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Abstract. We develop a new method for finding upper bounds
for Bermudan swaptions in a swap-rate market model. By com-
paring with lower bounds found by exercise boundary parametriza-
tion, we find that the bounds are well within bid-offer spread. As
an application, we study the dependence of Bermudan swaption
prices on the number of instantaneous factors used in the model.
We also establish an equivalence with LIBOR market models and
show that virtually identical lower bounds for Bermudan swaptions
are obtained.

1. Introduction

The pricing of Bermudan swaptions under market models is a long-
standing tricky problem. As the drifts of the rates are state-dependent
and the volatilities are typically time-dependent, the only feasible pric-
ing method is by Monte Carlo simulation. However, to price an option
with early exercise opportunities by Monte Carlo one needs to know
the exercise strategy which is tightly bound up with knowing the price
one wishes to compute.

As the price of a Bermudan swaption is the supremum of the prices
over all exercise strategies (stopping times), a lower bound can always
be found by picking some exercise strategy. More generally, one can
optimize over a class of exercise strategies to find a good lower bound.
Such approaches have been developed by Anderson, [1], and Jäckel, [6]
in the context of LIBOR market models. Jäckel shows that in certain
cases where comparison with a non-recombining tree is possible that
his method is very effective but for the general case the comparison
is not feasible. However, in the absence of a good upper bound, one
can never be sure how good these lower bounds are in general. Here
we develop a method for upper bounds in the context of a swap-rate
market model which gives upper bounds within a fraction of a vega
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of the lower bound found by adapting Jäckel’s method to swap-rate
models. Thus we can be sure that both the lower bound and upper
bound are tight.

We proceed by adapting a method proposed by Rogers, [15], as well
as Haugh and Kogan, [5], in the context of equity and FX options.
Taking Bt as numeraire, they make the observation that as the price
of an option, D(0), is equal to

(1.1) B0 sup
τ

E(B−1
τ D

′

τ ),

where D
′
τ indicates the exercise value of the Bermudan at time τ, and

the supremum is taken over all stopping times, τ, the price can only
be increased by taking a supremum over all random times. However,
if we allow all random times then there is a clear winner: exercise with
maximal foresight. Thus we have the upper bound

(1.2) B0E(max
t

B−1
t Dt),

where the max is taken over the exercise dates of the Bermudan.

This upper bound is, of course, too crude to be useful. However, the
same argument holds if a martingale of initial value zero is subtracted
from the portfolio. Thus if we take any portfolio, P, of derivatives of
initial value zero and consider

(1.3) B0E(max
t

B−1
t (Dt − Pt)),

we also have an upper bound.

Thus we can optimize over the possible portfolios, Pt, to obtain upper
bounds. Rogers shows the existence of a portfolio, Pt, which attains the
price of the option, but the proof is non-constructive. His argument
is not easily adapted to practical pricing, but it does suggest a way
to proceed. Consider a class of portfolios, Pα

t , indexed by α and then
optimize over possible values of α to obtain a best upper bound.

It is important to realize that the portfolio can be a dynamic trading
strategy. Our solution is to use a weighted sum of European swaptions
each one associated to an exercise date of the Bermudan swaption,
together with a short position in zero coupon bonds to ensure that the
initial value is zero. At the time of expiry of the European swaption, we
assume that it is cash settled and the money is used to buy a European
swaption of the next shortest maturity. The parameters we optimize
over are the notionals of the European swaptions in the initial portfolio.
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A crucial part of the procedure is that we need to know the values of
the European swaptions at all exercise times, this means that we need
to be able to price them before their expiries. It is here that the use of
a swap-rate market model is preferable to a LIBOR market model, as
the European swaptions can be priced instantly via the Black formula.
Whilst one could approximate the prices in a LIBOR market model,
using an equivalent swaption volatility formula, see for example [12],
[13] or [7], this results in additional approximation errors and is more
time consuming.

An advantage of optimizing over notionals, rather than other param-
eters is that the dependence the value of the portfolio at a given time
and yield curve as a function of the notionals is purely linear and there-
fore easily recomputed as the values change during an optimization.

