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1 Introduction 2

1 Introduction

The LIBOR market model (LMM) belongs to the family of interest rate mar-
ket models. The market models owe their popularity, at least partly, to the
fact that they are consistent with well-established formulas for the pricing of
simple interest rate derivative contracts. These contracts, namely caps and
swaptions, are typically priced with Black’s formulas that were developed -
and have become the de facto market standard - well before the more ad-
vanced interest rate models were introduced, see, e.g., Brigo and Mercurio [1].

Historically, the LIBOR market model was preceded by a number of dif-
ferent interest rate modelling frameworks (for an overview of historic devel-
opments see Rebonato [9]). Simply put, the difference between the different
frameworks lies in the interest rate being modelled. At first, this may seem
a minor issue but it does have astonishingly far-reaching consequences. The
fundamental entity modelled in the LIBOR market model is the forward in-
terest rate curve that specifies the simply compounded interest rate at any
two given points in time. A simply compounded interest of L between times
T1 and T2 guarantees the investor of $1 at time T1 a return of $1+L(T2−T1)
at time T2. In contrast to the modelling of the entire interest rate curve are
the simpler short rate models, which instead model the evolution of the spot
rate. A consequence of this simpler modelling approach is that the forward
rates are perfectly correlated and that these models are inconsistent with
Black’s formulas. The Heath-Jarrow-Morton (HJM) framework [2] is similar
in notion to the LIBOR market model in that the entire forward rate curve
is modelled. Here, however, the continuously compounding rate at any given
point in time is modelled. As in the case of short-rate models, the HJM
framework leads to interest rate dynamics that are inconsistent with Black’s
formulas.

Bermudan swaptions are interest rate derivatives with early exercise fea-
tures that are among the most liquidly traded (exotic) interest rate derivative
contracts. Consequently, their pricing and risk management is of high practi-
cal importance. The pricing of these instruments, however, poses significant
conceptual and theoretical difficulties. This is due to the fact that, in gen-
eral, the pricing in the LIBOR market model has to be carried out via Monte
Carlo simulation techniques, which in turn do not lend themselves naturally
to the pricing of options with early exercise features.
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In this thesis, we consider the pricing of Bermudan swaptions in the LI-
BOR market model. We will review the underlying theory of the model
and of recently developed methods for pricing early-exercise contracts in a
Monte Carlo regime. We have implemented the pricing algorithm and have
conducted numerical experiments. We will present the results of these experi-
ments and will critically discuss our findings in the light of existing literature,
particularly with respect to results obtained in Brigo and Mercurio [1] and
in Lvov [7].

This work is organised as follows. In section 2, we will introduce the basic
building blocks and derivative instruments in our market setting. We will
derive Black’s formulas for the pricing of caps and swaptions. In section 3, we
will introduce the LIBOR market model and discuss the general approach of
pricing derivative instruments in in this framework. Section 4 is devoted to a
description of regression-based Monte Carlo methods that allow the pricing of
early exercise contracts. As a special case of these methods, we will introduce
and discuss in detail an implementation of the Longstaff-Schwarz algorithm in
our LIBOR market setting. In section 5 we turn to the question of calibration
of the model. This is a delicate task and we will give a brief overview and
present a calibration approach suitable for the Bermudan swaption setting.
Section 6 contains the results of our numerical experiments. We compare our
results to those obtained in [1] and reflect on the various components of the
pricing algorithm. We conclude in section 7.

2 Preliminaries

The definitions and theory presented in this section is a selection of material
presented in [1].

2.1 Bonds, LIBOR rates and Derivative Contracts

The elementary building blocks in our setting are the zero-coupon bonds.

Definition 2.1: Zero-coupon bond. A T -maturity zero-coupon bond is a
contract that guarantees its holder the payment of one unit of currency at
time T with no intermediate payments. The contract value at time t ≤ T is
denoted by P (t, T ).
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The LIBOR (London Interbank Offered Rate) rate is a simply com-
pounded interest rate that can be defined in terms of the values of zero-
coupon bonds.

Definition 2.2: LIBOR rate and spot LIBOR rate. The LIBOR rate at
time t, L(t, Ti−1, Ti), is defined by

L(t, Ti−1, Ti) := −P (t, Ti)− P (t, Ti−1)

(Ti − Ti−1)P (t, Ti)
. (1)

We will use the shorthand Li(t) := L(t, Ti−1, Ti). The spot LIBOR rate at
time t is given by

L(t, T ) := L(t, t, T ),

from which follows L(t, T ) = − P (t,T )−1
(T−t)P (t,T )

.

We have defined the LIBOR rates in terms of bond prices. Inverting
this relationship, we can express bond prices in terms of LIBOR rates. The
underlying financial idea is to invest at the current spot LIBOR and ‘roll
over’ the investment at the subsequent LIBOR rates. This approach yields
the following representation of the Ti-bond price at time t < T1, a formula
which we will frequently use later on,

P (t, Ti) =
i∏

j=1

1

(Lj(t)(Tj − Tj−1) + 1)
. (2)

As in Rebonato [9], we do not define a continuously compounding spot
interest rate and corresponding bank account growing at this spot rate. For
discounting purposes, we instead use the bond prices. A payout of one unit
of currency at time T then has time-t value P (t, T ). We will discuss this
further in the section 2.2.

With these definitions at hand, we are ready to define our derivative
instruments. The first is an interest rate swap, which is a contract between
two parties to exchange cash flows at a number of payment dates.

Definition 2.3: Interest rate swap. We are given a number of payment
dates Ti, i = α+1, . . . , β (called the tenor structure) and a nominal value N
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(the notional). We set δi := Ti − Ti−1 in the following. The time-Ti floating
leg of an interest rate swap with the given tenor structure has value

NδiLi(Ti−1),

which is exchanged for the fixed leg of value

NδiK,

where K is a pre-specified swap rate. Note that the rate to be applied for the
floating leg at time Ti, Li(Ti−1), is fixed at the reset time Ti−1. If the fixed
leg is payed and the floating leg is received, the contract is called a payer
swap, in the opposite case it is called a receiver swap. The time-t discounted
payoff of a payer swap can be expressed as

N

β∑
i=α+1

P (t, Ti)δi(Li(Ti−1)−K).

The corresponding payoff for the receiver swap is obtained by changing the
sign of the payer payoff, i.e. by a multiplication with −1.

The swap rate Sαβ(t) that makes the payoff fair at time t, that is, equal
to zero, can easily be obtained from the payoff definition and is given by

Sαβ(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 δiP (t, Ti)
. (3)

The next derivative product we consider is called a swaption. A payer
swaption gives its holder the right to enter an interest rate swap at time Tα
at a pre-specified swap rate K.

Definition 2.4: (European) payer swaption. We are given a tenor struc-
ture Ti, i = α + 1, . . . , β, a notional N , a swap rate K and a time t. The
payer swaption is an option to enter into a swap at time Tα with swap rate
K. It thus has time-t discounted payoff

P (t, Tα)N

(
β∑

i=α+1

P (Tα, Ti)δi(Li(Tα)−K)

)+

. (4)
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Expressed in terms of the swap rate defined in (3), the time-t discounted
payoff of the swaption is

P (t, Tα)N(Sαβ(Tα)−K))+

β∑
i=α+1

δiP (Tα, Ti), (5)

that is, it can be viewed as a call option on the swap rate.

Receiver swaptions can be defined in the obvious way. The swaption
has limited optionality, namely the choice to enter the swap at time Tα. In
contrast, a Bermudan swaption offers the possibility to enter the swap at any
of the dates Ti, i = α, . . . , β − 1, for the remainder of the swap’s lifetime.

Definition 2.5: Bermudan payer swaption. We are given a tenor structure
Ti, i = α+1, . . . , β, a notional N , a swap rate K and a time t. The Bermudan
payer swaption is an option to enter at any time Ti, i = α, . . . , β − 1, into
a payer swap with swap rate K maturing at time Tβ. At any time Tk,
k ∈ {α, . . . , β − 1}, the holder of the contract has the right to receive

N

(
β∑

i=k+1

P (Tk, Ti)δi(Li(Tα)−K)

)+

,

provided that the option has not been exercised before.

In this definition, notice that the tenor of the underlying swap that can be
entered shrinks with each exercise date Ti that is passed. This type of Bermu-
dan swaption is known as co-terminal whereas in a fixed maturity Bermudan
swaption, the tenor has a constant length. In terms of pricing and modelling,
the fixed maturity Bermudan swaption does not pose any additional difficul-
ties and so we restrict the exposition to the co-terminal case. Also note
that we have assumed the dates at which the Bermudan swaption can be
entered to be identical with the corresponding swap dates. The value of the
Bermudan swaption will depend on the exercise strategy of the holder. We
will later see that this additional feature makes the pricing of the Bermudan
payer swaption significantly more difficult than that of the plain European
swaption.
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The final derivative product that we will be interested in is the interest
rate cap, which gives its holder the right to pay a fixed rate instead of LIBOR
at the tenor dates.

