1)

D(TN+1, TN+2)

∣∣∣S(TN−2)
]
. (84)

In the same way as (73), we have the expectation term in (84) as

ETN+2

[ LN+1(TN−1)

D(TN+1, TN+2)

∣∣∣S(TN−2)
]
≥ LN+1(TN−2)(1 + δLN+1(TN−2)). (85)

Hence we evaluate the third term of the summation as

ETN

[
LN+1(TN−1)

∣∣∣S(TN−2)
]
≥ LN+1(TN−2). (86)
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In the same way we have the relations

ETN

[
LN+k−1(TN−1)

∣∣∣S(TN−2)
]
≥ LN+k−1(TN−2)k = 1, 2, · · · , n− 1. (87)

Then A has the following relation.

A ≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)LN+k−1(TN−2)−K]+ (88)

Comparing the first term of the left side on the equation (63) and the right side of equation
(88), we have

[S(TN−2)−K]+ ≤ D(TN−2, TN)

D(TN−2, TN−1)
[
n−1∑

k=0

wN+k(0)LN+k−1(TN−2)−K]+. (89)

RHSof(89) ≥ [
1

1 + δLN−1(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2)−K]+ (90)

Hence one of the sufficient conditions for non early exercise of the Bermudan swaption at
t = TN−2 derived from the comparison of the first terms is

S(TN−2) ≤ 1

1 + δLN−1(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2). (91)

We have the second term of the summation on the right hand side of (63), B, as

B = D(TN−2, TN)ETN

[D(TN−1, TN+1)δ[S(TN−1)−K]+
D(TN−1, TN)

∣∣∣S(TN−2)
]

≈ δD(TN−2, TN)ETN

[ 1

1 + δLN(TN−1)
[
n−1∑

k=0

wN+k(0)LN+k−1(TN−1)−K]+

∣∣∣S(TN−2)
]

≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)ETN

[ LN+k−1(TN−1)

1 + δLN(TN−1)

∣∣∣S(TN−2)
]
−K]+. (92)

We evaluate the expectation terms of the equation (92). Under the following assumption
that all Brownian motions are uncorrelated each other

dW Ti(t)dW Tj(t) = 0, i 6= j, (93)

we have

ETN

[ LN+k−1(TN−1)

1 + δLN(TN−1)

∣∣∣S(TN−2)
]

= ETN

[ 1

1 + δLN(TN−1)

∣∣∣S(TN−2)
]
ETN

[
LN+k−1(TN−1)

∣∣∣S(TN−2)
]
. (94)

Because the function

g(x) :=
1

1 + δx
(95)
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is convex in x for x ≥ 0, we have

ETN

[ 1

1 + δLN(TN−1)

∣∣∣S(TN−2)
]
≥ 1

1 + δLN(TN−2)
. (96)

Utilizing (96) and (87) we derive the relation

ETN

[ 1

1 + δLN(TN−1)

∣∣∣S(TN−2)
]
ETN

[
LN+k−1(TN−1)

∣∣∣S(TN−2)
]

≥ LN+k−1(TN−2)

1 + δLN(TN−2)
. (97)

Hence B has the following relation.

B ≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)
LN+k−1(TN−2)

1 + δLN(TN−2)
−K]+. (98)

Comparing the second terms of the left side on the equation (63) and the right side of
equation (98), we have

[S(TN−2)−K]+ ≤ D(TN−2, TN)

D(TN−2, TN)
[
n−1∑

k=0

wN+k(0)
LN+k−1(TN−2)

1 + δLN(TN−2)
−K]+. (99)

Hence one of the sufficient conditions for non early exercise of the Bermudan swaption at
t = TN−2 derived from the comparison of the second terms is

S(TN−2) ≤ 1

1 + δLN(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2). (100)

We have the third term of the summation on the right hand side of (63), C, as

C = D(TN−2, TN)ETN

[D(TN−1, TN+2)δ[S(TN−1)−K]+
D(TN−1, TN)

∣∣∣S(TN−2)
]

≈ δD(TN−2, TN)ETN

[ 1

(1 + δLN(TN−1))(1 + δLN+1(TN−1))

[
n−1∑

k=0

wN+k(0)LN+k−1(TN−1)−K]+

∣∣∣S(TN−2)
]

≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)

ETN

[ LN+k−1(TN−1)

(1 + δLN(TN−1))(1 + δLN+1(TN−1))

∣∣∣S(TN−2)
]
−K]+. (101)

In the same way we evaluate the expectation terms of the equation (101) under the as-
sumption all Brownian motions are uncorrelated each other.

ETN

[ LN+k−1(TN−1)

(1 + δLN(TN−1))(1 + δLN+1(TN−1))

∣∣∣S(TN−2)
]

≥ LN+k−1(TN−2)

(1 + δLN(TN−2))(1 + δLN+1(TN−2))
(102)
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Hence C has the following relation.