Our procedure is therefore as follows.

(1) Generate a set of training paths.
(2) For this set of training paths, optimize over the notionals to

obtain a best upper bound.
(3) Generate a second set of paths with independent variates and

use this to estimate the expectation, (1.3).

We discuss the implementation details in greater depth in Section 2.
We stress that we use an independent set of paths for the estimation of
the expectation in order to avoid the possibility that biasing may arise
from the optimization procedure exploiting the precise structure of the
sample drawn. We can therefore be confident that the upper bound
found from step 3 is accurate up to the convergence of that Monte
Carlo simulation.

We found that in all cases the upper bound could be refined to
be within a vega of the lower bound. For particularly humped yield
curves, the upper bound was least effective. However, we found that in
such cases the upper bound could be greatly improved by using larger
portfolios of European swaptions. In particular, we included additional
European swaptions with strikes ten percent above and below the strike
of the Bermudan. We present results in Section 6.

One consequence of our results is therefore that we can be confident
that the Jäckel exercise strategy is sufficiently accurate to be used for
pricing without the worry that it is failing to capture a lot of value.
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As one application of our results, we study the dependence of Bermu-
dan prices on the number of instantaneous factors driving the swap-
rates. We find in general a small but marked price increase as the
number of factors increases from one to two, but only slight increases
thereafter. The difference between the lower bound for one factor and
the upper bound for a full factor model was in general less than half a
vega and therefore would lie well within bid-offer spread. We present
these results in Section 6. We stress that these results reflect changes in
the number of instantaneous factors and therefore only reflect changes
in instantaneous correlations, and do not therefore affect decorrelation
which arises from the differing shapes of the volatility curves for swap-
tions. We discuss the issues of calibration and the meaning of factors
further in Section 3. We also discuss the differences between our results
and those of [2] and [10].

The final issue we consider is the similarity in prices of Bermudan
swaptions under LIBOR and swap-rate based market models. We show
that the lower bound estimation procedure leads to very similar prices
under the two models provided equivalent covariance structures are
used. We discuss how to make the covariance structures equivalent in
Section 3 and present the numerical results in Section 6.

Whilst we believe our results are interesting, we still feel that there
remains the issue of how to construct the comparison martingale in
an intuitive fashion rather than just plugging the notionals into an
optimizer and seeing what comes out.

An approach to the estimation of Bermudan swaption prices with
similar theorerical underpinnings but quite different practicalities has
been previously introduced by Anderson and Broadie, [3]; their ap-
proach involves running additional Monte Carlo simulations within the
main Monte Carlo simulation but does not require an optimization pro-
cedure. For a full discussion of the history of this problem we refer the
reader to [3].

2. Implementation and notation

Let us fix some notation. We study a Bermudan swaption with strike
K associated to times

t0 < t1 < · · · < tn.
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We denote by fj the forward rate for a deposit running from tj to tj+1.
We denote by SRj the swap rate for the times tj, . . . , tn and by Bj the
price of a zero-coupon bond expiring at time tj.

In a swap-rate market model, we take the rates fj to be log-normally
distributed in the real-world measure with a possibly time-dependent
volatility. When we take a bond, Bj, as numeraire and pass to the
pricing measure, the swap rate has a state-dependent drift and the
volatility does not change, see [8]. The drift involves the swap rates and
the instantaneous covariances between rates – i.e. the instantaneous
correlation times the product of volatilities.

The fact that the drifts are state-dependent complicates the imple-
mentation of either model as a Monte Carlo simulation. We employ
the techniques of [4] to allow us to step the rates over several years at
once.

Let gj denote either fj or SRj . We suppose that we are given the
covariance matrix, C l, of log gj over each period of evolution from tl−1

to tl. (Take t−1 = 0. ) We discuss the provenance of this covariance
matrix in section 3.