Definition 2.6: Interest rate cap. We are given a tenor sructure Ti, i =
α + 1, . . . , β, a notional N , an interest rate K and a time t. A Ti-caplet is
a call option on the Ti−1-spot LIBOR rate with strike K paying at time Ti.
That is, it has time-t discounted payoff

P (t, Ti)Nδi(Li(Ti−1)−K)+.

A cap is a sum of caplets with different maturities, i.e. it has time-t dis-
counted payoff

P (t, Tα)N

β∑
i=α+1

P (Tα, Ti)δi(Li(Ti−1)−K)+.

The name cap stems from the fact that this contract essentially caps the
interest rate to be paid to K at any of the tenor dates. Notice the difference
to the payoff of the swap (4). In the cap-case, the payoff at each of the
dates Ti is non-negative whereas it can be negative for the swap underlying
the swaption. In algebraic terms, the ()+-operator is placed around the
individual payoffs in the cap-case whereas it acts on the sum of payouts in
the swaption case. As a consequence, as we shall see later, the prices of
caps are not influenced by correlations of the underlying LIBOR rates. In
contrast, the correlations do matter in the case of swaptions.

2.2 Change of Numeraire

Before continuing, we briefly review the change of numeraire technique as
it is a fundamental tool used throughout the following sections. We do not
give an exhaustive account and refer to Shreve [11] for a more comprehensive
treatment. While the definitions given in the first section were independent
of the way the interest rate processes are modelled, from this section on
we assume that the LIBOR rates underlying our derivative products are
expressed in terms of diffusion processes. We begin with the definition of a
numeraire.

Definition 2.7: Numeraire. A numeraire is any positive non-dividend-paying
asset.
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In an arbitrage free market, given a numeraire N , the first fundamental
theorem of asset pricing [11] establishes that the time-t price, X(t), of any
T -measurable tradable asset X can be expressed as

X(t) = N(t)EN

[
X(T )

N(T )

∣∣∣∣Ft] , (6)

where EN denotes the expectation taken with respect to the measure QN

under which N -discounted asset prices are martingales. In the standard
Black-Scholes setting, the numeraire corresponds to the bank account B(t)
growing at a continuously compounded spot interest rate r. That is, B(t) =

B(0)e
R t
0 r(s)ds and the associated measure Q is called the risk-neutral measure.

We will find it useful to work with different numeraires (namely bonds
maturing at times Ti) and thus will need to know the form of the pricing
formula (6) under a different numeraire. This is established in the following
proposition.

Proposition 2.8: Change of numeraire. We assume given a T -measurable
tradable asset X and a numeraire N with associated probability measure QN

such that the time-t price X(t) is given by

X(t) = N(t)EN

[
X(T )

N(T )

∣∣∣∣Ft] .
Let M be an arbitrary numeraire. Then there exists a probability measure
QM equivalent to QN such that

X(t) = M(t)EM

[
X(T )

M(T )

∣∣∣∣Ft] ,
where EM is the expectation taken with respect to the measure QM .

The essence of the proposition is that while we can simply ‘plug in’ our
chosen numeraire, the corresponding expectation will have to be taken under
a correspondingly adjusted measure.

2.3 Black’s Formulas

In this section, we will discuss the pricing of caps and swaptions via Black’s
formulas. These formulas represent the ‘market standard’ for the valuation
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of caps and swaptions. A reason for the development of the LIBOR market
model was that previous models were not consistent with Black’s formulas
in terms of the pricing of these plain vanilla instruments.

We start with the pricing of caps. In order to do so, we initially consider
the prices of the individual caplets. The time-Ti payoff of the caplet is given
by

Nδi(Li(Ti−1)−K)+.

Now using the bond maturing at time Ti as a numeraire and noting P (Ti, Ti) =
1, by proposition 2.8, the time-t caplet price can be expressed as

Vcapli(t, L;K,N) = P (t, Ti)NδiEi
[
(Li(Ti−1)−K)+

∣∣Li(t) = L], (7)

where Ei is the expectation taken with respect to the measure Qi under which
P (·, Ti)-discounted tradable assets are martingales. Here, Li(·) is a tradable
asset because from definition (1) it follows that

Li(t)P (t, Ti) =
P (t, Ti−1)− P (t, Ti)

δi
,

and thus the left-hand side is tradable since the right-hand side is a sum of
two tradables. As Li(·) is a martingale under the measure Qi, its dynamics
are driftless and can be written as

dLi(t) = σi(t)Li(t)dW (t)

with a (deterministic) volatility function σi(·) and Brownian motion W (·).
The process Li(·) thus has a log-normal transition density under the measure
Qi and (following the Black-Scholes analysis) the value of the caplet is given
by Black’s formula,

V Black
capli

(t, L;K,N, σ̂) = P (t, Ti)Nδi(Φ(d1)−KΦ(d2)), (8)

where

d1 =
ln L

K
+ 1

2
σ̂2

σ̂
,

d2 =
ln L

K
− 1

2
σ̂2

σ̂
,
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and where Φ(·) denotes the cumulative normal distribution. Here, σ̂ denotes
the volatility of the rate Li(·) accumulated in the time interval [t, Ti−1], that
is,

σ̂ =

√∫ Ti−1

t

σi(s)2ds.

This quantity can be retrieved from market quotes σ̃ (given as σ̃ = σ̂/
√
Ti−1)

and thus uniquely determines the price of the caplet as all other parameters
are observable.

The price of the cap can now be expressed as the sum of the prices of the
corresponding caplets,

V Black
cap (t, L;K,N, σ̂) = N

β∑
i=α+1

P (t, Ti)δiEi
[
(Li(Ti−1)−K)+

∣∣Li(t) = Li],

(9)
where here L denotes a vector of the rates Li(·) at time t, that is L =
(Lα+1, . . . , Lβ) and σ̂ is now a common volatility parameter to be used in the
pricing formulas of all constituting caplets of the cap. Plugging in the caplet
pricing formula (8), this yields an analytic formula for the price of the cap.

For swaptions, the approach just presented will not work as smoothly.
As mentioned earlier, the swaption payoff (4) expressed in terms of the LI-
BOR rates cannot be decomposed in similar fashion as that of the caps due
to the enclosing ()+-operator. Thus, we cannot value the individual payoffs
P (Tα, Ti)Nδi(Li(Ti−1) − K) under their individual numeraires but have to
choose a single numeraire for evaluation of the entire expression (4). An alter-
native is to work with the payoff expression (5) in terms of the swap rate Sαβ,
treating it as the underlying asset. Using this approach and following analo-
gous steps as presented for the caps (using the expression

∑β
i=α+1 P (·, Ti)δi

as a numeraire), it can be established that the time-t price of the swaption
is given by

V Black
swapt (t, Sαβ;K,N, σ̂) = N(Φ(d1)−KΦ(d2))

β∑
i=α+1

δiP (t, Ti), (10)
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where

d1 =
ln

Sαβ
K

+ 1
2
σ̂2

σ̂
,

d2 =
ln

Sαβ
K
− 1

2
σ̂2

σ̂
,

and where σ̂ denotes the root of the swap rate’s variance accumulated on the
time interval [t, Tα] (similarly defined as in the caplet case).

At this point it is in order to note that the two formulas just derived
are not consistent with each other. A result of the approach taken for the
caps was that the LIBOR rates were log-normal with respect to their cor-
responding numeraires. But the same argument holds for the swaption case
thus resulting in a log-normal swap rate. However, as is shown in [1], when
LIBOR rates are log-normal, the swap rates cannot be, and vice versa. Con-
sequently, the two formulas are inconsistent with each other. In the LIBOR
market model to be presented in the next section, we assume the LIBOR rates
to be log-normal under the respective measures (and thus we are consistent
with Black’s formula for caps).

3 The LIBOR Market Model

The presentation of this section follows that of [1]. We present the dynamics
of the LIBOR rates under different numeraires and proceed with a description
of how the results can be used in practical pricing applications.

3.1 Model Set-Up

Let t be the current time and assume we are given a number of dates
T0, . . . , TM with corresponding year fractions δi := Ti − Ti−1, for all i =
1, . . . ,M , see [1] for details on year fractions. Consider the LIBOR rate Li(·)
in the time interval between t and Ti. By definition, the rate Li is alive un-
til time Ti−1 at which it remains fixed at the spot rate Li(Ti−1) = L(Ti−1, Ti).

We derived in the previous section that under the measure Qi associated
with the bond P (·, Ti) maturing at time Ti, the rate Li(·) is a martingale and
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thus follows the dynamics

dLi(t) = σi(t)Li(t)dW
i(t), (11)

where W i is a one-dimensional Brownian motion and σi(·) is a bounded
deterministic function. Thus the stochastic differential equation (11) has a
unique strong solution. We further assume that the Brownian motions W i

and W j of different rates Li and Lj are instantaneously correlated according
to ρ = (ρij)i,j=1,...,M , i.e.

dW i(t)dW j(t) = ρijdt.

