FAIR VALUATION OF INSURANCE LIABILITIES

Pierre DEVOLDER
Université Catholique de Louvain
03/ 09/2004
Fair value of insurance liabilities

1. INTRODUCTION TO FAIR VALUE
2. RISK NEUTRAL PRICING AND DEFLATORS
3. EXAMPLES: THE BINOMIAL and THE BLACK/ SCHOLES CASES
4. FAIR VALUE OF LIFE INSURANCE PARTICIPATING CONTRACTS
5. FAIR VALUE OF VARIABLE ANNUITIES
6. CONCLUSION
1. Introduction to FAIR VALUE

✓ International norms IAS / IFRS for all financial institutions in Europe soon (…)

✓ …A lot of discussions linked to accounting principles and artificial volatility

✓ General principle of Fair valuation of elements for assets as well as for liabilities: market values instead of historical values
1. Introduction to FAIR VALUE

- Basic principle: from an historical or statutory accounting point of view to fair value bases

- **Fair value**: price at which an instrument would be traded if a liquid market existed for this instrument

- **ASSETS**: market values

- **LIABILITIES**: ???
 - If no market value: principle of estimation of future cash flows properly discounted and taking into account the different kinds of risk
1. Introduction to FAIR VALUE

- Need to develop good models of valuation especially for actuarial liabilities where there is no market price
- Consistency between modern financial pricing theory and classical actuarial models

- Important example: guarantees in life insurance and pension: one of the most challenging risk nowadays

- Even if for competition reasons methods of pricing could remain very classical, fair valuation will require new insights taking into account modern finance
2. Risk neutral pricing and Deflators

Purpose:

- introduction to the modern financial paradigm of *risk neutral pricing*

- link with *deflator* methodology

- link with *classical actuarial principle* of discounting

- development in a simple discrete market model
2. Risk neutral pricing and Deflators

Paradigm of *risk neutral pricing*:

Purpose: to compute the present price of a future stochastic cash flow correlated with financial market in an uncertain environment

What we could expect: *price = discounted expected value of the future cash flow*:

\[
L(0) = \frac{1}{(1 + i)^T} \ E(L(T))
\]

NO!!!
2. Risk neutral pricing and Deflators

You have to change either the probability measure, either the discounting factor

Change of probability measure: *risk neutral method*:
You can stay with a classical discounting factor but the expectation of the cash flows must be done using another probability measure than the real one

Change of discounting factor: *deflators method*:
You can use the real probability measure but the discounting factor has to be changed and becomes stochastic

Pierre Devolder 09/2004
2. Risk neutral pricing and Deflators

Risk neutral pricing:

\[
L(0) = \frac{1}{(1+r)^T} \mathbb{E}_Q(L(T))
\]

\(Q\) = risk neutral measure

Deflator method:

\[
L(0) = \mathbb{E}(D(T) L(T))
\]

\(D(T)\) = deflator = stochastic discounting
2. Risk neutral pricing and Deflators

Single period market model:
✓ one riskless asset:

\[S_0(1) = S_0(0)(1 + r) \] \text{ with } r = \text{riskfree rate}

✓ d risky assets defined on a probability space:

\[\Omega = \{\omega_1, \omega_2, ..., \omega_N\} \] \text{ with } p_j = P(\{\omega_j\}) \text{ } j = 1, ..., N

\[S_i(1) = (S_i(1, \omega_1), S_i(1, \omega_2), ..., S_i(1, \omega_N)) \text{ } i = 1, ..., d \]

✓ classical assumption of absence of arbitrage opportunities
2. Risk neutral pricing and Deflators

STATE PRICE : Basic property :
if the market is without arbitrage there exists
a random variable \(\psi \) such that for any asset :

\[
S_i(0) = \sum_{j=1}^{N} \Psi_j S_i(1, \omega_j) \quad \text{with} \quad \Psi_j = \Psi(\omega_j) \rangle 0
\]

If the market is complete, the state price is unique.

