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Abstract
This paper presents a number of new theoretical results for replication of barrier options
through a static portfolio of European put and call options. Our results are valid for options
with completely general knock-out/knock-in sets, and allow for time- and state-dependents
volatility as well as discontinuous asset dynamics. We illustrate the theory with numerical
examples and discuss the practical implementation.

1. Introduction
The classical approach to the hedging of derivatives involves maintaining an ever-

changing position in the underlying assets. The construction of such dynamic hedges is a
key argument in the seminal paper by Black and Scholes (1973), and is a standard
technique for practical hedging of derivative products. A literal interpretation of dynamic
hedging strategies, however, requires continuous trading which would generate enormous
transaction cost if implemented in practice. Instead, most real-life trading strategies
involve time-discrete rebalancing, exposing the hedger to some risk, particularly if the
gamma of the option hedged is high.

For some derivatives, it turns out that it is possible to construct a hedge that does
not involve continuous rebalancing. Such static hedges normally involve setting up a
portfolio of simple, European options (typically puts and calls) that is guaranteed to
match the payout of the instrument to be hedged. It is fair to say that less is known about
static hedging than dynamic hedging, although recent papers have made some progress.
Derman et al (1995) describe a numerical algorithm for single barrier options in the
context of a binomial tree representing the evolution of a stock with time- and level-
dependent volatility. Carr and Chou (1997) and Carr et al (1998) examine in detail the
static replication of barrier options in the Black-Scholes (1973) model. For martingale
stock processes, Brown et al (1998) demonstrate how to set up model-free over- and
underhedges for certain simple classes of single-barrier options.

The approach in this paper differs from previous literature in a number of ways.
First, we derive exact, explicit expressions for the composition of the statically
replicating portfolio. Second, we are able to derive static hedging portfolios not only for
simple, continuously monitored barrier options, but allow for almost arbitrarily
complicated knock-out regions and terminal payouts (and can easily handle curved,
discrete, partial, and double barrier options). Third, our results are extended to hold for
asset dynamics which involve both jumps as well as time- and state-dependent diffusion
volatility.
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All of our theoretical results are derived under the assumption (or approximation)
that European options are traded in inelastic supply for all maturities and strikes. This is
not true in practice and we therefore devote a section of the paper to treating some issues
that arise in the practical implementation of the static hedging strategies suggested in the
first part of the paper.

The rest of the paper is organized as follows: Section 2 derives static hedges for
general barrier options written on an asset with a volatility that depends deterministically
on time and the asset itself. In Section 3, we extend our results to the case of
discontinuous asset dynamics. Section 4 investigates some issues relating to the practical
implementation of static hedging strategies and presents numerical results. Finally,
Section 5 contains the conclusions of the paper. An Appendix demonstrates how the
results in the paper – which are derived using probabilistic techniques – can alternatively
be proven by the more traditional tools of differential forms and circulation theorems.
Another Appendix briefly considers the case of stochastic volatility and demonstrates that
our technique does not lead to a static hedge for this case. A numerical example in
Section 4.1. does, however, illustrate how a static over- and underhedges are sometimes
possible, even when volatility is stochastic.

Finally, let us point out that the study at hand is largely applied in nature. As our
main focus are new formulas and the ideas behind them, we have de-emphasized
technicalities and set the paper in a relatively loose mathematical frame. In particular, we
have put little emphasis in the specification of technical regularity conditions, which we
trust that the reader can supply herself.

2. Deterministic Volatility
In this section we derive static hedging portfolios for barrier option written on an

underlying stock (or foreign exchange rate) characterized by a local volatility that is only
a function of time and stock price level. Such asset price dynamics are discussed in detail
in Dupire (1994). For ease of notation (and without loss of generality) we make the
simplifying assumption that all interest rates and dividend yields are zero1. Next we
assume that the underlying stock (or foreign exchange rate) evolves according to

dS t
S t

t S t dW t
( )
( )

, ( ) ( )= σb g  , (1)

where σ  is a continuous, deterministic function, and W  is a Brownian motion under the
risk-neutral measure. We assume that σ  is positive and sufficiently regular for (1) to
have a unique, non-explosive, positive solution.

We further assume that we can trade European options on the stock with all
maturities and strikes. We will let C T K( , )  and P T K( , ) denote the time 0 prices of
                                                       
1 Notice, that if rates and dividends are non-zero but deterministic, one can easily represent the evolution of
the underlying as in (1) by simply modeling the forward stock price. In this case barrier levels must be
represented in terms of forward stock levels and terminal payments and rebates in terms of their discounted
values. As our approach is valid for arbitrary barrier shapes (not just constant barriers) such transformations
can easily accomodated in the framework of this paper.
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European call and put options, respectively, with maturity T  and strike K . We let
C t T K( ; , ) and P t T K( ; , )  denote the same options’ prices at time t. We note that
European option prices are linked to the risk-neutral marginal density of the stock price.
Specifically, if we let f T S( , )  denote the time 0 marginal density of S T( )  taken in S, we
have that

f T S E S T S C T S P T S

f T S dS E C T B P T B

f T S dS E C T B P T B

KK KK

B S T B K K

B

S T B K K

( , ) ( ) ( , ) ( , ),

( , ) ( , ) ( , ),

( , ) ( , ) ( , ),

( )

( )

≡ − = =

= = − = −

= = + =

∞
≥

≤

z
z

δb g
1 1

1 1
0

(2)

where subscripts denote partial derivatives, δ( )⋅  is Dirac’s delta function, E[ ]⋅ is the time
0 risk-neutral expectations operator, and 1A  denotes the indicator function on the set A .

2.1. Continuous Barriers.
Consider the function F F t S= ( , ) defined as the solution to

F t S t S S F t S t T S B t
F t S R t t T S B t
F T S g S S

t SS( , ) ( , ) ( , ) , , ( )
( , ) ( ) , , ( )
( , ) ( ) ,

+ = < >
= < ≤
= ∀

1
2

2 2 0σ
(3)

where g is function of the stock price only, and B  is a continuous function of time on
[0,T]. We recognize (3) as the PDE formulation of the problem of pricing a down-and-out
barrier option with time-dependent rebate R(t) and time-dependent continuously observed
barrier level, B(t). Here, and throughout the paper, we assume that R is a continuous,
differentiable function2. Note that we let g define the terminal value of F T S( , ) for all
values of S, including the knock-out region S B T≤ ( ) . So, if we for example consider a
down-and-out call option then

g S S K R TS B T S B T( ) ( ) ( )( ) ( )= − ++
> ≤1 1

It should be stressed that F(t) is the value of a barrier option initiated at time t, i.e. if
G t s( ; )  is the time t value of a barrier option originally issued at time s t≤ , then
F t G t t( ) ( ; )= . This means that F, unlike G, is not a martingale under the risk-neutral
measure (as will be evident shortly).