C ≥ δD(TN−2, TN)[
n−1∑

k=0

wN+k(0)
LN+k−1(TN−2)

(1 + δLN(TN−2))(1 + δLN+1(TN−2))
−K]+ (103)

Comparing the third terms of the left side on the equation (63) and the right side of
equation (103), we have

[S(TN−2)−K]+ ≤ D(TN−2, TN)

D(TN−2, TN+1)

[
n−1∑

k=0

wN+k(0)
LN+k−1(TN−2)

(1 + δLN(TN−2))(1 + δLN+1(TN−2))
−K]+. (104)

Because D(TN−2,TN )

D(TN−2,TN+1)
> 1 one of the sufficient conditions for non early exercise of the

Bermudan swaption at t = TN−2 derived from the comparison of the third terms is

S(TN−2) ≤
4∏

s=3

1

1 + δLN+s−3(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2). (105)

In the same way we can derive that the sufficient conditions to satisfy this proposition are
summarized as

S(TN−2) <
1

1 + δLN+l−2(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2), l = 1, 2; (106)

S(TN−2) <

l+1∏
s=3

1

1 + δLN+s−3(TN−2)

n−1∑

k=0

wN+k(0)LN+k−1(TN−2), l = 3, 4, · · · , n. (107)

B Proof of the Proposition 2

Proof. At t = TN−2 from the result of Proposition 1 we prove that we do not exercise
the option under the conditions (106) and (107). At t = Ti+1 we suppose that we do not
exercise the option under the conditions

S(Ti+1) <
1

1 + δLi+l+1(Ti+1)

n−1∑

k=0

wi+k+3(0)Li+k+2(Ti+1), l = 1, 2; (108)

S(Ti+1) <

l+1∏
s=3

1

1 + δLi+s(Ti+1)

n−1∑

k=0

wi+k+3(0)Li+k+2(Ti+1), l = 3, 4, · · · , n, (109)

that is

W (S(Ti+1)) = D(Ti+1, Ti+3)E
Ti+3

[ W (S(Ti+2))

D(Ti+2, Ti+3)

∣∣∣S(Ti+1)
]

> δ[S(Ti+1)−K]+

n−1∑

k=0

D(Ti+1, Ti+k+2). (110)
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At t = Ti we would like to show that under the conditions

S(Ti) <
1

1 + δLi+l(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 1, 2; (111)

S(Ti) <

l+1∏
s=3

1

1 + δLi+s−1(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 3, 4, · · · , n, (112)

we do not exercise the option by the induction, that is

δ[S(Ti)−K]+

n−1∑

k=0

D(Ti, Ti+k+1)

< D(Ti, Ti+2)E
Ti+2

[ W (S(Ti+1))

D(Ti+1, Ti+2)

∣∣∣S(Ti)
]
. (113)

From the hypothesis, (110), substituting RHS of (110) for the RHS of (113) we obtain

RHSof(113) > D(Ti, Ti+2)E
Ti+2

[δ[S(Ti+1)−K]+
∑n−1

m=0 D(Ti+1, Ti+m+2)

D(Ti+1, Ti+2)

∣∣∣S(Ti)
]

= D(Ti, Ti+2)E
Ti+2

[
δ[

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti+1)−K]+

∑n−1
m=0 D(Ti+1, Ti+m+2)

D(Ti+1, Ti+2)

∣∣∣S(Ti)
]
. (114)

Comparing the first terms of RHS of (114) and LHS of (113), we obtain one of the non
early exercise conditions as

[S(Ti)−K]+ <

D(Ti, Ti+2)

D(Ti, Ti+1)
ETi+2

[ n−1∑

k=0

wi+k+2(0)Li+k+1(Ti+1)−K]+

∣∣∣S(Ti)
]
. (115)

Utilizing the following relation

RHSof(115) ≥ 1

1 + δLi+1(Ti)

n−1∑

k=0

wi+k+2(0)ETi+2

[
Li+k+1(Ti+1)

∣∣∣S(Ti)
]
−K]+

≥ [
1

1 + δLi+1(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti)−K]+, (116)

(115) is satisfied under the condition (111). Comparing the second terms of RHS of (114)
and LHS of (113), we obtain one of the non early exercise conditions as

[S(Ti)−K]+ < ETi+2

[D(Ti+1, Ti+3)

D(Ti+1, Ti+2)
[
n−1∑

k=0

wi+k+2(0)Li+k+1(Ti+1)−K]+

∣∣∣S(Ti)
]
. (117)

Utilizing the following relation

RHSof(117) ≥ [
1

1 + δLi+2(Ti+1)

n−1∑

k=0

wi+k+2(0)ETi+2

[
Li+k+1(Ti+1)

∣∣∣S(Ti)
]
−K]+

≥ [
1

1 + δLi+2(Ti+1)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti)−K]+, (118)
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(117) is satisfied under the condition (111). Comparing the l-th(l ≥ 3) terms of RHS of
(114) and LHS of (113), we obtain the one of the non early exercise conditions as

[S(Ti)−K]+ <

D(Ti, Ti+2)

D(Ti, Ti+l)
ETi+2

[D(Ti+1, Ti+l+1)

D(Ti+1, Ti+2)
[
n−1∑

k=0

wi+k+2(0)Li+k+1(Ti+1)−K]+

∣∣∣S(Ti)
]
. (119)

Utilizing the following relation

RHSof(119) ≥
l−3∏
u=0

(1 + δLi+u+2(Ti))E
Ti+2

[
[
l+1∏
s=3

1

1 + δLi+s+2(Ti+1)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti+1)−K]+

≥ [
l+1∏
s=3

1

1 + δLi+s+2(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti)−K]+, (120)

(120) is satisfied under the condition (112). Then we prove that the holder of the Bermudan
swaption does not exercise the option at t = Ti under the conditions

S(Ti) <
1

1 + δLi+l(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 1, 2; (121)

S(Ti) <

l+1∏
s=3

1

1 + δLi+s−1(Ti)

n−1∑

k=0

wi+k+2(0)Li+k+1(Ti), l = 3, 4, · · · , n. (122)
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