Consequence : for asset \(i = 0 \) (risk free asset)

\[
\overline{\Psi} = \sum_{j=1}^{N} \Psi_j = \frac{1}{1 + r}
\]
2. Risk neutral pricing and Deflators

RISK NEUTRAL MEASURE

Definition: artificial probability measure given by:

\[q_j = Q(\omega = \omega_j) = \frac{\Psi_j}{\Psi} = (1 + r)\Psi_j \]

Properties:

1°) \(0 \leq q_j \leq 1 \) and \(\sum_{j=1}^{N} q_j = 1 \)

2°) for each asset: mean return = risk free rate

\[S_i(0) = \frac{1}{(1 + r)} \sum_{j=1}^{N} q_j S_i(1, \omega_j) \]
2. Risk neutral pricing and Deflators

✓ **DEFLATOR** : random variable \(D \) defined by:

\[
D(\omega_j) = D_j = \frac{\Psi_j}{p_j}
\]

Properties:

i. \(\sum_{j=1}^{N} p_j D_j = E(D) = \frac{1}{1+r} \)

(expected value of the deflator = classical discount)

ii. \(S_i(0) = \sum_{j=1}^{N} p_j D_j S_i(1,\omega_j) \)
2. Risk neutral pricing and Deflators

Generalization: if X is a financial instrument on this market (replicable by the underlying assets) and giving for scenario j a cash flow $X(1,j)$ then the initial value of this instrument can be written as:

i. State price vision: $X(0) = \sum_{j=1}^{N} \Psi_j X(1, j)$

ii. Risk neutral vision: $X(0) = \frac{1}{1+r} \sum_{j=1}^{N} q_j X(1, j) = \frac{1}{1+r} \mathbb{E}_Q(X(1))$

iii. Deflator vision: $X(0) = \sum_{j=1}^{N} p_j D_j X(1, j) = \mathbb{E}(DX(1))$
2. Risk neutral pricing and Deflators

Multiple periods model: discrete time model (t=0,1,…, T)

✓ Riskfree asset:

\[S_0(t) = S_0(0)(1+r)^t \quad \text{with} \quad r = \text{riskfree rate} \]

✓ Risky assets:

\[S_i(t) = (S_i(t,\omega_1), S_i(t,\omega_2),..., S_i(t,\omega_N)) \quad i = 1,...,d \]

✓ STATE PRICE :

\[S_i(0) = \sum_{j=1}^{N} \Psi_j(t) S_i(t,\omega_j) \quad \text{with} \quad \Psi_j(t) = \Psi(\omega_j, t) \big\rangle 0 \]
2. Risk neutral pricing and Deflators

✓ **DEFLATOR**:

\[D_j(t) = \frac{\Psi_j(t)}{p_j} = \text{discount factor from } t \text{ to } 0 \text{ if scenario } j \]

✓ **Pricing**: if X is a financial replicable instrument on this market generating successive stochastic cash flows:

\[\{C(t, \omega); t = 1, \ldots, T; \omega \in \Omega\} \]

Then the initial price of X can be written alternatively:

\[X(0) = \sum_{t=1}^{T} \sum_{j=1}^{N} C(t, \omega_j) \Psi_j(t) \]
2. Risk neutral pricing and Deflators

Or with risk *neutral measure*:

\[
X(0) = \sum_{t=1}^{T} \frac{1}{(1 + r)^t} \sum_{j=1}^{N} q_j C(t, \omega_j)
\]

Or with *deflators*:

\[
X(0) = \sum_{t=1}^{T} \sum_{j=1}^{N} p_j C(t, \omega_j) D_j(t) = \sum_{t=1}^{T} E(D(t)C(t))
\]
3.1. THE BINOMIAL CASE

Single period model:

✓ Risky asset:

\[S_1(1) = S_1(0) \cdot u \] with probability \(p \)

\[= S_1(0) \cdot d \] with probability \(1-p \)

Absence of arbitrage opportunities if:

\[0 < d < 1 + r < u \]

Other form of the risky asset:

\[u = 1 + r + \lambda + \mu \]

\[d = 1 + r + \lambda - \mu \]
3.1. THE BINOMIAL CASE

With condition: \(0 < \lambda < \mu \)

\[\lambda = \text{risk premium} \quad \mu = \text{volatility} \]

Equations of the STATE PRICE:

For \(i = 0 \):
\[(1 + r)\Psi_1 + (1 + r)\Psi_2 = 1 \]