Using (3) and the fact that F is continuous, but not generally continuous
differentiable, at S B= , we get from Tanaka’s formula (Karatzas and Shreve 1991) and
(3) that

                                                       
2 This assumption is made mainly for convenience. In most cases, it is possible to allow for rebate functions
with kinks and even discontinuities by interpreting derivatives of R in terms of step- and delta-functions.
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dF t S t F t S t S t t S t dW t R t dt
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(4)

where R dR dt' /=  is assumed to exist, and F t B tS , ( ) +b g is the limit of F t B tS , ( ) + εb g for
ε B 0.

Integrating (4) in the time-dimension yields

g S T F S F t S t t S t S t dW t R t dt

F t B t t B t B t S t B t dt

S t B t
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Taking expectations and rearranging yields the relation

F S E g S T R t E dt

t B t B t f t B t F t B t dt

S t B t

T

S

T

0 0 1
0

1
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0

, ( ) ( ) ' ( )
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b g b g b g

= −
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<z
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Notice that we have here used the fact that FS  is a deterministic function around the
barrier; had the stock volatility been stochastic, this would not hold3. The formula above
relates the barrier option price to the volatility and the (risk-neutral) marginal density.
Interestingly, the first passage-time densities and conditional probabilities are not directly
involved here. The marginal density can be synthesized using options positions by use of
(2). We get

F S g S P T S dS R t P t S dSdt

t B t B t F t B t P t B t dt

KK K K

B tT

S KK

T

0 0
0 00
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0

, ( ) ( ) ( , ) ' ( ) ( , )

, ( ) ( ) , ( ) , ( ) ,

( )b g
b g b g b g

= −

− +

∞z zz
z σ

(5)

where we have arbitrarily chosen to synthesize the density from put options. We note that
(5) expresses the value of a barrier option as a linear combination of puts, specifically:

- long a continuum { ( )}g S S0< <∞  of T-maturity butterfly put spreads P T SKK ( , ) ;
- short a double continuum { '( )}R t t T0< <  of butterfly put spreads P t SKK ( , ) with strikes

in [ , ( )]0 B t ;
- short a continuum { ( , ( )) ( ) ( , ( ) )}σ t B t B t F t B tS t T

2 2
0+ < <  of butterfly spreads with

strikes along the barrier.

Consider now using the put portfolio suggested by (5) as a hedge for a barrier option
G t( ; )0  initiated at time 0. Specifically, if τ = =inf{ : ( ) ( )}t S t B t  is the first time the stock
touches the barrier, we hold the put portfolio up to τ ∨ T  and, if τ < T , sell off the
                                                       
3 Appendix B takes a closer look at stochastic volatility models.
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outstanding portfolio at the time the barrier is breached. As F t G t( ) ( ; )= 0  up to (and
including) the minimum of τ  and T , such a strategy would clearly generate the correct
cashflow at τ ∨ T . For the put portfolio to qualify as a static hedge, we need to verify that
the portfolio does not generate any other cashflows at times t T< ∨τ . But as all the put
positions with maturities less than T only involve strikes at or below the barrier, clearly
no such cashflows are generated; whence, the put portfolio in (5) qualifies as a static
hedge.

While (5) is a static hedge, it is not necessarily the most convenient one. In
particular, we notice that the second term in (5) can be simplified to

R t P t S dt R t P t S dtK K

B tT

K

T
' ( ) ( , ) ' ( ) ( , )

( )

00 0zz z= ,

which represents a position of put spreads along the barrier. This position does not
generate cash-flows before the option matures or knocks out4 and the hedge remains
static. We can simplify the hedge even further by relating the butterfly spreads to
calendar spreads through the forward equations of Dupire (1994):

0 1
2

2 2= − +C T K K CT KKσ( , ) ;  0 1
2

2 2= − +P T K K PT KKσ( , )  .

We can now rewrite (5) as simply

F S g S P T S dS F t B t P t B t dt R t P t B t dtKK S T

T

K

T
0 0

0 0 0
, ( ) ( ) ( , ) , ( ) , ( ) ' ( ) , ( )b g b g b g b g= − + −

∞z z z (6)

As calendar put spreads on the barrier do not produce cash-flows as long as the barrier
option is “alive”, (6) represents a static hedge, where the barrier option is now replicated
by a European option paying g  at maturity, minus the (deterministic) continuum
{ , ( ) }F t B tS t T+ < <b g 0  of calendar spreads along the barrier, and minus a continuum
{ '( )}R t t T0< <  of put spreads along the barrier. As mentioned earlier, the options positions
must be unwound when the barrier is hit. If the model is correct, i.e. the delta ( FS ) along
the barrier of alive options is computed correctly, then the unwind gain equals the rebate.

As written in (6), hedging the European payout paying g is accomplished through
butterfly spreads. Alternatively, we assemble the European payout directly from the
“hockey-stick” building blocks of puts and calls. Following Carr and Chou (1997), this
can be accomplished by writing

g S g g S g K K S dK g K S K dK( ) ( ) ' ( )( ) ' ' ( )[ ] ' ' ( )[ ]= + − + − + −+ +∞z zκ κ κ
κ

κ0

for some arbitrary positive constant κ. Setting κ = −B T( ) , and integrating over the
density of S yields

                                                       
4 It is obvious from (2), that a decomposition using call spreads is possible, too. However, this would not
constitute a static hedge, as the call positions would generate random cash-flows in the “alive” region of the
barrier option.
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E g S T R T P T B T g K C T K dK

g B T C T B T C T B T g B T

K B T

K

( ( )) ( ) , ( ) ' ' ( ) ( , )

' ( ) , ( ) , ( ) ( ) .
( )

= +

+ + − +
+

∞zb g
b g b g b g b g

(7)

(7) represents a static hedge consisting of a continuum of calls with strikes above the
barrier, plus a finite number of calls and put/call spreads with strikes at the barrier. Notice
that if g has kinks or discontinuities, the derivatives of g in (7) must, of course, be
interpreted in the sense of distributions.