As we have seen when considering the pricing of swaptions, the payoffs
of LIBOR derivatives in general cannot be decomposed with respect to the
individual rates. To carry out pricing in terms of the LIBOR rates, we thus
need to specify the dynamics under different numeraires and the associated
measures. For the numeraires Qi associated with bonds maturing at times
Ti, the LIBOR rate dynamics are given in the following proposition. For a
proof of this proposition, we refer to [1, 9].

Proposition 3.1: Dynamics in the LIBOR market model. Under the
measure Qj (associated with the bond P (·, Tj)), the LIBOR rate Li(t) follows
the following dynamics:

Case 1. i < j, t < Tj−1 : dLi(t) = −σi(t)Li(t)
j∑

k=i+1

δjρikσk(t)Lk(t)

1 + δjLk(t)
dt

+σi(t)Li(t)dW
i(t),

Case 2. i = j, t < Tj−1 : dLi(t) = σi(t)Li(t)dW
i(t),

Case 3. i > j, t < Tj−1 : dLi(t) = σi(t)Li(t)

j∑
k=i+1

δjρikσk(t)Lk(t)

1 + δjLk(t)
dt

+σi(t)Li(t)dW
i(t).

The equations admit strong solutions if the coefficients σi(·) are bounded (as
assumed in our setting).
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These dynamics constitute the log-normal forward-LIBOR model, where log-
normal refers to the fact that for case 2, the distribution of Li is log-normal
for any fixed time t. However, this is not true for cases 1 and 3, in which
the drifts are state-dependent and for a rate Li contain all other rates Lk,
k = i + 1, . . . , j under the measure Qj. The transition densities associated
with these processes are not known. As a consequence, when simulating the
value of a rate Li at time t, we cannot use a ‘one shot’-simulation according
to the transition density but will instead need to explicitly construct a path
via, e.g., the Euler-Maruyama method [3].

The dynamics of the model can be fully specified by fixing the instan-
taneous volatility functions σi(·) and the instantaneous correlations ρij. In
fact, these are the parameters that are used to calibrate the model. Note,
however, that when trying to calibrate these parameters to a (finite) set of
market data points (e.g. quoted caplet and swaption volatilities), the model
will be highly under-specified so that additional ‘reasonable’ constraints on
the σi(·) and ρij will need to be made. We will come back to this issue when
discussing the calibration of the model in section 5.

3.2 Pricing Approaches

When deriving Black’s cap formula (9) in section 2.3, we have decomposed
the cap into the individual caplets and priced each of these under their ap-
propriate numeraire. The relevant LIBOR rate Li for pricing of the time-Ti
caplet then was log-normal and thus evolved according to the dynamics of
case 2 in proposition 3.1. The LIBOR market model introduced thus is con-
sistent with Black’s formula for caps.

To price a swaption in the LIBOR market model, we take the expectation
of the payoff defined in (4) under the measure associated with the bond
P (·, Tα) maturing at the swaption’s maturity. We write

A(Tα) = A(Tα, L(Tα);K,N) := N

(
β∑

i=α+1

P (Tα, Ti)δi(Li(Tα)−K)

)+

(12)

for the payoff and thus obtain the formula

V LMM
swapt (0, L;K,N) = P (0, Tα)NEα [A(Tα)|Lα+1(0) = Lα+1, . . . , Lβ(0) = Lβ] ,
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where L = (Lα+1, . . . , Lβ) denotes the vector of initial rates at time t = 0
and where the rates Li(·) now evolve according to proposition 3.1. As men-
tioned earlier, these dynamics are not consistent with the assumption of a
log-normal swap rate leading to Black’s swaption formula (10), and thus
V LMM
swapt will in general be different from V Black

swapt . However, the differences are
generally small and can be remedied by appropriate calibration of the model.
We shall also see this in the next sections.

To evaluate the expectation by simulation, we need to generate the rates

Lα+1(Tα), . . . , Lβ(Tα),

according to the LMM dynamics in proposition 3.1. This can be done by the
Euler-Maruyama discretisation scheme, in which, in this particular case, it
is advantageous to evolve the logarithm of the rates Li as this leads to the
more accurate Milstein scheme, [1]. Assuming time steps of length ∆t and
evolving the log-rates, this yields the following scheme

ln L̂i(t+ ∆t) = ln L̂i(t) + σi(t)
i∑

j=α+1

ρijδjσj(t)F̂j(t)

1 + δjF̂j(t)
∆t (13)

− σi(t)
2

2
∆t+ σi(t)(Ŵi(t+ ∆t)− Ŵi(t)),

for i = α + 1, . . . , β. Here L̂i(t) denotes the approximation to Li(t) at
time t and Ŵ (t + ∆t) − Ŵ (t) ∼

√
∆tN (0, ρ) with Ŵ (t + ∆t) − Ŵ (t) =

(Ŵα+1(t+ ∆t)− Ŵα+1(t), . . . , Ŵβ(t+ ∆t)− Ŵβ(t)) is an approximation vec-
tor to the multidimensional Brownian increment W (t+∆t)−W (t) underlying
the LIBOR rates.

Given a realisation of the rates at time Tα, we can evaluate the bond
prices P (Tα, Ti) via (2) and then calculate (12). We repeat this procedure
for a (large) number of path realisations and take the average. This yields
the Monte Carlo swaption price.

When calibrating the model to market quoted swaption prices, we will
need to quickly evaluate swaptions prices produced by the model to evaluate
the model fit. In this case, it will not be practical to use the just described
Monte Carlo pricing approach as it is too computationally time consuming.
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There exists, however, an approximation formula for swaption volatilities in
the LMM resulting from a specific parameter tuple σ(·) and ρ which is known
as Rebonato’s formula, [1, 9].

Proposition 3.2: Rebonato’s formula. The Black-like LMM swaption volatil-
ity can be approximated by

σ̂Rebonato(0)2 =

β∑
i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρij
Sαβ(0)2

∫ Tα

0

σi(s)σj(s)ds,

where

wi(0) :=
δi
∏i

j=α+1
1

(1+δjLj(0))∑β
k=α+1 δk

∏k
j=α+1

1
(1+δjLj(0))

,

and Sαβ(0) corresponds to the swap rate defined in (3).

For details of the derivation of the formula, we refer to [1].

The main advantage of Rebonato’s formula is that the quantities wi(0)
and Sαβ(0) are defined in terms of the initial rates Li(0) at time t = 0 so
that no simulation of paths is necessary (Sαβ(0) is defined in terms of the
bond prices P (0, Ti) which can be recovered from the initial rates via (2)).
Thus, instead of having to perform a computationally expensive Monte Carlo
path simulation, we can simply evaluate Rebonato’s formula and plug the
resulting volatility σ̂Rebonato(0) into Black’s swaption formula (10) instead of
σ̂. This leads to an approximate price V Rebonato

swapt (0) of the swaption at time
t = 0 under the LIBOR market model regime. We will use Rebonato’s for-
mula for calibration purposes later on.

We now consider the pricing of Bermudan swaptions. Provided that the
Bermudan swaption has not yet been exercised, at a time Ti, i < β, the
holder of the swaption has the right to receive

A(Ti) = N

(
β∑

k=i+1

P (Ti, Tk)δk(Lk(Ti)−K)

)+

. (14)

Now, as the the maturity of the Bermudan swaption is β, the appropriate
numeraire for pricing is the bond maturing at terminal date Tβ. The measure
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associated with this numeraire is called the terminal measure. The rate Lβ(·)
corresponding to time Tβ will thus evolve according to case 2 in proposition
3.1, while the other rates evolve according to case 1. With this numeraire,
the time-0 value of the Bermudan swaption can be expressed as

V LMM
berm (0, L;K,N) = P (0, Tβ)

× sup
τ∈T

Eβ

[
A(τ)

P (τ, Tβ)

∣∣∣∣Lα+1(0) = Lα+1, . . . , Lβ(0) = Lβ

]
, (15)

with our usual notation for the initial rate vector L. In this expression, the
supremum is taken over all stopping times τ in a ‘suitable’ set T . The re-
quirement of optimising over stopping times ensures that only information
available up until any time t is used in the decision-making (in particular,
future values of the rates are not taken into consideration) and by ‘suitable’
we mean that the stopping time takes values at the discrete exercise dates Ti
of the Bermudan swaption. For a more detailed treatment of stopping times,
we refer to [11] and just mention here that a rational holder of the option
will seek to maximise its value and correspondingly optimise the exercise
strategy. For pricing, we thus take the supremum over all feasible stopping
times in (15).