For \(i = 1 \):
\[u\Psi_1 + d\Psi_2 = 1 \]
3.1. THE BINOMIAL CASE

Solution for the STATE PRICE:

\[\Psi_1 = \frac{1 + r - d}{(1 + r)(u - d)} = \frac{\mu - \lambda}{2\mu(1 + r)} \]

\[\Psi_2 = \frac{u - (1 + r)}{(1 + r)(u - d)} = \frac{\mu + \lambda}{2\mu(1 + r)} \]

Safety principle:

\[\Psi_2 = \Psi_1 \text{ if } \lambda = 0 \]

\[\Psi_2 > \Psi_1 \text{ if } \lambda > 0 \text{ (normal case)} \]
3.1. THE BINOMIAL CASE

Fair value in a binomial environment – single period:

If X is a financial instrument on this market with future stochastic cash flows given respectively by:

$$X(1, \omega_1) = X_1 \quad \text{and} \quad X(1, \omega_2) = X_2$$

Then the initial fair value of X is given by:

$$X(0) = X_1 \Psi_1 + X_2 \Psi_2$$

Or:

$$X(0) = \frac{1}{2} (X_1 + X_2) \frac{1}{1+r} + \frac{1}{2} (X_2 - X_1) \frac{\lambda}{\mu(1+r)}$$
3.1. THE BINOMIAL CASE

Multiple periods model:

Risky asset

\[
\begin{array}{c}
1 \\
\downarrow \\
d \\
\downarrow \\
u \\
\uparrow \\
u^2 \\
\downarrow \\
u \cdot d \\
\downarrow \\
d^2
\end{array}
\]
3.1. THE BINOMIAL CASE

Structure of STATE PRICES in multiple periods:

Assumption: financial product having successive cash flows depending only on the current situation of the market (no path dependant).

\[\Psi_{t,j} = \text{state price at time } t \text{ if scenario } j \]

State price diagram:

- \(\Psi_{11} \)
- \(\Psi_{21} \)
- \(\Psi_{12} \)
- \(\Psi_{22} \)
- \(\Psi_{13} \)
- \(\Psi_{23} \)
3.1. THE BINOMIAL CASE

Value of the STATE PRICES:

\[\Psi_{t,j} = C_t^{j-1} \Psi_1^{j-1} \Psi_2^{t-j-1} \]

Where \(j-1 = \text{number of up (} j=1,..,t+1) \)
\(t-j-1 = \text{number of down} \)

And: \(C_t^{j-1} \) is the number of paths in the tree with \(j-1 \) up in \(t \) periods
3.1. THE BINOMIAL CASE

Fair valuation in multiple periods – binomial:

If X is a financial instrument having successive cash flows in the tree given by:

$$X_{t_j} = \text{cash flow at time } t \text{ if scenario } j$$

Then the initial fair value of X is given by:

$$X(0) = \sum_{t=1}^{T} \sum_{j=1}^{t+1} X_{t_j} \Psi_{t_j}$$
3.2. THE BLACK / SCHOLES CASE

Continuous extension: Black and Scholes model

Riskless asset:

\[dS_0(t) = rS_0(t) \, dt \]

Risky asset:

\[dS_1(t) = \delta S_1(t) dt + \sigma S_1(t) \, dw(t) \]

Where:
- \(w \) is a standard brownian motion
- \(\delta \) is the mean return of the asset (\(\delta > r \))
- \(\sigma \) is the volatility of this return
3.2. THE BLACK / SCHOLES CASE

Risk neutral measure:

\[dS_1(t) = rS_1(t)dt + S_1(t)((\delta - r)dt + \sigma dw(t)) \]
\[= rS_1(t)dt + \sigma S_1(t)dw^*(t) \]

with: \(w^*(t) = w(t) + \frac{\delta - r}{\sigma} t \)

\(Q = \) risk neutral measure (Girsanov Theorem)
Under \(Q \) the process \(w^* \) is a standard brownian motion
3.2. THE BLACK / SCHOLES CASE

Deflators: stochastic process \(D \) such that for \(i=1 \) (risk free asset) and for \(i=2 \) (risky asset):

\[
S_i(0) = E(D(t)S_i(t))
\]