Let Al denote a pseudo-square root of C l. If the rates log gj had
constant drift, µj, then we could simulate their evolution precisely via

log gj(tl) = log gj(tl−1) + µj(tl − tl−1) +
n−1∑
i=0

Al
jiZj

with Zj a vector of independent N(0, 1) draws. We approximate the
evolution of gj via the use of a predictor-corrector method. We first
compute an approximation to the drift across the time step by sub-
stituting the covariance elements across the time step for the instan-
taneous covariance elements, and using the values of the rates at the
start of the time step.

This gives an initial guess for the terminal values of the rates. Using
this initial guess, we then recompute the drift at the end of the step
using the same covariance elements. The average of the two drifts is
then our best guess for the drift and we re-evolve using the original
N(0, 1) draws. This predictor-corrector method is shown to be highly
accurate for the LIBOR market model in [4] and works equally well for
the swap-rate model.

In order to carry out our optimization, we therefore generate a set
of training paths. We take Bn−1 as numeraire. For this set of training
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paths, we store all the necessary information for computing the max-
imum value along each path for any set of weights. In particular, we
stored the ratios of the values of each swaption at each time with the
numeraire and the ratio of the exercised value of the Bermudan with
the numeraire.

For any set of weights, it is then possible to rapidly get an estimate
of the upper bound with no new path generation, simply by computing
using the existing set of paths and stored values. Note that this would
not be possible if we optimized over strikes or other parameters. For
example, we could use trigger swaps and optimize over the trigger level
but we would then need to reprice the trigger swap over every path,
which would require repeated calls to the Black formula and cause a
great decrease in speed. We typically used around 16384 paths.

Once we have the upper bound as a function of the notionals, we
optimize to get the lowest upper bound. We did so by employing the
simplex method as detailed in [11].

Once the optimal parameters for the set of training paths had been
found, a second simulation was run to evaluate the expectation. The
second simulation was running using different variates in order to avoid
the possibility of biasing arising from the optimization exploiting any
inaccuracies in the approximate upper bound function. We typically
ran 2 to the power 18 paths to be sure that the simulation was well
converged.

Note that any inaccuracies in the upper bound approximation used
for optimization would not affect the status of the final upper bound
as an upper bound. Any such inaccuracies may lead to a worse upper
bound however. Any inaccuracy in the final upper bound only arises
to the extent that the final simulation has not converged.

In order, to maximize the convergence rate of our simulations, we
worked with high-dimensional Sobol numbers combined with Brownian
bridging techniques.

3. Calibration

One of the trickiest aspects of working with market models is their
calibration. Whilst calibrating the LIBOR market model to caplet
prices is trivial and immediate, and for the swap-rate market model
calibration to swaption prices is immediate, there is the basic problem
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that calibration is too easy in that one can find many calibrations to
the same prices and needs extra information to fix the calibration.

We first recall some standard techniques for calibrating the LIBOR
market model, see for example [13]. If we allow the caplet prices to be
a function of time, then we have for a forward rate expiring at time T
that

dfT = µT dt + σT (t)fT dWt.

In order to calibrate to the caplet market we need

(3.1)

T∫
0

σT (t)dt = σ̂2
T T

where σ̂T is the caplet implied volatility.

There are clearly many such choices of σT . One solution, which we
use, is to require that

(3.2) σT (t) = σ(T − t)

with σ a function independent of t. This means that every forward rate
has the same volatility as a function of the amount of time to its own
maturity.

Following Rebonato, [12, 13], we use a functional form

(3.3) σ(τ) = ((a + bτ)e−cτ + d)H(τ),

where H(τ) is one for τ ≥ 0 and zero otherwise. The volatility function
for fj can then be adjusted by a constant multiplicative factor Kj to
ensure that (3.1) is satisfied exactly. The cut-off H ensures that each
forward rate stops moving after its own expiry.

To run a simulation, we also need the instantaneous correlations be-
tween forward rates, ρij. We take the instantaneous correlation matrix
to be of the form

ρij = e−β|ti−tj |.

The covariance between the logs of fi and fj over the period [s, t] is
then

t∫
s

ρijσti(r)σtj(r)dr.

We can thus compute the covariance matrices and run our simulation.

However, we wish to calibrate to the prices of the underlying Euro-
pean swaptions which are essentially options on the rates SRj . We also
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wish to calibrate our swap-rate based model. We proceed by using an
equivalence between swap-rate models and forward-rate models.