In evaluating the price (15) of the Bermudan swaption in the LIBOR
market framework, we now face the problem that the LIBOR rates can be
evaluated only via a Monte Carlo simulation which, in turn, does not lend it-
self to the pricing of options with early exercise features: In the Monte Carlo
simulation, the LIBOR paths are generated in a forward fashion and thus, at
any given point in time, the future values of a particular rate are not known.
The future values, however, are important for making the exercise decision
as they determine the future value of the contract. In contrast, backward-
oriented methods, such as, e.g, binomial trees [3], start at the payoff date
of the contract and work backwards in time thus making the relevant infor-
mation available. These methods, however, cannot easily be applied in the
current setting due to the (potentially) large number of underlying LIBOR
rates and the resulting curse of dimensionality, [3]. Fortunately, there exist
methods that allow pricing of early exercise options in a Monte Carlo regime
by incorporating some ideas from the backward-oriented methods. We will
address one of these in the next section.
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4 Regression-Based Monte Carlo Methods

In this section, we draw upon the theory presented in several sources. The
general set-up of regression-based Monte Carlo follows that developed in
Glasserman [3]. However, we adapt the presentation and notation to the
LIBOR market setting, making use of the specific structure of the Bermudan
swaption pricing problem. In particular, we use some results from Piterbarg
[8] to generate data to be used in the regression. We discuss the Longstaff-
Schwarz algorithm developed in [6] which is a special case of the more general
regression-based Monte Carlo approach. The presentation of the Longstaff-
Schwarz algorithm given in [1] is on a more abstract level and in terms of
evolving bond prices, thus strictly speaking not in terms of the LIBOR market
model.

4.1 Dynamic Programming Formulation

The pricing formula (15) for the Bermudan swaption can be reformulated
in terms of dynamic programming. We will present the underlying ideas
in the following and refer to [3] for a more rigorous treatment. To ease
notation, we write V (L(t)) for the value of a Bermudan swaption at time
t given strike K, notional N and time-t vector of ‘alive’ rates L(t), i.e.
V (L(t)) := V LMM

berm (t, L(t);K,N).

Assuming no prior exercise, at a given exercise opportunity Ti for the
Bermudan swaption, we have to make the decision of whether to continue
holding the option or to exercise immediately. The exercise value at this time
is simply the payoff of the swaption maturing at Ti with payoff date Tβ that
is given by A(Ti) as in (14). On the other hand, the time-Ti value of holding
the option beyond this point up until time Ti+1 can then be expressed as

C(L(Ti)) := P (Ti, Ti+1)E [V (L(Ti+1))|L(Ti)] , (16)

i.e. as the the discounted expected option value at time Ti+1 given state
L(Ti). The expression C(L(Ti)) is called continuation value at time Ti given
state L(Ti).

The value of the Bermudan swaption V (L(Ti)) can now be expressed
in terms of the continuation and exercise values via the following dynamic
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programming recursion

V (L(Tβ−1)) = P (Tβ−1, Tβ)Nδβ(L(Tβ−1)−K)+, (17)

V (L(Tj)) = max [A(Tj), C(L(Tj))] , (18)

for j = i, . . . , β − 2.

The dynamic programming approach is a backward method for valuing
the option based on previously observed future states: We start the evalua-
tion at time Tβ−1 at which the value is simply the payoff of the final swaption
and work backwards using the rule (18) until we reach the time Ti. However,
if we knew the continuation value C(·) for each possible state L(Ti) without
‘coming from the future’, we could use the approach in a forward fashion:
At time Ti, we would exercise the option if A(Ti) > C(L(Ti)), otherwise
continue holding it. Approximating the continuation value C(·) in a Monte
Carlo setting for use in this manner is the topic of the next section.

4.2 Approximate Continuation Values

We want to approximate the continuation value C(·) defined in (16) so as to
use it in a forward decision rule in a Monte Carlo simulation. To this end,
we will use a regression approach: Given a number of m preselected basis
functions, φl(·), we seek to identify weights λil such that

C(L(Ti)) ≈ Ĉ(L(Ti)) :=
m∑
l=1

λilφl(L(Ti)). (19)

It is evident that the quality of the approximation will depend on the
choice of basis function. Obvious candidates in our setting are functions of
the LIBOR rates Li(·), the swap rate Sαβ(·) and the exercise values of the
underlying European swaption A(·). We will further discuss the choice of
basis functions in the experimental section.

To determine the weights λil, we use a least-squares estimation for which
we need to generate a set of tuples (Lk(Ti), P

k(Ti, Ti+1)V (Lk(Ti+1)), k =
1, . . . , n. As pointed out in [8], this can be achieved as follows. We simulate
n paths of each of our rates underlying the Bermudan swaption, the k-th path
set indexed by k, i.e. Lkα+1(Ti), . . . , L

k
β(Ti), i = α, . . . , β − 1, k = 1, . . . , n,
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from which we can encode at each time the corresponding state Lk(Ti). Now,
working backwards along an individual path k, we exactly determine the value
V (Lk(Ti+1)) by looking into the path’s future, i.e. by replacing the implicit
taking of expectation in (18) by our knowledge of the path. At time Tβ−1,
we have V (Lk(Tβ−1)) = P k(Tβ−1, Tβ)Nδβ(Lk(Tβ−1) −K)+, and, recursively
proceeding backwards along path k, at time Ti, we have

V (Lk(Ti)) = max(P k(Ti, Ti+1)V (Lk(Ti+1)), A
k(Ti)),

where the value V (Lk(Ti+1)) is known because we know the next state Lk(Ti+1)
on the path and the bond price P k(Ti, Ti+1) can be obtained via formula
(2). Repeating this procedure for each path, we can thus generate n tu-
ples (Lk(Ti), P

k(Ti, Ti+1)V (Lk(Ti+1)) which are then used to determine the
weights λil by straight-forward regression.

4.3 The Longstaff-Schwarz Algorithm

Given the construction of the approximate continuation values (19), we can
now formulate the Longstaff-Schwarz algorithm for the Bermudan swaption.
The pseudo-code is given as algorithm 1.

Several comments are in order regarding this algorithm. In line 2, we
initialise a data structure ‘Payoff’ that will, for each path k, store the time-0
discounted exercise value of the option at time Ti in case the option is exer-
cised at this time. Otherwise, it will contain a zero-entry. Thus, at the end
of the algorithm, we just take the average of all discounted exercise values
by adding all entries in ‘Payoff’ and dividing by n. This is in contrast to the
presentation given in [1] and [6], where an exercise-flag (‘1-exercise, 0-hold’,
at time Ti on path k) is stored that is used in a second pass through the
paths to determine the cash-flows which are subsequently discounted and
averaged. Our presentation is motivated by an implementation of the algo-
rithm by Leippold [5].

Longstaff and Schwarz propose in their original paper to only select ‘in-
the-money-paths’ for the regression approach. They argue that this allows a
better estimate of the continuation value in the region where exercise is rel-
evant. Moreover, this procedure improves the run-time performance of the
algorithm as fever evaluations have to be made. The approach is reflected
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by the construction of the index subset Ii in line 7.

In contrast to a general regression-based algorithm as described in [3], the
Longstaff-Schwarz approach uses the same paths for estimating the regression
coefficients to define the approximate continuation value Ĉ(·) as are used for
the subsequent evaluation of the payoff according to the exercise rule. Despite
the fact that for an individual path k, at time Ti the time Ti+1-value of the
option along the path thus is known (see the discussion in the last section on
generating the data points for the regression), for the actual decision-making
in line 10 of the algorithm, the approximate continuation value is used. Since
Ĉ(·) produces potentially suboptimal decisions, the algorithm is low-biased.
This, however, is desirable since in the more general version of the algorithm,
the direction (low vs. high) of the bias is in general not known. For a detailed
discussion of low and high bias, we refer to [3].

5 Calibration of the LIBOR Market Model

5.1 General Considerations

When discussing the LIBOR rate dynamics in proposition 3.1, we have al-
ready hinted at the fact that the model can be fully specified by choosing the
instantaneous volatility and correlation functions, σ(·) and ρ. However, this
is a delicate task and some available standard literature ([1, 9]) is dedicated
in substantial parts to questions of calibration.

To motivate the difficulties, recall from the section 2.3 on Black’s formulas
that the market prices of, say, caplets are quoted in terms of the Black
volatilities σ̃i, from which the market participant’s view on the volatility of
a rate Li accumulated until its maturity,

σ̂2
i =

∫ Ti−1

0

σi(s)
2ds,

can be recovered. Evidently, given only the left-hand-side of this equation,
it is not possible to uniquely pin down the instantaneous volatility function
σi(·) - in fact, this specification allows an infinite number of choices.