Solution:

\[
D(t) = e^{-rt} e^{-(\frac{\delta-r}{\sigma})w(t) - \frac{1}{2}(\frac{\delta-r}{\sigma})^2 t}
\]

Safety principle:

Lower values of « \(w \) » give higher values for deflator
4. Fair value of participating contracts

4.1. Liability side:
 Life insurance contract with profit:
 guaranteed interest rate + participation

4.2. Asset side:
 Strategic asset allocation:
 Cash + Bonds + Stocks

4.3. Valuation of the contract:
 Fair value and equilibrium condition
4. Fair value of participating contracts

Need for a consistent ALM approach:
Double link between asset and liability in this kind of product:

Liability \rightarrow Asset:
Investment strategy must take into account the specificities of the underlying liability

Asset \rightarrow Liability:
Participation liability linked with investment results
4.1. Liability side

Pure Endowment contract:
- initial age at t=0 : \(x \)
- maturity : \(N \)
- Benefit if alive at time \(t=N \) : \(1 \)
- Benefit in case of death before \(N \) : \(0 \)
- Contract with single or periodical premiums (pure premium)
- Technical parameters :
 - mortality table: \(\{l_x\} \)
 - guaranteed technical rate : \(i \)
 - participation rate on surplus: \(\eta \)
4.1. Liability side

Bonus systems:

general definition: percentage of the surplus
(Assets – Liabilities)

Three possible schemes:

Terminal bonus: bonus computed at maturity

Reversionary bonus: bonus computed each year and fully integrated in the contract as additional premium

Cash bonus: bonus computed each year and paid directly to the client
4.2. Asset side

Cash – Bonds- Stocks model (CBS model):
The underlying portfolio of the insurer is supposed to be invested in three big classes of asset:

- **Cash**: short term position (money account)
- **Bonds**: zero coupon bonds with a maturity not necessarily matched with the duration of the contract
- **Stocks**: stock index
4.2. Asset side

Cash model:

Money market account:

\[d\beta(t) = r(t) \beta(t) \, dt \]

with \(r(t) = \text{risk free rate} \)

Risk free rate: Ornstein-Uhlenbeck process

\[dr(t) = a(b - r(t)) \, dt + \sigma_r \, dw_1(t) \]

with \(w_1 = \text{standard brownian motion} \)
4.2. Asset side

Bond model

\[P(t,T) = \text{price at time } t \text{ of a zero coupon with maturity } T \]

General evolution equation:

\[dP(t,T) = P(t,T)\mu(t,T)dt - P(t,T)\sigma(t,T)dw_1(t) \]

Particular case: VASICEK Model

\[\mu(t,T) = r(t) + \lambda \sigma_r B(T - t) \]

\[\sigma(t,T) = \sigma_r B(T - t) \]

with: \(B(s) = \frac{1}{a} (1 - e^{-as}) \)
4.2. Asset side

Stocks model:

S(t) = value at time t of a stock index

\[dS(t) = S(t) \left(\mu \, dt + \sigma_s (\rho \, dw_1 (t) + \sqrt{1 - \rho^2} \, dw_2 (t)) \right) \]

with \(\rho = \text{correlation stocks/interest rates} \)

\(w_2 = \text{standard brownian motion independant of } w_1 \)
4.2. Asset side

Portfolio:

\[\alpha_C = \text{proportion in cash} \]
\[\alpha_B = \text{proportion in bonds} \]
\[\alpha_S = \text{proportion in stocks} \]
\[\alpha_C + \alpha_B + \alpha_S = 1 \]

2 main assumptions:

- proportions remain constant
 - (continuous rebalancing)
- self financed strategy
4.2. Asset side

Bond strategy:

Assumption: at each time t zero coupon bonds of only one maturity can be held but the maturity has not necessarily to match the duration of the liability (*price of mismatching-long duration of life insurance contract*)

Strategy 1: matched strategy: $T=N$
Strategy 2: shorter maturity of the bond and successive reinvestments till end of the contract
4.2. Asset side

Bond strategy

\[s = 0, 1, ..., n : \text{number of reinvestments} \]
\[t_0 = 0, t_1, t_2, ..., t_n : \text{instances of reinvestment} \]