By writing a swap-rate as a function of the underlying forward rates,
we can write

(3.4) d SRi = µidt +
n−1∑
j=i

∂ SRi

∂fj

dfj.

It therefore follows that

(3.5) d log SRi = µ̃idt +
n−1∑
j=i

∂ SRi

∂fj

fj

SRi

d log fj.

Thus if we let

(3.6) Zij =
∂ SRi

∂fj

fj

SRi

,

for i ≤ j and zero otherwise, we can write in vector terms, ignoring
drifts,

(3.7) d log SR = Zd log f.

This means that if Cf (s, t) is the forward-rate covariance matrix across
a period [s, t], we can approximate the swap-rate covariance matrix
across this interval by

(3.8) CSR = Z(0)Cf (s, t)Z(0)t.

Alternatively, if we wish to prescribe the swap-rate covariance matrix
we can invert (3.8).

When pricing a Bermudan swaption, we generally wish to prescribe
the swap-rate variances so as to ensure the exact pricing of the under-
lying European swaptions. However, it is difficult to get a handle on
the time-dependence of the European swaptions and their covariances.
We therefore adopt a compromise in which we allow the caplets to de-
termine the correlation structure and the swaptions to determine the
variances.

We therefore obtain a first guess, Cf,1 for Cf by calibration to the
caplets. This implies a first guess, CSR,1, for the swap-rate covariance
matrix.

Let the desired variance for SRj over [0, tj] be Vj. We want CSR1(0, tj)
to have Vj in the jj entry. Let

(3.9) λj =

√
Vj

CSR1(0, tj)jj

.
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Now let Λ be the diagonal matrix with Λjj equal to λ. The matrix

CSR(0, tj) = ΛCSR1(0, tj)Λ

now has the required variance on the diagonal for each value of j.

We therefore define

(3.10) CSR(s, t) = ΛZ(0)Cf1(s, t)Z(0)tΛ,

and

(3.11) Cf (s, t) = Z(0)−1ΛZ(0)Cf1(s, t)Z(0)tΛ(Z(0)t)−1.

We have to modify (3.10) when t > t0, to ensure that the swap-rates
do not change after their own expiry. If

(3.12) tj ≤ s ≤ t ≤ tj+1,

then we use (3.10) but zero the rows and columns pertaining to rates
that have already reset, that is columns 0 to j. For the general case,
we break the covariance matrix into a sum of individual matrices for
which (3.12) hold.

The method we have given for calibrating the LIBOR market model
is essentially that of [7], see [13] for further discussion. In [7] it is
shown to be highly effective for calibrating to swaption prices. To use
this technique for calibrating swap-rate market models would appear
to be new. One of our principal results numerically demonstrated in
Section 6, is that a LIBOR market model and swap-rate market model
with these calibrations yield the same results when developing lower
bounds for Bermudan swaptions.

4. Factor reduction

In Section 3, we used an instantaneous correlation matrix for the
forward rates of the form

(4.1) ρij = e−β|ti−tj |.

This leads to a full factor model for the rates evolution. However, many
front offices use a two or three factor model. It is important to realize
that these models are short-stepped so only decorrelation coming from
changes in the instantaneous correlation matrix are affected by this
factor reduction; the terminal decorrelation effects arising from the
shape of the instantaneous volatility curves will not be affected.

We therefore study how changing the rank of the instantaneous cor-
relation matrix affects the price of a Bermudan swaption. Note that if
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one carried out factor reduction by trimming the long stepped covari-
ance matrices, then the results would be affected by the length of the
steps, and introducing extra steps would change the prices.

Our technique for reducing the factors is to cut-off the lower eigen-
values. In particular, we diagonalize the correlation matrix to get the
eigenvectors λj and associated eigenvectors ej. To get a rank r matrix

we take the matrix Ar such that column j is
√

λj for j < r and zero
otherwise. We then form B = ArA

t
r which is a covariance matrix but

not a correlation matrix as the diagonal elements are not equal to one.
We therefore take the correlation matrix, C, to be given by

(4.2) Cij =
Bij√
BiiBjj

.