We have also argued earlier that the prices of swaptions depend on the
correlations of the underlying LIBOR rates. These correlations, however,
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Algorithm 1: Longstaff-Schwarz Algorithm for Bermudan swaption

Data: An instance of the Bermudan swaption pricing problem, i.e. a
parameter tuple (0, L;K,N)

Result: Price of the Bermudan swaption Vberm(0, L;K,N)
Choose m basis functions φl(·), l = 1, . . . ,m;1

Initialise data structure Payoff(·, ·)←− 0;2

Simulate n paths of the underlying LIBOR rates Lkα+1(Ti), . . . , L
k
β(Ti),3

i = α, . . . , β − 1, k = 1, . . . , n, according to the terminal measure;
Generate n tuples (Lk(Ti), P

k(Ti, Ti+1)V (Lk(Ti+1)), k = 1, . . . , n using4

the procedure described in section 4.2;
Initialise time index i←− β − 2;5

while Ti ≥ Tα do6

Consider only paths with strictly positive exercise value, set the7

corresponding index set Ii := {k ∈ {1, . . . , n} : Ak(Ti) > 0};
For k ∈ Ii, estimate weights λil in approximate continuation value8

Ĉ(·) (19) by regression of the P k(Ti, Ti+1)V (Lk(Ti+1)) on Lk(Ti);
foreach k ∈ Ii do9

if Ak(Ti) > Ĉ(Lk(Ti)) then10

Store time-0 discounted exercise value:11

Payoff(k, Ti)←− P (0, Ti)A
k(Ti);

Set Payoff (k, Tj)←− 0 for all j > i;12

Reposition time index, i←− i− 1;13

return
∑

k,Ti
Payoff(k, Ti)/n;14

while evidently depending on the corresponding instantaneous parameters
ρij, are not determined uniquely in terms of them. To be more precise,
the instantaneous correlation ρij between two rates Li and Lj quantifies the
degree of dependence between changes of the rates. Given a time t, the
terminal covariance between Li(t) and Lj(t) at time t, that is, the quantity
relevant for pricing, is given by

COV(Li(t), Lj(t)) = ρij

∫ t

0

σi(s)σj(s)ds,

and thus is not only a function of the instantaneous correlation but of the
corresponding volatilities as well, see [1] for a derivation. This quantity will
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depend on how the volatilities σi(·) and σj(·) are distributed over the time
interval with respect to each other. For example, if σi tends to be low when
σj is large, and vice versa, the terminal covariance will be lower than if the
volatilities peak at similar points in time (this effect is called de-correlation,
see, e.g. [9]).

A consequence of these observations is that the model is highly under-
specified. Given a set of market volatilities, treating the volatilities and
correlations as the primary model inputs without imposing further restric-
tions, we can perfectly fit the model to the given market setting. However,
as [9] points out, following this approach leads to a model that loses all its
predictive power, making it unsuitable for pricing and risk management pur-
poses. Given the large number of degrees of freedom, the user of the model
thus has to express views on the parameters that go beyond the information
embedded in the market data. We cannot give an exhaustive overview of
all factors influencing a reasonable expression of trading views and refer to
[9] for a more detailed discussion. Suffice to say at this point that, given
the absence of further information, it seems reasonable to assume that the
volatility can be described as a time-homogenous function in that the only
time-dependence arises through the time left to maturity.

5.2 Functional Forms of Instantaneous Volatilities and
Correlations

Proceeding, a time-homogenous functional form for the volatility σi(t) that
is widely suggested in the literature [1, 4, 9] is

σi(t) = v(Ti−1 − t; γ) := ((Ti−1 − t)γ1 + γ2) exp−(Ti−1−t)γ3 +γ4,

with parameter γ = (γ1, ..., γ4). This function has a ‘humped’ graph typical
of that of, e.g., market caplet volatilities and can also be interpreted eco-
nomically [9]. For a number of different parameter values, figure 1 shows the
graphs of this function. To fit more closely to a given set of market data,
the functional form can be ‘enhanced’ with a correction parameter so as to
improve the fit, leading to a representation of the instantaneous volatility as

σi(t) = ψiv(Ti−1 − t; γ). (20)
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Fig. 1: Instantaneous volatility functions v(·), for various parameters
γ1, . . . , γ4, x-axis: time left to maturity Ti − t, y-axis: instantaneous
volatility.

This is the functional form we will use in our experimental section.

In terms of the instantaneous correlations ρ, a parsimonious functional
form proposed in [4, 9] is given by

ρij = exp(−β|i− j|), (21)

with only one parameter β. A second, richer parameterisation due to Schoen-
makers and Coffey [10], also examined in [1], is of the form

ρij = exp

[
− |i− j|
M − 1

(22)

×
(
− ln β3 + β1

i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 2M2 −M − 4

(M − 2)(M − 3)

−β2
i2 + j2 + ij −Mi−Mj − 3i− 3j + 3M2 − 2

(M − 2)(M − 3)

)]
,

with fitting parameter β = (β1, β2, β3) and M denoting the total number
of rates under consideration. Both of these correlation functions lead to
positive-definite full-rank correlation matrices.
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Reduced-rank correlations are discussed in detail in [1]. These have the
advantage of being computationally more efficient. Furthermore, we note
that an alternative approach to the one taken here is to exogenously specify
the correlation matrix and only use the volatility parameters for calibration
purposes.

5.3 Calibration to Co-terminal European Swaptions

Bermudan swaptions are typically hedged with the underlying co-terminal
European swaptions. It therefore is desirable to calibrate the model to these
market instruments so as to obtain consistency and allow for appropriate
risk management, [9]. Here, we review a calibration routine presented in
[1] for this purpose. We consider instantaneous volatility functions of the
form ψiv(Ti−1− t; γ) with parameters ψ and γ as introduced in the previous
section. We assume the specific form of the instantaneous correlation is pa-
rameterised with parameter β as in the formulations (21) and (22).

The general idea of the calibration approach can be described as follows.
Given market-quoted volatilities of European swaptions and initial parame-
ters β that define the correlation matrix and γ that fix the volatilities, we
identify the parameters ψi so as to match the market volatilities of the co-
terminal swaptions maturing at the same time as our Bermudan swaption.
Given the thus established parameters ψi, we in turn choose the parameters
β and γ so as to minimise the squared differences of the volatilities σ̂ derived
from market data σ̃ and the volatilities implied by our model under the given
parameters σ(β, γ;ψ),

min
β,γ
|σ̂ − σ(β, γ;ψ)|2.

In the optimisation, we use Rebonato’s formula, proposition 3.2, for an effi-
cient examination of the model volatilities and take into account the market-
quotes for all swaptions maturing between the start and end date of our
Bermudan swaption (that is, not only the co-terminal swaptions). With the
new parameter estimates for β and γ, we restart the iteration and determine
the parameters ψi. The entire procedure is repeated until a reasonable fit
of the implied volatilities is achieved or a maximum number of iterations is
exceeded. We will comment further on this in the experimental section.
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This leaves us with the task of calculating the parameters ψi so as to
match the co-terminal swaptions. This is done recursively starting with the
co-terminal swaption maturing at the same time, Tβ, as our Bermudan swap-
tion. Given its market volatility σ̃ = σ̂β/

√
Tβ−1 and our volatility function

(20), we have that

σ̃2
β =

1

Tβ−1

ψ2
β

∫ Tβ−1

0

v(Tβ−1 − s; γ)2ds,

from which follows

ψβ =

√
σ̃2
βTβ−1∫ Tβ−1

0
v(Tβ−1 − s; γ)2ds

.

We next consider the swaption maturing at time Tβ−2. Using Rebonato’s
formula, proposition 3.2, as an approximation for the volatility from our
model and setting this equal to the market volatility, we obtain the relation

σ̃2
β−1 =

1

Tβ−2

β∑
i,j=β−1

wi(0)wj(0)Li(0)Lj(0)ρij
Sβ−2β(0)2

ψiψj

×
∫ Tβ−2

0

v(Tj − s; γ)v(Ti − s; γ)ds,

which yields

σ̃2
β−1Sβ−2β(0)2Tβ−2∫ Tβ−2

0
v(Tj − s; γ)v(Ti − s; γ)ds

=

β∑
i,j=β−1

wi(0)wj(0)Li(0)Lj(0)ρijψiψj.

Given that the parameter ψβ is known at this point, the proceeding equation
yields a second order polynomial in the unknown parameter ψβ−1, which thus
can, evidently, efficiently be identified. Then, given the parameter ψβ−2, the
procedure is repeated for the subsequent parameters. This yields a recursive
procedure for the efficient identification of all parameters ψi. The details of
the procedure are not complex but algebraically cumbersome and so we omit
them here and refer to [1]. This is the calibration approach we use in the
experimental section.
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6 Numerical Experiments

6.1 Experimental Set-Up and Conduct

For our experiments, we use European swaption data provided in [1] to allow
a comparison. The data comprises the implied market volatilities of Euro-
pean ‘at the money’-swaptions shown in table 1 and initial LIBOR rates given
in table 2. The swaption data table displays the volatilities for maturities
from 1 to 10 years and corresponding tenor lengths of up to 10 years, i.e. in
row ‘5 y’ and column ‘3 y’, the market volatility of a swaption with maturity
in five years and underlying swaption with tenor length three years is given.
The data given in columns 6, 8 and 9 has been generated from the the other
columns via a log-linear interpolation (this procedure is suggested in [1] to
fill the incomplete table provided there).

Tab. 1: At-the-money European swaption volatilities (in %).