It is worth noting that (6)-(7) only requires model-based computation of the delta
along the barrier, for instance by a finite difference scheme (see e.g. Andersen and
Brotherton-Ratcliffe 1998 for a discussion of the implementation of the dynamics (1) in a
finite difference scheme); all other terms in the hedging portfolio can be deduced from
the market prices of standard European options.

The technique outlined above is easy to apply to many types of barrier-options,
including “in”-style barrier options. Sometimes we can also rely on parity results; for
instance, a down-and-in option can be written as a European option minus a down-and-
out option (with no rebate), whereby the results derived above can directly be used to
statically hedge a down-and-in option. Applications to double barrier options are simple
as well, and would merely involve including in (6) an extra integral of call maturity-
spreads and an extra integral of call spreads along the second barrier5. We will return to
more general barrier shapes in a later section.

2.2. Discretely Monitored Barriers
Consider now the case when the down-and-out barrier of the previous section is

only monitored at a discrete set of dates:

0 0≤ < < <t t TnK  .

The PDE formulation of the pricing problem is

F t S t S S F t S t S t S t t S B t

F t S R t S B t

F T S g S S

t SS i i

i i i

( , ) ( , ) ( , ) , ( , ) ( , ) | { }, ( )

( , ) ( ) ,

( , ) ( ) ,

+ = ∉ ∈ ≤
= ≤
= ∀

1
2

2 2 0σ l q
b g (8)

Since the option price is discontinuous in the time-dimension across every barrier time ti

for all S B ti≤ ( ) , Ito expanding the function defined by (8) gives us

                                                       
5 For up-style barriers a static hedge representation using calendar spreads (such as (6)) must be based on
calls rather than puts, to prevent the hedge from generating cash-flows before the barrier options matures or
knocks out. Such considerations are not necessary for the representation (5), which can be based on either
puts or calls.
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dF t S t F t S t t S t S t dW t

t t F t S t R t dt

t t S t B t S

i S t B t i i i
i

n

i

i i

, ( ) , ( ) , ( ) ( ) ( )

( ) [ , ( ) ( )] .

{ } ( ) ( )

( ) ( )

b g b g b g
b g

=

+ − + −

∉ >

≤
=
∑
1

1
1

or σ

δ
(9)

Integrating, taking expectations, and rearranging yields

F S E g S T E F t S t R ti i i S t B t
i

n

i i
0 0 1

1

, ( ) ( ) [ , ( ) ( )] ( ) ( )b g b g b g= − + − ≤
=
∑  .

The expectations can be substituted with integrals and European option spreads to give us

F S E g S T F t S R t C t S dSi i KK i

B t

i

n
i0 0

0
1

, ( ) ( ) [ , ( )] ,
( )b g b g b g b g= − + −z∑

=
 . (10)

We have now arrived at an equation that explicitly specifies a static hedge for the barrier
option. As for the continuous barrier case we need a position that replicates a European
payout g S( )  (for instance the put-call portfolio (7)) and a number of butterfly spread
positions along the barrier6. The number of spreads that we need is again dependent on
the value of the barrier option along its barrier. As in (6), only barrier option values along
the barriers depend directly on the model for stock price evolution.

2.3. A General Result
The results in Sections 2.1 and 2.2 have been proved by Tanaka’s formula. As one

would expect, it is possible to prove the results by more traditional methods. Appendix A
shows how this can be done through the usage of differential forms and circulation
theorems. The circulation theorems shown in the Appendix allow for a compact and
completely general representation of barrier options with almost arbitrarily complicated
knock-out regions. Such extensions can also be accomplished using the Tanaka formula.
Specifically, we can summarize the results of the previous two subsections in the
following theorem (where we arbitrarily have used European calls as the hedging
instruments):

Theorem I
Suppose the underlying stock evolves according to (1) and consider an option that has
the value g S T( )b g at time T  and knocks out on a set B T⊂ = × ∞Ω Ω, [ , ] ( , )0 0 , with a
once differentiable rebate function, R , that only depends on time. Assuming that Ω \ B  is
an open submanifold in Ω  , a static hedge for the option value is defined by

                                                       
6 Obviously, we can use the same trick that lead to (7) to rewrite the position in butterfly spreads to a more
“direct” position in put and call options.



8
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∞
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∞
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where ∂B  and int B  denote respectively the boundary and the interior of B ,
R dR dt' /= , and where we use the convention F T F T( , ) ( , )+ ⋅ = ⋅ . Further, we define

∂ = ∈ ∂ ∃ > + ∈ ∂ ∀ <

∂ = ∂ ∂

B t S B t S h B h

B B B

( , ) : ( , ) , ,

\ ,

ε ε0m r

and if A ⊂ Ω , we let

A t S t S A

A S t T t S A

( , ) ( , ) ( , ) ,

( , ) [ , ] ( , ) .

⋅ = ∈ ∞ ∈

⋅ = ∈ ∈

0

0

m r
m r

While Theorem I looks complicated, it is really just simple extension of the
previous results. In particular, the barrier price is split into a contribution from the
terminal maturity (first term), the non-vertical parts of the barrier (second term), the
vertical parts of the barrier (third term), and the rebate (fourth term). Notice that the
second term involves both F t BS ( , )+  and F t BS ( , )− ; the former is required for down-and-
out portions of the barrier, the latter for up-and-out parts of the barrier. Also, the technical
requirement that Ω \ B  is a submanifold is simply to ensure an alive-region that is
genuinely two-dimensional, ruling out arbitrarily crinkly or even fractal barriers.

As we have seen in the previous two sections, it is often possible to simplify the
expressions above by either completing integrals7 or applying the forward equation of
Dupire (1994). However, care must be taken to ensure that the resulting expressions
represent static hedges with no cash-flows being generated on the “alive” region of the
option.

3. Discontinuous Asset Dynamics
In this section we extend our static hedging results to the case when the process

(1) is extended to allow the stock to jump. Specifically, we will assume that the stock
evolves according to

                                                       
7 Specifically, as R is only a function of time, it is clear that we can write the plane integral over the interior
of B (last integral in the Theorem) as a path integral over the boundary of B.
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dS t
S t

t m t dt t S t dW t J t dN t
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( )
( ) ( ) , ( ) ( ) ( ) ( )

−
= − + + −λ σb g b g1 (11)

where N  is a Poisson process with deterministic intensity λ( )t , and { ( )}J t t≥0  is a
sequence of independent positive random variables, each with distribution given by the
densities { ( , )}ζ t t⋅ ≥0 . We assume that W, N, and J are independent of each other, and let
m t E J t( ) [ ( ) ]= − 1  denote the mean jump.