In Section 6, we give numerical results for the upper and lower
bounds as a function of the number of factors. Qualitatively, we find
that the transition from one to two factors gives a small but clear in-
crease in price. Our lower bound for the two-factor model is generally
around the same level as the upper bound for the one-factor model.
For increasing factors beyond that we see slight but not insignificant
improvements.

It is interesting to note that in all our tests the difference between
the lower bound for the one factor model and the upper bound for the
ten factor model is generally less than a vega, and the impact of factor
dependence is therefore insubstantial compared to the size of bid-offer
spreads.

The issue of factor dependence has previously been studied by Ander-
sen and Andreason, [2], and by Longstaff, Santa-Clara and Schwartz,
[10]. The thesis of the latter paper was that banks are throwing away
large sums of money by pricing and hedging Bermudan swaptions using
low-factor models. The former paper argued that the latter paper was
mistaken and that, in fact, a two-factor model gives lower prices than
a one factor model for Bermudan swaptions.

Ultimately, the answer to the question lies in what one calibrates
to, and in how one defines a factor. If one takes a model in which all
volatiltiies are flat and the forward rates in a LIBOR market model
are driven by a single factor then the model is effectively a BDT type
model and one obtains a lower price, see [9] or [13]. The lower number
of factors in this case is not just smaller in the instantaneous sense but
also in the sense that the covariance matrix across long time steps is
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of rank one and in this case, the model is certainly failing to capture
certain features of the market.

Andersen and Andreasen calibrate their models to both swaptions
and caplets simultaneously and achieve the result that the price de-
creases as the number of factors increases, whereas we use the caplets
only to infer the correlation structure and achieve the result that the
price increases. The main issue is therefore whether it is appropriate
to calibrate the model both caps and swaptions or whether one should
place more emphasis on having the correct correlation structure. The
issue is really more financial than mathematical. Rebonato has argued
in [14] and [13] that the simultaneous calibration is not appropriate
and we refer the reader to his work.

5. The lower bound

In this section, we recall the results of Jäckel, [6], and discuss their
implementation in the context of a swap-rate market model. Jäckel
suggested using an exercise strategy based on the next forward rate
and the swap-rate running from the end of the forward rate to the final
time. Thus at time tj, we examine the levels of fj and SRj+1 in order
to determine an exercise strategy.

In particular, Jäckel suggested exercising at time ti according to
whether

fi(ti)−
(

pi1
SRi+1(0)

SRi+1(ti) + pi2

+ pi3

)
,

is positive for payer’s swaptions and negative for receiver’s, and pij

are the parameters to be optimized over. The additional constraint of
never exercising out of the money is also added.

As with the upper bound, one first develops a set of training paths
and then optimizes over the parameters to obtain a best lower bound.
Once this is done one reprices using a second set of paths to avoid
biasing. One can then be sure that the lower bound is accurate up
to the level of convergence of the second Monte Carlo. We refer the
reader to [6] for further details. We used a simplex type algorithm for
the optimization, [11].
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6. Numerical Results

In this section, we present numerical results and graphs. For each
test, we present the values of a, b, c, and d used to generate the instanta-
neous volatility structure, the European swaption volatilities calibrated
to, the value of β and the yield curve. The “K” factors are always taken
to be one. We also given the strike and type of the Bermudan swaption
and the reset times.

The yield curve is given via a functional form so that the forward
rate from year k to year k + 1 is equal to

(A + Bk)e−Ck + D.

This is used to fix the discount factor after all integer numbers of years.
Other discount factors are found by log-linear interpolation. We adopt
this approach as it allows easy specification and communication of a
large class of plausible yield curves.

In each case, we present the lower bounds for swap-rate and LI-
BOR market models, the upper bound for the swap-rate model and
the lower bound for the swap-rate model with volatilities increased by
one percent. In all cases, we used 16384 training paths and 131072
pricing paths using low-discrepancy numbers and Brownian bridging
techniques. This ensured that the final Monte Carlo simulations were
converged to within a fraction of a basis point.