Maturities
Tenors 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 y

1 y 25.2 21.8 19.1 17.3 15.9 14.7 13.9 13.1 12.8 12.4
2 y 23.5 20.1 17.9 16.3 15.0 14.0 13.3 12.5 12.2 11.8
3 y 21.4 18.7 16.8 15.3 14.2 13.2 12.6 11.9 11.7 11.3
4 y 19.4 17.4 15.7 14.4 13.4 12.6 12.0 11.4 11.1 10.8
5 y 18.0 16.3 14.7 13.5 12.7 11.9 11.4 10.8 10.6 10.3
6 y 16.8 15.3 13.8 13 12.2 11.6 11.2 10.6 10.4 10.1
7 y 15.9 14.6 13.4 12.6 12.0 11.5 11.1 10.6 10.4 10.1
8 y 15.1 14.0 13.0 12.4 11.8 11.3 10.9 10.4 10.3 10.0
9 y 14.5 13.5 12.8 12.1 11.6 11.1 10.8 10.3 10.2 9.9
10 y 13.9 13.2 12.5 11.9 11.5 11.1 10.8 10.3 10.2 9.9

We consider the instantaneous volatility and correlation parameterisa-
tions introduced in section 5.2. In addition to the fully parameterised volatil-
ity structure (20), we also consider the case of ‘flat’ volatilities, i.e. we assume
v = 1 and fit solely via the ψ parameters. We consider all combinations of
these functional forms, leading to four different ‘formulations’ which we will
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Tab. 2: Initial forward rates (in %).

Expiry L(0)
1 y 2.99
2 y 3.66
3 y 4.10
4 y 4.44
5 y 4.75
6 y 4.97
7 y 5.14
8 y 5.22
9 y 5.30
10 y 5.40

consider in our experiments. We name these in order of decreasing complex-
ity starting with ‘Formulation 1’ with parameters γ1, ..., γ4 and β1, β2, β3 up
to the parsimonious ‘Formulation 4’. Table 3 gives the details of our formu-
lations.

Tab. 3: Volatility and correlation structures used in the experiments.

Correlation parameter
Volatility parameter β1, β2, β3 β

ψ, v = v(·; γ) Formulation 1 Formulation 2
ψ, v = 1 Formulation 3 Formulation 4

Our aim is to price a Bermudan swaption with initial maturity at year α =
1 and payout date β = 11 under our four volatility-correlation-parameterisations
and at three different strike levels (‘in the money - ITM’, ‘at-the-money -
ATM’ and ‘out-of-the-money - OTM’). We proceed as follows.

First, we calibrate each of our four parameterisations to the data given in
table 1 using the calibration procedure described in the previous section. We
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Fig. 2: Calibration results: Instantaneous correlations.

calibrate to the co-terminal swaptions maturing at time 10, whose volatilities
are given in bold in the table. These volatilities are fitted exactly by the cal-
ibration procedure and the volatility and correlation parameters are chosen
such that the upper triangular part of the swaption matrix (above the bold
diagonal) is fitted as closely as possible (the optimisation criterion being the
sum of the squared errors). We limit the optimisation algorithm used to find
the optimal parameters to a maximum of 500 iterations and choose starting
values that correspond to a flat volatility curve. We give the relative errors
of the calibration for our four formulations in tables 4 and 5, the underlying
formula being the difference of the LMM and market volatilities divided by
market volatilities. The code listing for the calibration can be found in 8.1.3.

As can be expected, the formulation with the highest number of parame-
ters fits the data best. Errors of the calibration to this particular matrix are
not given in [1], but the order of magnitude of the errors is consistent with
that presented for other cases given there. Figure 2 shows the instantaneous
correlation matrix obtained under formulation 1.
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Tab. 4: Calibration results: Relative errors of LMM volatilities and swaption
volatilities from table 1, (in %).

Formulation 1. Total sum of squared errors: 5.95

Maturities
Tenors 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y

1 y -0.83 3.84 1.19 1.59 -0.44 -1.39 -3.17 -3.84 -6.82
2 y 8.64 2.55 4.82 3.15 2.41 2.27 0.87 1.47
3 y -9.57 -1.20 -1.22 -0.46 0.30 1.52 1.38
4 y 4.68 -1.00 -0.74 0.84 2.02 3.55
5 y -8.36 -7.54 -3.28 -0.19 1.37
6 y -7.13 -4.62 -0.19 1.09
7 y -2.86 -2.26 1.05
8 y -1.33 -0.13
9 y 2.38

Formulation 2. Total sum of squared errors: 7.02

Maturities
Tenors 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y

1 y -5.18 5.17 5.09 7.37 5.84 4.94 2.75 1.50 -2.42
2 y 5.06 1.24 4.90 3.49 2.56 1.89 -0.28 -0.70
3 y -11.5 -2.12 -2.22 -1.93 -1.94 -1.74 -3.09
4 y 4.99 -1.27 -1.74 -1.15 -1.20 -1.19
5 y -6.97 -7.06 -3.92 -2.26 -2.44
6 y -4.01 -3.06 -0.32 -1.10
7 y 1.80 -0.01 0.83
8 y 4.02 1.81
9 y 7.05
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Tab. 5: Calibration results: Relative errors of LMM volatilities and swaption
volatilities from table 1, (in %).

Formulation 3. Total sum of squared errors: 9.56

Maturities
Tenors 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y

1 y -5.47 5.28 6.12 9.22 8.41 8.19 6.61 5.92 2.38
2 y 3.24 0.89 5.48 4.91 4.75 4.81 3.24 3.43
3 y -12.56 -2.48 -1.71 -0.58 0.19 1.11 0.39
4 y 2.92 -1.94 -1.39 0.10 0.87 1.65
5 y -8.60 -7.54 -3.45 -0.89 -0.23
6 y -5.71 -3.55 0.22 0.41
7 y 0.01 -0.42 1.56
8 y 2.42 1.70
9 y 5.80

Formulation 4. Total sum of squared errors: 12.56

Maturities
Tenors 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y

1 y 1.51 8.96 7.69 9.16 7.47 6.82 5.20 4.74 1.71
2 y 6.69 1.97 4.95 3.56 3.04 3.10 1.87 2.63
3 y -12.16 -3.65 -3.61 -2.77 -1.90 -0.55 -0.56
4 y 0.97 -4.49 -4.13 -2.43 -1.12 0.52
5 y -11.94 -10.87 -6.52 -3.28 -1.58
6 y -10.06 -7.27 -2.67 -1.21
7 y -4.86 -3.87 -0.39
8 y -2.13 -0.70
9 y 2.43
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Second, we use the calibrated model to reproduce the co-terminal Euro-
pean swaption prices. We do this for a notional of N = 1, strikes K = 0.035,
0.045 and 0.055 corresponding to ITM, ATM and OTM settings as in [1] and,
as an example, the simplest calibration formulation 4. For the simulations,
we generate 10,000 paths of the underlying forward rates and use a step-size
of 0.5 years. The results of these computations are given in table 6, where
the swaption prices are given in terms of basis points (i.e., one hundredth of
1%). We also priced the swaptions using Rebonato’s formula with the given
parameterisation, however, the results were indistinguishable from the exact
prices and so we omit these figures here. The code for the path simulations
and Rebonato’s formula can be found in listings 8.1.4 and 8.1.2.

When comparing the prices obtained from our simulations (LMM) with
those derived from Black’s swaption formula (i.e. implying a log-normal swap
rate), we see that the differences are actually minimal (in the range of a few
basis points or a maximal deviation of around 1%). This is consistent with
results obtained in [1, 9] and elsewhere in the literature and suggests that
under the LIBOR market model, swap rates are nearly log-normal (refer also
to our previous discussion of this point in section 2.3).

Finally, we have a calibrated model that we can use to price our Bermu-
dan swaption. Under each calibration formulation, we now simulate 5,000
paths of the underlying LIBOR rates again using a step-size of 0.5 years. We
use these simulated rates to calculate swap rates, exercise values and bond
prices at each of the exercise time-steps of the Bermudan swaption. This
data is subsequently used in the Longstaff-Schwarz-algorithm 1 to compute
the time-α Bermudan swaption price. As basis functions for the algorithm,
we use a constant, the swap rate S of the nearest-to-maturity swaption, the
square and the cubic swap rate S. We repeat this procedure 100 times to
compute the approximate Monte Carlo error in this setting. The results of
our computations for the different strike levels and a notional of N = 1, 000
are given in figure 7. The figure 3 shows a percentage ranking of the formu-
lations in terms of prices generated (taking the lowest price in each setting
as 100%). Figure 4 shows exemplary results of the approximate continuation
value in the Longstaff-Schwarz algorithm. Code listings are given in 8.1.4
and 8.1.5.
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Tab. 6: European co-terminal swaption prices under Black’s formula and the
LMM simulation (in basis points).