Let us now consider the case of a continuous down-and-out barrier option
F t S t, ( )b g, equivalent to the discussion in Section 2.1. We will need the definition

∆F t F t S t J t F t S t( ) , ( ) ( ) , ( )= −b g b g.
Ito-Tanaka expansion of F  yields
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where M t( ) is a (discontinuous) martingale. Integrating over time and taking
expectations yields
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Using (2), we get
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This shows that the our static replication results can be extended to the case of jumps. In
this case the static replicating portfolio also includes an extra term from below the
barrier. To set up the static hedge, we need a model to compute FS  at the barrier, as well
as the quantity E F[ ]∆  below the barrier.

Andersen and Andreasen (1999a-b) show that under the model assumptions
above,

0
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where λ λ' ( ) ( ) ( )t t m t= +1b g and
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The quantities E C'[ ' ]∆  and E P'[ ' ]∆  can be interpreted as spreads on a continuum of
European options around a certain strike. The fact that these spreads contain strikes that
lie above the barrier, we cannot generally use (13) to eliminate the term
1
2

2 2σ( , ( )) ( )t B t B t CKK  in (12) without introducing cash-flows on the “alive” region of the
barrier and thereby destroying the static hedge. Nevertheless, if ζ  is known, (13) does
provide us with a way to compute the volatility function σ( , ( ))t B t  in (12) from quoted
options prices; see Andersen and Andreasen (1999a-b).

We note that the hedging expression for discrete barriers (10) is unaffected by
jumps. This together with (12) suggest the following generalization of Theorem I:

Theorem II
Suppose the underlying stock evolves according to (11) and consider a barrier option
similar to the one in Theorem I. A static hedge for the option is defined through:
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=
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∈ ∂ ⋅
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z

σ

λ ∆

where the notation is the same as in Theorem I.

4. Stability and Reality
The results so far have relied on two key assumptions: a) the model of stock price

evolution is a perfect description of reality; and b) put and call options exist in unlimited
supply, at all strikes and maturities. In practice, neither assumption is valid, making the
construction of perfect hedges impossible. In this section we will deal with these issues,
and also consider the problem (which also affects regular dynamic hedging) of certain
barrier option contracts having deltas at the barrier that grow infinitely large as the option
approaches maturity.

4.1. Model Uncertainty
A theory for model-free hedging of simple barrier options on martingale stock

processes is developed in Brown et al (1998). We will take another approach in the spirit
of Avellaneda et al (1995) which involves an assumption of the stock volatility being
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stochastic but restricted to move within a specified band. For simplicity, we further
assume that there are no jumps in the underlying stock. While the technique suggested
here is general, let us consider the concrete example of a down-and-out put option with
strike K, no rebate, and with a discretely monitored constant barrier B. Letting { }ti  denote
the barrier observation dates (which do not include the terminal maturity T) and
proceeding as in Appendix B, equation (B.2), we get that the price of this barrier option
can be written as

F t P t T K E F t S t S C t t S dSt i i KK i

B

i t ti

( ) ( ; , ) [ ( )| ( ) )] ( ; , )
:

= − + =z∑
≥ 0

 . (14)

As discussed in Appendix B, this equation does not represent a static hedge.
Suppose at time 0, we have sold the barrier option and put on a hedge against it

using the hedging equation (14), but with the term E F t S t St i i[ ( )| ( ) )]+ =  approximated by
a model with some deterministic volatility function σ( , )t S . Let the corresponding barrier
option price function be denoted F t S( , ) .

Equation (14) shows that if we hit the barrier at time t j  then our profit is given by

E F t S t S F t S C t t S dSt i i i KK j i

B

i j
j

( ) ( ) ( , ) ( ; , )+ = − +z∑
≥ 0

Hence, we are guaranteed a profit (and have thus created an overhedge) if for all barrier
observation times F F≤  for S B≤ . Now assume that the true volatility is limited to
move in a certain band, i.e.

σ ∈ a b,

We are guaranteed to make a profit if we initially calculate the option price at each ti +
from the function defined as the solution to the control problem

F t E g S T
a b t T( ) min ( )

[ , ]
=

∈ ≥ϑ
ϑ

τb g1

where τ  is the larger of T and the first (discretely monitored) passage time to the barrier
and Eϑ[ ]⋅ denotes expectations taken under the probability measure where the
instantaneous volatility of the stock is ϑ t S t, ( )b g, ϑ  being a deterministic function. The
solution of this problem is given as the solution to the Bellman equation

0 1
2

2 2= + < >
∈
min , ,

[ , ]ϑ
ϑ

a b t SSF S F t T S B , (15)

subject to boundary conditions
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F T S K S

F t S i S Bi

, ( )

( , ) , , .
b g= −

= ∀ ≤

+

0

The optimal solution is the “bang-bang” type control

ϑ =
>
<

RST
a F
b F

SS

SS

,
,

0
0

 (16)

It is important to note that we only use the control problem outlined above to identify the
“worst-case” barrier option price along the discrete barriers. Once these are determined,
one can use market prices of European option together with the hedging equation (10) to
price the option. It is also worth noting that in this particular case, the hedge suggested by
the above is the one based on minimizing, rather than maximizing, option prices. This is
due to the fact that the static hedge for the option in question involves selling off
contingent claims with positive price.

Equations (15) and (16) together define a non-linear PDE which generally is
beyond analytical treatment. However, the “bang-bang” nature of the control strategy
makes a numerical solution fairly straightforward, see for example the treatment of
“discrete” passport options in Andersen, Andreasen, and Brotherton-Ratcliffe (1998). The
basic idea is to assume that the control, ϑ , can only be changed at the discrete times:

s nT N n Nn = =/ , , ,1K

Then for large N , the true solution to (15)-(16) is well approximated by the joint solution
of the interdependent equations

F a S F F b S Ft
a

SS
a

t
b

SS
b+ = + =1

2
2 2 1

2
2 20 0;

on { , }0 < < >t T S B , subject to

F T S F T S K S

F t S F t S i S B

F s S F s S F s S F s S n N S

a b

a
i

b
i

a
n

b
n

a
n

b
n

( , ) ( , )

( , ) ( , ) , ,

( , ) ( , ) min ( , ), , ) , , , ,

= = −
= = ∀ ≤
= = + + = >

+b g

c h
0

0 0K

Using the same technique as outlined above, it is possible to also compute an
underhedge for the option, i.e. if we let

F t E g S T
a b t T( ) max ( )

[ , ]
=

∈ ≥ϑ
ϑ

τb g1

then over- and underhedges (V  and V , respectively) are given by
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V t P t T K F t S C t t S dSi KK i

B

i t ti

( ) ( ; , ) ( , ) ( ; , )
:

= − +z∑
≥ 0

 ,

V t P t T K F t S C t t S dSi KK i

B

i t ti

( ) ( ; , ) ( , ) ( ; , )
:

= − +z∑
≥ 0

 .

with

V t F t V t( ) ( ) ( )≥ ≥ .