Particular case: matched strategy: \(n = 0 \)
4.2. Asset side

Evolution of the portfolio:

\[V(t) = \text{market value of the underlying portfolio} \]

Evolution equation:

\[
\frac{dV(t)}{V(t)} = \alpha_S \frac{dS(t)}{S(t)} + \alpha_B \frac{dP(t, t_i)}{P(t, t_i)} + \alpha_C \frac{d\beta(t)}{\beta(t)}
\]

(for \(t_{i-1} < t < t_i \))

Pierre Devolder 09/2004
4.2. Asset side

Value at maturity of the assets:

\[\ln V(N) - \ln V(0) = \sum_{s=0}^{n} (\ln V(t_{s+1}) - \ln V(t_{s})) \]

with each term \((\ln V(t_{s+1}) - \ln V(t_{s})) = \) normally distributed

\[\mu(N) = E(\ln V(N) - \ln V(0)) \]
\[\sigma^2(N) = \text{var}(\ln V(N) - \ln V(0)) \]
4.2. Asset side

Explicit form:

\[
\ln V(t_{s+1}) - \ln V(t_s) = \int_{t_s}^{t_{s+1}} (\alpha_S \mu + (\alpha_B + \alpha_C) r(u) + \alpha_B \lambda \sigma_r B(t_{s+1} - u)) \, du
\]

\[
+ \int_{t_s}^{t_{s+1}} \alpha_S \sigma_S \sqrt{1 - \rho^2} \, dw_2(u) + \int_{t_s}^{t_{s+1}} (\alpha_S \sigma_S \rho - \alpha_B \sigma_r B(t_{s+1} - u)) \, dw_1(u)
\]

\[
- \frac{1}{2} \int_{t_s}^{t_{s+1}} (\alpha_S^2 \sigma_S^2 + \alpha_B^2 \sigma_B^2 B^2(t_{s+1} - u) - 2\alpha_S \alpha_B \sigma_S \sigma_r \rho B(t_{s+1} - u)) \, du
\]
4.3. Valuation of the contract

Example of a contract with single premium and terminal bonus:

Fair value at maturity = pay off of the contract

\[FV(N) = (1 + i)^N + \eta \max(V(N) - (1 + i)^N; 0) \]

Initial fair value : (?) In line with the single premium

\[FV(0) = \sum_{x} ((1 + i)^N P(0, N) + \eta \text{Call}(V; N;(1 + i)^N)) \]
4.3. Valuation of the contract

Equilibrium condition:

\[(1 + i)^N P(0, N) + \eta \text{ call}(V; N; (1 + i)^N) = 1\]

Consequences:

1°) \(i < R(0, N)\)

\[P(0, N) = \frac{1}{(1 + R(0, N))^N}\]

2°) depends on the investment strategy through the value of \(V(N)\)
4.3. Valuation of the contract

3°) implicit relation for the technical rate i;
4°) explicit relation for the participation rate η:

$$\eta = \frac{1 - (1 + i)^N P(0, N)}{\text{call}(V; N; (1 + i)^N)}$$

An explicit formula of the call can be obtained in the CBS model presented before.
4.3. Valuation of the contract

Risk forward neutral measure method:

\[
\text{call} = P(0, N) E_{Q_N} \left(\max \left((V(N) - (1 + i)^T); 0 \right) \right)
\]

where \(Q_N = \text{forward risk neutral measure} \)

In the CBS model we have:

\[
\text{call} = \Phi(D_+(i)) - (1 + i)^N P(0, N) \Phi(D_-(i))
\]

with:

\[
D_{\pm}(i) = \frac{-N \ln(1 + i) - \ln P(0, T) \pm 1/2 \sigma^2}{\sigma}
\]
4.3. Valuation of the contract

With for instance for the matched strategy:

\[\nu^2 = \alpha_s^2 \sigma_s^2 N + (1 - \alpha_B)^2 \sigma_r^2 B_2(N) + 2\alpha_s (1 - \alpha_B) \sigma_s \sigma_r \rho B_1(N) \]

with:

\[B_1(N) = \frac{N}{a} - \frac{1}{a^2} (1 - e^{-aN}) \]

\[B_2(N) = \frac{N}{a^2} + \frac{1}{2a^3} (1 - e^{-2aN}) - \frac{2}{a^3} (1 - e^{-aN}) \]
5. FAIR VALUE OF VARIABLE ANNUITIES