3.5 (ITM) 4.5 (ATM) 5.5 (OTM)
Tenors Black LMM Black LMM Black LMM

1 y 806.88 804.75 178.74 176.56 11.01 11.73
2 y 862.34 849.58 305.11 305.29 62.33 62.69
3 y 850.42 835.96 365.58 360.25 111.77 113.50
4 y 800.69 790.89 390.61 391.37 151.90 154.58
5 y 721.20 718.37 380.79 383.77 169.85 171.63
6 y 621.14 620.73 350.70 351.87 175.43 176.98
7 y 507.29 506.16 302.42 299.79 165.31 163.73
8 y 384.60 386.00 239.47 237.11 140.03 137.54
9 y 259.31 260.73 168.11 168.37 104.28 102.93
10 y 131.32 131.08 88.08 87.93 57.24 55.43

Tab. 7: Bermudan swaption prices and Monte Carlo errors (in brackets).

Formulation
Strike 1 2 3 4

3.5 (ITM) 91.17 (0.76) 91.50 (0.74) 90.81 (0.74) 90.69 (0.82)
4.5 (ATM) 48.19 (0.72) 48.79 (0.70) 48.09 (0.68) 47.81 (0.68)
5.5 (OTM) 25.26 (0.53) 25.34 (0.50) 24.94 (0.53) 24.57 (0.52)
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Fig. 3: Bermudan swaption prices as percentages of the lowest price (100%)
in each of the settings ITM, ATM and OTM. Bars correspond from
left (red) to right (white) to the formulations 1 to 4.

Fig. 4: Exemplary exact (blue dots) and approximate (red line) continuation
value at one iteration of the Longstaff-Schwarz algorithm in our ex-
periment. The x-axis corresponds to the swap-rate, the y-axis to the
continuation value.
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6.2 Discussion of Results

In a stylized setting, Rebonato [9] shows that Bermudan swaption prices can
vary by up to 30% depending on the calibration method and parameterisa-
tion used. The differences in our prices, see figure 3, are much smaller than
this, falling in the range of 0-3%. Our results allow an ordering of the param-
eterisations with formulation 2 generating the highest and formulation 4 the
lowest prices in all three settings. Evidently, the more complex functional
form (20) of the volatility is beneficial as formulations 1 and 2 outperform
formulations 3 and 4 (that use ‘flat’ volatilities) in all cases. The situation
is less clear cut in terms of the correlation parameterisation. In the case of
formulations 3 and 4, the additional complexity in the correlation parameter-
isation is beneficial, in the case of the other two formulations it is not. It is
also interesting to note that the best-performing formulation 2 has the low-
est Monte Carlo error in two of the three cases considered. These results are
somewhat in contrast to those presented in [1] - however, our formulations 2
and 4 are not included in their experiments. What can be said in addition
to [1], who do not give information on the runtimes of their experiments, is
that additional complexity in the formulations leads to significant increases
in run-times of the calibration of the pricing algorithm. This is important as
the run-time of the calibration routine is accountable for a significant share
of the overall run-time and can be in the order of several minutes. The run-
time of the calibration for formulation 2 was around 40% lower than that for
formulation 1.

It is in order to note that our prices are consistently lower than the ones
presented in [1], the differences being in the range of around 3-5%. While
our results are not directly comparable to the ones in [1] as the authors
do not explicitly comment on their specific implementation of the LIBOR
rates simulation and do use pseudo-random (Sobol) numbers in their sim-
ulation, we attribute the differences to our varying implementation of the
Longstaff-Schwarz algorithm. In fact, a conclusion of Lvov [7] is that the
approximation errors made by evolving the LIBOR rates according to the
discretisation (13) are small in comparison to errors resulting from using
suboptimal basis functions in the Longstaff-Schwarz algorithm. Moreover,
Lvov comes to the conclusion that the Longstaff-Schwarz algorithm using
only the nearest-to-maturity swap rates (as in our implementation) instead
of all ‘alive’ ones at any given time (as in [1]) yields an under-performance
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in the order of magnitude of 10 basis points, or 5%, in his setting. This is
consistent with our results. To elaborate a bit further on this issue, con-
sider the exemplary approximate continuation value based entirely on the
swap rate of the nearest-to-maturity-swaption (see figure 4): Evidently, the
approximation to the true continuation value is anything but perfect thus
leading to suboptimal exercise decisions and eventually to prices that are too
low.

For the pricing of Bermudan swaptions, is seems that (initial) implemen-
tation effort is spent more wisely on improving the Longstaff-Schwarz-part
of an implementation than, for instance, on implementing more refined ex-
pressions for the discrete drift terms (e.g. the predictor-corrector-method,
[4]) or the diffusion term (e.g., by replacing the discrete stochastic term in
(13) with a more refined one based on integrated volatilities, see [1]).

7 Conclusion

We have considered the pricing of Bermudan swaptions in the LIBOR mar-
ket model. We have presented the underlying theory and have conducted
numerical experiments using a number of different variations of the pricing
algorithm, comparing our results to those obtained elsewhere [1, 7] in the
literature.

Our results indicate that the choice of the parameterisation of instanta-
neous volatility and correlation functions is an important one. In our - admit-
tedly limited - experiments, the choice of a more realistic volatility function
played a more transparent and important role than that of the correspond-
ing correlation function. Too parsimonious a parameterisation turned out to
produce clearly sub-optimal results, however, the quality of the results could
not be improved by a simple adding of additional parameters. A successful
implementation will thus need to strike a reasonable balance.

The issue of choosing ‘correct’ basis functions for the Longstaff-Schwarz
algorithm appears to be even more important than that of the corresponding
volatility and correlation parameterisations. Performance losses associated
with sub-optimal basis functions were in the range of up to 5% compared
with the maximum performance differential of 3% for the varying volatility
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and correlation parameterisations.

The two aforementioned choices appear to outweigh pricing errors made
due to the discrete path approximations in the simulations. When pricing
Bermudan swaptions in the LIBOR market model, particular care should
thus be taken to improve the Longstaff-Schwarz and calibration parts of the
algorithm prior to embarking on improving the simulation routine.
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8 Appendix

8.1 Matlab Listings of the Experimental Section

To make this section more readable, we only list code fragments that contain
the main ‘implementation logic’ and leave out parts for, e.g., data processing
and output. Consequently, the code presented will not run stand-alone.

8.1.1 Black’s Formulas

function V = BlackFormula(sigma,S,K,omega)

d1 = (log(S) - log(K) + (0.5*sigma)) / (sqrt(sigma));
d2 = (log(S) - log(K) - (0.5*sigma)) / (sqrt(sigma));

V = (omega*S*N(omega*d1) - omega*K*N(omega*d2));
end

% Normal cumulative distribution function (Code by M. Giles)
function ncf = N(x)

xr = real(x);
xi = imag(x);

ncf = 0.5*(1+erf(xr/sqrt(2))) ...
+ i*xi.*exp(-0.5*xr.^2)/sqrt(2*pi);

end

function V = BlackSwaptionFormula(Strikes, Vols, Maturity, ...
BondPrice, numberOfSwaptionsPerTime)

V=[1:1:numberOfSwaptionsPerTime];
S=[1:1:numberOfSwaptionsPerTime];

for k=1:numberOfSwaptionsPerTime
denom=0;
for j=1:k

denom=denom+BondPrice(Maturity+j);
end
S(k)=(BondPrice(Maturity)-BondPrice(k+Maturity))/denom;
V(k)=denom*BlackFormula(Maturity*...
(Vols(Maturity,k)^2),S(k),Strikes(Maturity),1);
end

end
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8.1.2 Rebonato’s Formula

function V = RebonatoFormula(a, b, c, d, ...
psi, beta, maturities, rates, ...
maturity, tenorDate, horizon)

CORR=CorrelationMatrix(beta, maturities, tenorDate-1, maturity, tenorDate);

V=0;
for indexI=maturity:tenorDate-1

for indexJ=maturity:tenorDate-1
test=quad(@vola,0,maturity);

V=V+weights(indexI)*weights(indexJ)...
*rates(indexI)*rates(indexJ)...
*CORR(indexI,indexJ)...
*quad(@vola,0,maturity);

end
end
V=sqrt((1/maturity)*V*(1/swapRate^2));

function v = vola(time)
v1=VolFunc(a, b, c, d, psi(indexI), time, maturity);
v2=VolFunc(a, b, c, d, psi(indexJ), time, maturity);
v=v1.*v2;

end

function w = weights(index)
helper= cumprod(1./(1+rates(maturity:tenorDate-1)));
nom = helper(index-maturity+1);
denom = cumsum(helper);
w = nom./denom(tenorDate-maturity);

end

function S = swapRate
S = rates(maturity:tenorDate-1)*weights(maturity:tenorDate-1)’;

end
end
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8.1.3 Brigo-Mercurio Calibration Algorithm

function [beta, a, b, c, d, psi, LMMVol] =
BrigoMercurioCoTerminalCallibration(maturity, maturities, ...
rates, tenorDate, marketData, maxIterations)

model = @volas;

a=0;
b=0;
c=0;
d=1;
beta= [0.2 0.1 0.05];
alpha=[a b c d];