Table 1 below reports the prices of static under- and overhedges of a discretely monitored
down-and-out put option when the band of volatility is varied, and we assume that we
initially can buy and sell European options at the mid volatility. For reference we also
report the time 0 values of F  and F . The parameters are: T K B= = =1 100 90, , ,
R t Si= = =0 0 25 05 0 75 0 100,{ } { . , . , . }, ( ) . The finite difference grid used to generate Table
1 had N = 500 time-steps and 500 steps in the (log-) asset direction.

Table 1: Under- and overhedge portfolios for down-and-out put
T K B= = =1 100, 90, , R t Si= = =0, 0 25 0 5 0 75 0) 100{ } { . , . , . }, (

Volatility band
[ , ]a b

Under hedge
V (0)

Over hedge
V (0)

Min price
F (0)

Max price
F (0)

[ 0.250; 0.250 ] 1.5281 1.5281 1.5281 1.5281
[ 0.245; 0.255 ] 1.4769 1.5789 1.4135 1.6605
[ 0.240; 0.260 ] 1.4233 1.6214 1.3015 1.7963
[ 0.230; 0.270 ] 1.3210 1.7137 1.0841 2.0684
[ 0.220; 0.280 ] 1.2011 1.7919 0.9017 2.3851
[ 0.210; 0.290 ] 1.0733 1.8636 0.7406 2.7295
[ 0.200; 0.300 ] 0.9375 1.9288 0.5997 3.1016
[ 0.175; 0.325 ] 0.5833 2.0677 0.3238 4.1149
[ 0.150; 0.350 ] 0.1594 2.1653 0.1534 5.3250
Note: at time 0 all European options are assumed to be trading at mid volatility

While the hedging bands suggested in Table 1 are not particularly tight, the Table
demonstrates that our static hedging technique enables us to narrow the bands [ , ]F F  that
we would get from a direct application of the uncertain volatility approach. As the
uncertain volatility approach essentially bounds the cost of delta hedging under stochastic
volatility this suggests that our hedging technique is useful even in the case of stochastic
volatility.

Let us finally point out, that the general technique outlined in this section is fairly
easy to apply even in the case where there is more than one uncertain parameter (for
example in a jump model with uncertain jump intensity). Designing over- and
underhedges, however, will always require a case-by-case study of the properties of the
hedging equation.
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4.2. Finite Number of European Options
In practical applications we only have a finite and often sparse set of actively

traded options. This means that it can be difficult to put together a portfolio that closely
enough replicates the barrier option under consideration. As in Section 4.1, it is useful to
consider the alternative of setting up static over- or underhedges. As a first example,
consider the case of a down-and-out call with strike K, no rebate, and a discretely
monitored constant barrier B. The barrier observation dates are { }ti . The hedging
equation for this option contract is

F C T K F t S C t S dSi KK i

B

i

( ) ( , ) ( , ) ( , )0
0

= − +z∑

It is clear that in order to overhedge the option at time 0, we need to sell off a profile,
pi ( )⋅ , that satisfies

p S F t S S B
p S S B

i i

i

( ) ( , ) ,
( ) ,

≤ ≤
≤ >0

for each barrier observation date ti . If we for maturity ti  can trade European call options
with strikes K Ki

m
i

i1 , ,K , we get that the cheapest overhedge of the option corresponds to
the profile

p S a S Ki j
i

j
i

j

( ) ( ) ,= − +∑

where the weights { }a j
i  are the solution to the linear programming problem:

max ( , )

( ) ( , ) ,

{ }a
j
i

i j
i

j

j
i

j
i

j
i S B

j
i

a C t K

a S K F t S S

∑
∑ − ≤ ∀+

≤s.t. 1

After discretizing in the stock price dimension the linear problem can be solved
numerically using the simplex algorithm, see for example Press et al (1992).

Let us now turn to a slightly more complicated example where the option has a
continuous down-and-out barrier at a constant level B. Assume that the rebate is constant
over time, but allow for a general payout g. We assume that we can purchase enough T-
maturity options at various strikes to allow for an overhedge of g. However, we can only
transact in B-strike European put options with a finite number of maturities
0 0 1 2 1= =−T T T T T Tn n, , ,..., ,  Assuming deterministic volatility of the underlying stock, the
hedging equation is, from (6),
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F t S t E g T F u B P t u B du

E g T F T B P t T B F u B P t u B du

E g T F T B P t T B F u B P t u B du

t S Tt

T

t S Stt

T

t S Stt T

T

i T t

n

i

i

i

, ( ) ( ) , ; ,

( ) , ( ; , ) ( , ) ( ; , )

( ) , ( ; , ) ( , ) ( ; , )
:

b g b g b g
b g
b g

= − +

= − + + +

= − + + +

z
z
z∑ ∧> − 1

where the second equation follows from integration by parts and the fact that
P t t B( ; , ) = 0 when S t B( ) > . For our process assumption, European option prices are
increasing in maturity, whereby we can now write

V t F t S t V t( ) , ( ) ( )≤ ≤b g , (17)

where

V t E g T F T B P t T B F T B F t T B P t T Bt S S i S i i
i T t

n

i

( ) ( ) , ( ; , ) ( , ) ( , ) ( ; , )
:

= − + + + − ∧ +−
>

∑b g 1 ,

V t E g T F T B P t T B F T B F t T B P t T Bt S S i S i i
i T t

n

i

( ) ( ) , ( ; , ) ( , ) ( , ) ( ; , )
:

= − + + + − ∧ +−
>

∑b g 1 ,

T
T F T B F t T B
t T F T B F t T Bi

i S i S i

i S i S i

=
+ ≤ ∧ +

∧ + > ∧ +
RST

−

− −

, ( , ) ( , )
, ( , ) ( , );

1

1 1

T
t T F T B F t T B
T F T B F t T Bi

i S i S i

i S i S i

=
∧ + ≤ ∧ +

+ > ∧ +
RST

− −

−

1 1

1

, ( , ) ( , )
, ( , ) ( , ).