For our first test, we took ten yearly rates starting in five years with
the following parameters

Swaption Vols
A -1% a 5% 11.83%
B 0% b 10% 11.50%
C 30% c 50% 11.13%
D 6% d 10% 10.80%

beta 0.1 10.55%
PayReceive pay 10.39%

Strike 0.059077858 10.30%
10.28%
10.32%
10.45%
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Swap Bumped LIBOR
Factors lower bound Upper bound vol lower bound

1 0.0461 0.0467 0.0499 0.0462
2 0.0475 0.0485 0.0514 0.0476
3 0.0477 0.0490 0.0516 0.0479
4 0.0479 0.0492 0.0518 0.0480
5 0.0479 0.0493 0.0518 0.0480
6 0.0479 0.0494 0.0519 0.0481
7 0.0480 0.0494 0.0519 0.0481
8 0.0480 0.0495 0.0519 0.0481
9 0.0480 0.0495 0.0520 0.0481
10 0.0480 0.0495 0.0519 0.0481

For our second test, we took ten yearly rates starting in five years
with the following parameters

Swaption Vols
A 0% a 5% 11.88%
B 0% b 10% 11.53%
C 30% c 50% 11.15%
D 6% d 10% 10.81%

beta 0.1 10.56%
PayReceive pay 10.39%

Strike 0.06 10.30%
10.28%
10.32%
10.45%

Swap Bumped LIBOR
Factors lower bound Upper bound vol lower bound

1 0.0448 0.0454 0.0485 0.0450
2 0.0462 0.0471 0.0500 0.0462
3 0.0463 0.0476 0.0502 0.0465
4 0.0465 0.0478 0.0504 0.0466
5 0.0465 0.0479 0.0504 0.0467
6 0.0466 0.0480 0.0505 0.0467
7 0.0466 0.0480 0.0505 0.0467
8 0.0466 0.0480 0.0505 0.0467
9 0.0466 0.0481 0.0505 0.0467
10 0.0466 0.0481 0.0505 0.0468

For our third test, we took ten yearly rates starting in five years with
the following parameters
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Swaption Vols
A 0% a 0% 11.88%
B 0% b 0% 11.53%
C 30% c 50% 11.15%
D 6% d 10% 10.81%

beta 0.1 10.56%
PayReceive pay 10.39%

Strike 6.00% 10.30%
10.28%
10.32%
10.45%

Swap Bumped LIBOR
Factors lower bound Upper bound vol lower bound

1 0.0309 0.0311 0.0344 0.0309
2 0.0319 0.0328 0.0356 0.0319
3 0.0321 0.0332 0.0359 0.0321
4 0.0322 0.0333 0.0360 0.0322
5 0.0323 0.0334 0.0361 0.0322
6 0.0323 0.0335 0.0361 0.0323
7 0.0323 0.0335 0.0361 0.0323
8 0.0324 0.0335 0.0362 0.0323
9 0.0324 0.0335 0.0362 0.0323
10 0.0324 0.0335 0.0362 0.0323

For our fourth test, we took the same parameters as for the third
test but took the rates to be half yearly.

Swaption Vols
9.24%
9.31%
9.39%
9.46%
9.54%
9.62%
9.70%
9.78%
9.88%
10.00
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Swap Bumped LIBOR
Factors lower bound Upper bound vol lower bound

1 0.0162 0.0163 0.0181 0.0162
2 0.0165 0.0168 0.0184 0.0165
3 0.0166 0.0169 0.0185 0.0166
4 0.0166 0.0169 0.0185 0.0166
5 0.0166 0.0170 0.0185 0.0166
6 0.0166 0.0170 0.0184 0.0166
7 0.0166 0.0170 0.0185 0.0166
8 0.0166 0.0170 0.0186 0.0166
9 0.0166 0.0170 0.0185 0.0166
10 0.0166 0.0170 0.0186 0.0166