LMMVol=zeros(tenorDate-1);
CompData=zeros(tenorDate-1);
errors=zeros(tenorDate-1);
sse=0;
options = optimset(’MaxIter’,maxIterations);
[result] = fminsearch(model, [beta, a, b, c, d], options);
beta= result;

psi = CoTerminalVolaCallibration(alpha, beta, maturities, rates, ...
maturity, tenorDate, tenorDate+tenorDate, ...
marketData);

function [sse] = volas(point)
LMMVol=zeros(tenorDate-1);

alpha=[point(4) point(5) point(6) point(7) ];
psi = CoTerminalVolaCallibration(alpha, point(1:3), maturities,

rates, maturity, tenorDate, tenorDate+tenorDate, ...
marketData);

for i=1:tenorDate-1
for j=1:tenorDate-i

LMMVol(i,j) = ...
RebonatoFormula(point(4), point(5), point(6),
point(7), psi, point(1:3), maturities, rates, ...
i, i+j, tenorDate+tenorDate);

CompData(i,j) = marketData(i,j);
end

end
errors = LMMVol - CompData;
sse = sum(sum(errors .^ 2));
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end
end

function psi = CoTerminalVolaCallibration(alpha, beta, maturities, rates, ...
maturity, tenorDate, horizon, ...
marketData)

CORR = CorrelationMatrix(beta, maturities,...
horizon, maturity, ...
tenorDate+tenorDate-2);

psi = [1:1:tenorDate-1];
f_star = F_Star(maturity, tenorDate);

for i=tenorDate-1:-1:1
indexI = i;
indexJ = i;
c_one = f_star(i)^2*quad(@vola,0,i);
c_two=0;
for j=tenorDate-1:-1:i+1

indexJ = j;
c_two=c_two+...

2*f_star(i)*f_star(j)*psi(j)*CORR(i,j)*quad(@vola,0,i);
end
c_three=0;
for j=tenorDate-1:-1:i+1

for k=tenorDate-1:-1:i+1
indexI = j;
indexJ = k;
c_three=c_three+...

f_star(j)*f_star(k)*psi(j)*psi(k)*...
CORR(j,k)*quad(@vola,0,i);

end
end
marketD=marketData(i,tenorDate-i);
helper=cumsum(f_star(i:tenorDate-1));
swapRate=helper(tenorDate-i);
c_three = c_three - (i)*(marketD*swapRate)^2;

p= c_two/c_one;
q = c_three/c_one;
root=sqrt((p/2)^2-q);
psi(i) = -0.5*p + root;

end
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function v = vola(time)
v1 = volaFuncV(alpha, maturities(indexI), time);
v2 = volaFuncV(alpha, maturities(indexJ), time);
v = v1.*v2;

end

function w = weights(index, maturity, tenorDate)
helper= cumprod(1./(1+rates(maturity:tenorDate-1)));
nom = helper(index-maturity+1);
denom = cumsum(helper);
w = nom./denom(tenorDate-maturity);

end

function F = F_Star(maturity, tenorDate)
F = rates(maturity:tenorDate-1)....
*weights(maturity:tenorDate-1, maturity, tenorDate);

end
end

8.1.4 LIBOR Rate Path Simulation

function [exerciseVals, numeraireVals, swapRate, euroSwpations] =

LMMMonteCarlo(a, b, c, d, K, beta, ...
timeLine, maturities, stepSize, ...
spotRate, initialRates, numberOfIterations, ...
strikes, tenorLength, ...
initialBondPrices)

CORR=CorrelationMatrix(beta, maturities, tenorLength-1, 1, tenorLength-1);

L = chol(CORR,’lower’);
X = randn(tenorLength-1, numberOfIterations*length(timeLine));
Y = sqrt(stepSize)*L*X;

start = log(initialRates);
trajectories = zeros(tenorLength-1, length(timeLine));
exerciseVals = zeros(numberOfIterations, tenorLength-1);
numeraireVals = zeros(numberOfIterations, tenorLength-1);
euroSwpations = zeros(tenorLength-1, tenorLength-1);
swapRate = zeros(numberOfIterations, tenorLength-1);
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for it=1:numberOfIterations
currTime=0;
trajectories(:,1)=start(1:tenorLength-1);
for step=2:length(timeLine)

for rate=tenorLength-1:-1:1

%only consider rates that are still ’alive’ at this point
if currTime < maturities(rate)

currVol=...
VolFunc(a, b, c, d, K(rate), currTime, maturities(rate));

drift=0;

for j=tenorLength-2:-1:rate
volj=VolFunc(a, b, c, d, K(j), currTime, maturities(j));
%drift under the terminal measure
drift=drift-...

(CORR(rate,j)*volj*...
exp(trajectories(j,step-1)))/...
(1+exp(trajectories(j,step-1)));

end
trajectories(rate,step) = trajectories(rate,step-1)+...

currVol*(drift-0.5*currVol)*stepSize+...
currVol*Y(rate,step-1+(it-1)*length(timeLine));

else
trajectories(rate,step) = trajectories(rate,step-1);

end
end
currTime=currTime+stepSize;

end

timePoints = (1:1:tenorLength-1);
rates = exp(trajectories(1:tenorLength-1, ...

1+(1/stepSize)*timePoints));
spotRates = [spotRate; diag(rates)];
bonds = 1./(1+spotRates(1:tenorLength-1));
x = tril(BondPrices(-1, tril(rates)));
denomY = tril(BondPrices(-1, tril(rates)),-1);
denom = cumsum(denomY)’;
swapRate(it,:) = (bonds - x(tenorLength-1, 1:tenorLength-1)’)...

./denom(1:tenorLength-1,tenorLength-1);
ks = (sqrt(strikes)’*sqrt(strikes));
exVal = tril(rates-ks(1:tenorLength-1,1:tenorLength-1));
exVal1 = x’.*exVal’;
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exVal2 = cumsum(exVal1,2);

%record exercise values of swaptions under terminal measure at all
%points in time and record numeraire values
exerciseVals(it,:) = exVal2(1:tenorLength-1,tenorLength-1);
numeraireVals(it,:) = x(tenorLength-1,1:tenorLength-1);

%calculate values of euro swaptions for testing purposes
euroSwpations(:,:) = euroSwpations(:,:)...

+diag((1./x(tenorLength-1, 1:tenorLength-1)))...
*max(zeros(tenorLength-1),exVal2(1:tenorLength-1,1:tenorLength-1));

end
euroSwpations = initialBondPrices(tenorLength)...

*(1/(numberOfIterations))*euroSwpations(:,:);
end

8.1.5 Longstaff-Schwarz Algorithm

function [result] = LongstaffSchwarz(exerciseVal, swapRates, ...
numeraireVals, tenorLength, maturity, discountFactor)

Payoff=zeros(length(exerciseVal), tenorLength);
Payoff(:,tenorLength)=max(exerciseVal(:, tenorLength),0);

for nn = tenorLength-1:-1:maturity
y = max(0, exerciseVal(:, nn));
for i = 1:length(exerciseVal)

if y(i) > 0
ExVal = [ExVal; y(i)];
X = [X; swapRates(i, nn)];
Y = [Y; (numeraireVals(i,nn)/numeraireVals(i,nn+1))...
*Payoff(i, nn+1)];

end
Payoff(i, nn)=(numeraireVals(i,nn)/...
numeraireVals(i,nn+1))*Payoff(i, nn+1);
Payoff(i, nn+1)=0;

end

%Regression
A = [ones(size(yex)) X X.*X X.*X.*X] ;
b(:,nn)=lscov(A,Y);
Chat = A*b(:,nn);



j = 1;
for i = 1:length(exerciseVal)

if y(i)>0
if (ExVal(j) > Chat(j))

Payoff(i,:) = 0;
Payoff(i,nn) = yex(j);

end
j = j+1;

end
end

end
result = discountFactor*(sum(sum(Payoff))/length(exerciseVal));
end

8.1.6 Auxiliary Functions

function [vol] = VolFunc(a, b, c, d, psi, time, maturity)
alpha=[a b c d];
vol=psi*volaFuncV(alpha, maturity, time);

end

function v = volaFuncV(alpha, time_k, time)
tau = time_k-time;
v = (tau.*alpha(1)+alpha(2)).*exp(-tau.*alpha(3))+alpha(4);

end

function [corr] = CorrFunc(beta, horizon, i, j)
M=horizon;
corr=exp(-abs(i-j)/(M-1)...

*(-log(beta(3)) ...
+beta(1)*(i^2+j^2+i*j-3*M*i-3*M*j+3*i+3*j+2*M^2-M-4)...
*1/((M-2)*(M-3))...
-beta(2)*(i^2+j^2+i*j-M*i-M*j+3*i+3*j+3*M^2-2)...
*1/((M-2)*(M-3))));

end

function CORR = CorrelationMatrix(beta, maturities, horizon, startRate, endRate)
CORR=zeros(endRate-startRate);
for i = startRate:endRate

for j = startRate:endRate
CORR(i,j) = CorrFunc(beta, horizon, maturities(j), maturities(i));

end
end

end
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