To test the tightness of the above bounds on F consider the special case of a down-and-
out call option with strike K = 100, maturity T = 1, spot asset price S( )0 100= , and
barrier B = 90. We assume that the stock volatility is constant at σ = 0 25. . For this case, a
closed-form solution exists for the option (e.g. Merton 1973), and all terms in (17) can be
computed without resolving to numerical methods. Notice also that here
F T B P t T BS , ( ; , )+ =b g 0, E g T C t T Kt[ ( )] ( ; , )= , and FSt ≤0  at the barrier whereby
T t Ti i= ∧ − 1 and T Ti i= . Table 2 below shows the bounds in (17) as a function of the
number of equally spaced put maturities (n). For reference we also report the value of a
hedge based on a simple mid sum approximation to the integral.

4.3. Unbounded Delta
For many barrier options, the terminal payout function g is discontinuous at the

barrier, resulting in an unbounded delta at the maturity of the barrier option. Common
examples include for instance continuously monitored down-and-out puts with strike
above the barrier, and continuously monitored up-and-out call options with strike below
the barrier. The unbounded delta of such “in-the-money” barrier options is not only a
problem for traditional dynamic delta hedging, but also affect our static hedges which
involve option spread positions of size proportional to the delta at the barrier.
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Let us focus on the specific example of an up-and-out call option with a flat
continuous barrier B, no rebate, and a strike K B< . Our hedging equation is

F C T K C T B B K C T B F t B C t B dtK S T

T
( ) ( , ) ( , ) ( ) ( , ) ( , ) ( , )0

0
= − + − + −z .

Here we use calls in the replicating portfolio to avoid cash flows before the option
expires or knocks out. Since F t BS ( , )− → − ∞  for t TA , we would need to short an infinite
number of maturity spreads in the hedge portfolio. To circumvent this problem we note
that if we move the barrier slightly upwards by ε > 0  without changing the terminal pay-
off8, we not only get an overhedge but also are able to bound the delta at the barrier. In
fact, the delta of this option at S = B will tend to zero as we approach maturity. The
resulting overhedge is

F C T K C T B B K C T B F t B C t B dtK S T

T
( ) ( , ) ( , ) ( ) ( , ) ( , ) ,0

0
= − + − + + − +z ε εb g .

The choice of ε  is a matter of compromise: the larger ε  is, the more expensive the hedge
becomes; the smaller ε  is, the larger (in absolute magnitude) the delta can become.

A more scientific approach to the problem of unbounded deltas has been
suggested by Wystup (1997), and Schmock et al (1999). The authors impose constraints
on the delta and shows that the cheapest super-replicating claim that satisfies this
constraint can be found as the solution to a stochastic control problem. Interestingly,
Wystup (1997) points out that the simple strategy of moving the barrier is a close
approximation of the “correct” strategy. Wystup (1997) also gives an approximate link
between the size of the barrier shift (ε  above) and the constraint on delta.

                                                       
8 That is, we keep g S S K S B( ) ( )= − +

<1  .
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Table 2: Under- and overhedging of down-and-out call
T K B= = =1 100, 90, , R S= =0, 0) 100(

n
Underhedge

V (0)
Mid
Sum

Overhedge
V (0)

∞ 7.1791 7.1791 7.1791
365 7.1743 7.1790 7.1838
183 7.1695 7.1790 7.1885
122 7.1648 7.1791 7.1933
91 7.1601 7.1791 7.1980
73 7.1553 7.1791 7.2028
52 7.1458 7.1791 7.2123
37 7.1317 7.1820 7.2266
18 7.0850 7.1826 7.2747
12 7.0395 7.1846 7.3241
8 6.9749 7.1912 7.4019
6 6.9151 7.2028 7.4850
4 6.8086 7.2404 7.6665
3 6.7168 7.2948 7.8672
2 6.5660 7.4456 8.3195

5. Conclusion
This paper has discussed the construction of static hedges for generalized barrier-

type claims on stocks following a jump-diffusion process with state- and time-dependent
volatility. The static hedge takes the form of a linear portfolio of European puts and calls
which exactly matches the cash-flow from the option to be hedged. Allowing for time-
dependent rebates, we have derived exact expressions for the composition of the hedging
portfolio, the form of which depends both on the option to be hedged as well as the stock
process. While our theoretical results assumes unlimited supply of European options and
perfect knowledge of stock dynamics, we have discussed several practical techniques to
relax such idealized assumptions.

Finally, we point out that while this paper has focused on barrier options, many
other option types allow for a decomposition in terms of barrier options which again
allow our hedging results to be applied. For instance, lookback and “ratchet” options can
be synthesized by a “ladder” of continuously monitored barrier options (see e.g. Carr and
Chou 1997), and can thus be statically hedged in our framework. Similarly, Bermudan
options can, after the determination of the early exercise frontier, be treated as a
discretely monitored barrier option (albeit with an asset-dependent rebate) and can be
hedged by a static position of puts and calls maturing at each exercise date.
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Appendix A
Derivation of hedging equation using differential forms

Let f t S( , )  denote the density of S satisfying (1), and let F t S( , )  be the value of a knock-
out option that knocks out on some set B T⊂ = × ∞Ω Ω, [ , ] ( , )0 0 , where B is closed in Ω .
Let B Bc = Ω \  denote the complement of B, and define the open set
$ \ {( , ): }B B t S t or t Tc= = =0 . We assume that $B  is a submanifold of Ω . Consider the

differential form

ω = +Q t S dS P t S dt( , ) ( , )  ,

Q t S f t S F t S( , ) ( , ) ( , )= −  ,

P t S
F t S

S
t S S f t S F

t S S f t S

S
( , )

( , )
( , ) ( , )

( , ) ( , )
= ∂

∂
−

∂
∂

1
2

2 2 1
2

2 2

σ
σc h

 .