For our fifth test, we took ten half year rates starting in five years

Swaption Vols
A -1% a -6% 15.62%
B 2% b 4% 15.82%
C 30% c 50% 15.97%
D 6% d 16% 16.09%

beta 0.1 16.19%
PayReceive pay 16.28%

Strike 7.22% 16.36%
16.45%
16.55%
16.71%

Swap Bumped LIBOR
Factors lower bound Upper bound vol lower bound

1 0.0357 0.0360 0.0378 0.0357
2 0.0363 0.0368 0.0385 0.0363
3 0.0362 0.0370 0.0383 0.0364
4 0.0365 0.0371 0.0386 0.0364
5 0.0365 0.0371 0.0386 0.0364
6 0.0365 0.0371 0.0387 0.0364
7 0.0363 0.0371 0.0384 0.0364
8 0.0365 0.0372 0.0387 0.0363
9 0.0366 0.0372 0.0387 0.0365
10 0.0366 0.0372 0.0387 0.0364

Note the slight noisiness in the lower bounds here. As the lower bounds
results from an optimization procedure, it will sometimes stop at a local
rather than global minimum.
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For our sixth test, we took ten half year rates starting in half a year.

Swaption Vols
A -1% a -6% 14.83%
B 2% b 4% 15.37%
C 30% c 50% 15.83%
D 6% d 16% 16.18%

beta 0.1 16.44%
PayReceive pay 16.65%

Strike 7.22% 16.80%
16.93%
17.05%
17.21%

We include results on the upper bound with three swaptions for each
expiry as well the results for one swaption.

Swap Bumped LIBOR Improved
Factors lower bound Upper bound vol lower bound Upper

1 0.0305 0.0311 0.0320 0.0305 0.0306
2 0.0308 0.0316 0.0323 0.0308 0.0312
3 0.0309 0.0317 0.0324 0.0309 0.0314
4 0.0310 0.0318 0.0325 0.0309 0.0315
5 0.0310 0.0319 0.0324 0.0309 0.0315
6 0.0310 0.0319 0.0325 0.0309 0.0316
7 0.0311 0.0319 0.0326 0.0310 0.0316
8 0.0310 0.0319 0.0325 0.0310 0.0316
9 0.0311 0.0319 0.0326 0.0310 0.0316
10 0.0311 0.0319 0.0326 0.0310 0.0316

7. Control variates

The upper bound was obtained by constructing a hedging portfolio
for the portfolio, if this portfolio is a good hedge then we can expect
the portfolio consisting of the difference to have much lower variance
than the original product. This means that if we price the difference
portfolio according to Monte Carlo then we can expect the simulation
to converge much faster than for the original product. In other words,
we can use the trading strategy in European swaptions as a control
variate for the Monte Carlo simulation.
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Whilst the fact that it is generally slower to find the upper bound
than the lower bound means that this will not buy us much when trying
to price the product, it does mean that if one wishes to run many
different Monte Carlo simulations, for example in order to compute
Greeks, then the technique becomes worthwhile. As we are pricing
using low-discrepancy numbers and using Brownian bridge techniques
we present a convergence table rather than standard error numbers as
it is not clear what a standard error estimate means when using low
discrepancy numbers. We do not address the issue of whether the use
of a control variate could speed up estimation of the exercise boundary,
but only look at the convergence of the price given an exercise strategy.

We present data in the same format as the previous section. We give
one example. There are ten half yearly rates starting in half a year.

Swaption Vols
A -1% a 0% 11.34%
B 0% b 4% 11.53%
C 30% c 50% 11.69%
D 6% d 10% 11.83%

beta 0.1 11.95%
PayReceive pay 12.05%

Strike 5.91% 12.13%
12.20%
12.24%
12.30%

Paths Unhedged price Hedged Price
1048576 0.00919 0.00920
524288 0.00920 0.00920
262144 0.00920 0.00919
131072 0.00920 0.00919
65536 0.00921 0.00919
32768 0.00925 0.00921
16384 0.00924 0.00922
8192 0.00919 0.00922
4096 0.00922 0.00925
2048 0.00931 0.00926
1024 0.00927 0.00920
512 0.00927 0.00921
256 0.00889 0.00910
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The price of the Bermudan is correct to within a basis point after only
256 paths.
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