Lemma A.1.
Let the submanifold $B  be as defined above, and let there be given a submanifold M B⊂ $ ,
with boundary curve ∂M  lying entirely in $B . Then

ω =
∂z 0
M

Proof:
Given the assumptions about the topology of M, proving Lemma A.1 is equivalent to
showing that ω  is closed in M, i.e. that

∂
∂

= ∂
∂

Q
t

P
S

for all ( , )t S M∈ . Now

− ∂
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+ ∂
∂
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QP + ∂
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2 2
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2
1
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σ σ

σ σ

( )

( )

On the submanifold M, F satisfies the backward equation (2), whereby the term
multiplying f is zero. By the Fokker-Planck equation, we also have, for t > 0,

∂
∂

− ∂
∂

=f
t

S f
S

1
2

2 2 2

2 0
( )σ

,  s.t. f S S S( , ) ( ( ))0 0= −δ
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whence the term on F is also zero.?

As an application of the Lemma, consider now the case of a down-and-out barrier option
where B t S S B t t T= ≤ ∈{( , ): ( ), [ , ]}0 , for some continuous, positive function B t( ) . Set

M t S S B t L t T= ∈ + ∈ −{( , ): [ ( ) , ], [ , )]}ε ε ε

for two parameters ε > 0  and L , where everywhere L B t> +( ) ε . Integrating around the
boundary of M, and letting L → ∞  and ε B 0 we get from the Lemma:

F S f T S F T S dS F t B t t B t B t f t B t dt

R t
t S S f t S

S
dt f t B t R t B t dt

B T S

T

S B t

T T

( , ( )) ( , ) ( , ) , ( ) , ( ) ( ) , ( )

( )
( , ) ( , )

| , ( ) ( ) ' ( )

( ) |

( )

0 0 1
2

2 2

0

1
2

2 2

0 0

= − + +

+
∂

∂
+

∞

= +

z z
z z

b g b g b g b g
c h b g

σ

σ

(A.1)

where we have used that

lim ( , ) ( , ) , ( )
ε εB +z =

0
0 0 0 0f S F S dS F S

B

L b g
and assumed that f t S( , )  dies out sufficiently fast when S is increased to make the
integral along S L=  vanish in the limit. In (A.1), we have introduced the rebate
R t F t B t( ) ( , ( ))= .

To complete the derivation, integration of the Fokker-Planck equation yields

1
2

2 2

0 0

∂
∂

= ∂
∂

= − + ∂
∂= z zS

t S S f t S
f t S

t
dS f t B t B t

t
f t S dS

S B t

B t B t
σ( , ) ( , )

( , )
, ( ) ' ( ) ( , )

( )

( ) ( )b g
Inserting this into (A.1) and performing integration by parts yields the desired result:

F S E F T S F t B t t B t B t f t B t dt

E R t dt

S

T

S t B t

T

0 0

1

1
2

2 2

0

0

, ( ) ( , ) , ( ) , ( ) ( ) , ( )

' ( ) .

|

( ) ( )

b g b g b g b g= − + +

−

z
z ≤

σ
.

While Lemma A.1 is completely general and can be applied to virtually all types
of barrier options, it is slightly inconvenient to work with and requires some
rearrangements of the final results to yield a static hedge. Below, we have listed a more
convenient form of Lemma A.1 expressed directly in terms involving puts P T K( , )9:

                                                       
9 By (2), Lemma A.2 can also easily be written in terms of call options.
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Lemma A.2.
Let everything be as in Lemma A.1, and define

ω σ

σ

= + +

= +

1
2

2 2

1
2

2 2

F t S t S S P t S P t S F t S dt P t S F t S dS

F t S t S S P t S dt P t S dF

S KK K t K S

S KK K

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

Then

ω
∂z =
M

0.

Proof:
Set Z t S F t S f t s ds

S
( , ) ( , ) ( , )= z0  and notice that

dZ t S F t S f t s dsdt F t S f t s dsdt
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z z
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 (A.2)

From Lemma 1, on M,

ω σ
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F t S t S S f t S dt F t S
t S S f t S

S
dt f t S F t S dS

F t S t S S f t S dt F t S f t s dsdt f t S F t S dS

F t S t S S f t S dt dZ t S dF t S f t s ds
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S t
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( , ) ( , )
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( , ) ( , ) ( , ) ( , ) ( , ) ( , )

c h

.

Here the first equation follows from the Fokker-Planck equation, and the second from
(A.2). As dZ  is an exact differential, the lemma follows by application of (2). ?

As a simple example, consider applying Lemma A.2. to a down-and-out option with a
single step-down discontinuity at t T= *. Specifically, we set

B t
B t t T
B t T t T

( )
( ),
( ),

*

*= ≤ ≤
< ≤

RST
1

2

0

where B1 and B2  are smooth functions, with B T B T1 2( ) ( )* *> + . Using the same type of
integration contour as in our previous example, we now get
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Time 0+ vertical piece:

P S F S dS F F SK S

B
( , ) ( , ) ( , ) , ( )

( )
0 0 0 0 0

0

∞

+z = − ∞ + b g
Piece along B t1( ) + , for t T∈ ( , )*0  (where dF R t dt= ' ( ) ):

1
2 10 1

2
1

2
1 0 1F t B t t B t B t P t B t dt P t B t R t dtS

T

KK K

T
, ( ) , ( ) ( ) , ( ) , ( ) ' ( )

* *

+ +
− −z zb g b g b g b gσ

Horizontal Piece from ( , ) , ( )* *t S T B T= − +1c h to ( , ) , ( )* *t S T B T= + +1c h:
P T B T F T B T R TK

* * * * *, ( ) , ( ) ( )1 1c h c he j+ −

Time T* +  vertical piece:

P T S F T S dS P T B T R T P T B T F T B T

F T S P T S dS

K SB T

B T

K K

KKB T

B T

( , ) ( , ) , ( ) ( ) , ( ) , ( )

, ( , )

* *

( )

( ) * * * * * * *

* *

( )

( )

*

*

*

*

+ = + − +

− +

+

+

z
z

1

2

1

2

2 1 1c h c h c h
c h

Piece along B t2 ( ) + , for t T T∈ ( , )* :

1
2 2 2

2
2

2
2 2F t B t t B t B t P t B t dt P t B t R t dtST

T

KK KT

T
, ( ) , ( ) ( ) , ( ) , ( ) ' ( )

* *
+ +

+z zb g b g b g b gσ

Time T- vertical piece:

P T S F T S dS F T P T B T R T g S P T S

F T g S P T S

K SB T K KKB T

KK

( , ) ( , ) ( , ) , ( ) ( ) ( ) ( , )

( , ) ( ) ( , )

( ) ( )2 2
2

0

+

∞

+

∞

∞

z z
z

= ∞ − −

= ∞ −

b g

Horizontal Piece at S L= , L → ∞ :

P t F t dt F F TK tT
( , ) ( , ) ( , ) ( , )∞ ∞ = ∞ − ∞z 0

0

Adding all pieces, setting the sum to zero, and rearranging yields the desired static hedge
decomposition:

F S g S P T S F t B t t B t B t P t B t dt

P t B t R t dt F T S R T P T S dS

KK S

T

KK

K

T

B T

B T

KK

0 0
0

1
2 0

2 2

0 1

2

, ( ) ( ) ( , ) , ( ) , ( ) ( ) , ( )

, ( ) ' ( ) , ( ) ( , ) .* *

( )

( ) *
*

*

b g b g b g b g
b g c he j

= − +

− − + −

∞

+

z z
z z

σ
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Finally, we wish to demonstrate that it is possible to formulate Theorem I in terms
of circulation integrals. Consider the following:

Theorem A.1
Let everything be as in Lemmas A.1 and A.2. Let the connected components of the knock-
out set B be denoted Bi . Then

F S E F S T
Bi i

0 0, ( ) ( )b g b g= −
∂ +
z∑ ω (A.3)

where ∂ +A  for a set A  indicates a contour infinitesimally close to ∂A  but just outside
the set A  wherever ∂ ⊂A intΩ , and which coincides with ∂A  otherwise. The circulation
integral in (A.3) should be performed counterclockwise.

Proof:
We define ω  and ω  as in Lemmas A.1 and A.2, but, using the rebate function R t( ) , we
extend their domains of definition from $B  to all of Ω , the closure of Ω  in ℜ 2 . Ω  is a
compact space, whose boundary includes the points at S = ∞ . (We may alternatively
obtain this type of boundary by a standard limiting procedure, as demonstrated earlier).
The forms so defined contain singularities (at ∂B , and at t = 0  and t T= ); however
these are all integrable singularities, as their component functions are products of
derivatives of piecewise-smooth functions, bounded on compact subsets. These forms are
closed everywhere in Bc , and so we may choose a contour ∂ − ⊂B Bc c that is
infinitesimally close to ∂Bc . By Lemmas A.1 and A.2, we find that

ω ω
∂ − ∂ −
z z= =
B Bc c

0 .

Now, Bc  satisfies B Bc = Ω \ , so that ∂ = ∂ ∂B Bc Ω \  in ℜ 2 , and also, that
∂ − = ∂ ∂ +B Bc Ω \ , so that

ω ω ω= − =
∂ +∂∂ −
z∑zz
BiB i

c

0
Ω

; ω ω ω= − =
∂ +∂∂ −
z∑zz
BiB i

c

0
Ω

.

Note that the integrals on the right may run over much larger regions than those on the
left, but these additional integrals cancel out. The extra pieces are in ∂ ∩ ∂Ω B (closure in
ℜ 2 ), and represent integrals along the lines S t T= ∈0 0, [ , ]l q and S t T= ∞ ∈, ,0m r or the
other parts of ∂Ω . These extra pieces make use of the extension of the forms ω  and ω
to Ω , because they are not in ∂Bc , and so ω  and ω  on these contours cannot be
obtained as a limit of values in Bc .
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Finally, we note that ω ω= + dZ , with Z  defined in the proof of Lemma A.2.
The function Z is well defined everywhere in Ω , and, as dZ is an exact form on all of
Ω ,

ω ω
∂ ∂
z z=
Ω Ω

.

Using the same technique as used in the example after Lemma A.1, it is easy to verify
that, integrating counterclockwise,

ω
∂
z = − +
Ω

F S E F T S T0 0, ( ) , ( ) .b g b g

Thus, we have the final result. ?
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Appendix B
Stochastic Volatility

Consider now the case where S follows the process

dS t S t t dW t( ) / ( ) ( ) ( )= σ ,

where σ( )t  is a stochastic process. As in Section 2.1, let F denote the price of a down-
and-out option with a continuous barrier. Since the volatility is allowed to be stochastic,
F  will in general depend on other variables than time and stock price level, i.e.

F t F t S t x t( ) , ( ), ( )= b g ,
where x  is a vector of state variables additional to time and current stock price. So Ito-
Tanaka expansion of F  yields

dF t dM t R t dt

S t B t F t B t x t t B t dt

F dx dS F dx dx

S B S B

S

S B x S i
i

x x i j
ji

i i j

( ) ( ) ' ( )

( ) ( ) , ( ) , ( ) ( ) ( )

.[ ]

= +
+ − + +
+ +

> <

= ∑ ∑∑

1 1

1

1
2

2 2

1
2

δ σb g b g

However, if the limit Fxi
 for S BB  exists and is finite almost everywhere, then continuity

on { }S B>  and the fact that F RS B= =  imply that Fxi
→ 0 (a.e.) and hence we can ignore

the terms in the sums. So, integrating over time and taking expectations yields

F t E g S T R u E du

E F u B u x u u S u B u B u C t u S u du

t t S u B ut

T

t St

T

KK

( ) ( ) ' ( )

, ( ) , ( ) ( ) ( ) ( ) ( ) ; , ( ) .

( ) ( )= −

− + =

<z
z

b g
b g b g

1

1
2

2 2σ
 (B.1)

where M is a martingale. While equation (B.1) is a perfectly valid expression for the price
of the barrier option, it does not constitute a static hedge. The reason is, of course, that
the terms E F u B u x u u S u B ut S[ , ( ) , ( ) ( ) ( ) ( )]+ =b gσ2  are stochastic and move around as
calendar time passes. As a consequence, any butterfly hedge set up to replicate the last
integral in (B.1) would need re-balancing over time. We note, that (B.1) may in some
circumstances lead to static over- and underhedges, if one can find a robust way to bound
E F u B u x u u S u B ut S[ , ( ) , ( ) ( ) ( ) ( )]+ =b gσ2 .

If the barrier is discretely monitored, as in Section 2.2, we find the expression

F t E g S T E F t S x t R t C t t S t dSt t i i i KK i it

B t

i t t

i

i

( ) ( ) , , ( ) ( ) ; , ( )
( )

:

= − + −z∑
≥

b g b gd i b g  . (B.2)

Again, this expression does not represent a static hedge.