Purposes:

- How to valuate pension annuities not in terms of technical basis but in terms of market fair values;

- Influence of reversionary bonus (variable annuities) on the level of provision;

- Sensitivity of the provision with respect to financial parameters;

- How to fix the technical interest rate.
5.1. Liability side

- Immediate lifetime annuity for an affiliate to a pension fund
- x : initial age at time t=0
- Liability to pay: 2 cases :

 1) **fixed annuity** : \(L \)
 2) **variable annuity** :

 \(L_{t,j} \) = amount to pay at time \(t \) for scenario \(j \)

 (possibility to increase yearly the pension depending on the financial performances – asset side)

- Payment at the end of the year till death or during a fixed period of \(n \) years
5.1. Liability side

Actuarial first order bases :

\[i = \text{technical discount rate} \]

\[t p_x = \text{survival probability at time } t \]

Technical provision for a constant pension (case 1):

\[L_{t,j} = L \]

\[n V_x = L a_x |_{n} = L \sum_{t=1}^{n} t p_x \frac{1}{(1+i)^t} \]
5.2. Asset side

Binomial model:
mixed financial strategy of the pension fund
between riskless asset ($r =$ riskfree rate)
and risky asset (binomial model u / d)

γ: part invested in the risky asset

$1 - \gamma$: part invested in the riskless asset

$(0 \leq \gamma \leq 1)$
5.3. Bonus scheme

Definition of the reversionary bonus for variable annuities

Used rule of bonus: comparison each year between the effective return of the assets and the riskfree rate; a part of this surplus is given back to the affiliate:

\[0 \leq \beta \leq 1 \quad : \text{participation rate} \]
5.3. Bonus scheme

Yearly rate of increase of the pension:

- **If the risky asset is up:**

 \[
 1 + k = 1 + \beta \left(\frac{\gamma u + (1 - \gamma)(1 + r)}{(1 + r)} - 1 \right)^+
 \]

 or

 \[
 1 + k = 1 + \beta \gamma \left(\frac{\lambda + \mu}{1 + r} \right)
 \]

- **If the risky asset is down:**

 \[
 1 + l = 1 + \beta \left(\frac{\gamma d + (1 - \gamma)(1 + r)}{(1 + r)} - 1 \right)^+ = 1
 \]
5.3. Bonus scheme

Final form of the liabilities of the variable annuity:

\[L_{t,j} = L \cdot (1 + k)^{t-j+1} \]

Where \(t-j+1 \) is the number of times of up permitting to give a bonus.

As expected
THE LIABILITY DEPENDS ON TIME AND IS STOCHASTIC
5.4. Valuation of the contract

Computation of the fair value of the liabilities:
(fixed annuity)

\[FV(L)_{x,n} = \sum_{t=1}^{n} p_x \left[\sum_{j=1}^{t+1} L \Psi_{tj} \right] \]

\[= L \sum_{t=1}^{n} p_x \left[\sum_{j=1}^{t+1} \Psi_{tj} \right] \]

\[= L \sum_{t=1}^{n} p_x \left(\frac{1}{1+r} \right)^t = L a^{r \cdot x \cdot n} \]
5.4. Valuation of the contract

Computation of the fair value of the liabilities
(variable annuity)

- Actuarial valuation: not so simple: liabilities not deterministic
- Fair valuation: general formula of valuation:

$$ FV(L_k)_{x,n} = \sum_{t=1}^{n} t \cdot p_x \left[\sum_{j=1}^{t+1} L_{t,j} \Psi_{tj} \right] $$

$$ = L \sum_{t=1}^{n} t \cdot p_x \left[\sum_{j=1}^{t+1} C_t^{j-1} \Psi_{2}^{j-1} \left(\Psi_{1} (1 + k) \right)^{t-j+1} \right] $$

$$ = L \sum_{t=1}^{n} t \cdot p_x \left[(\Psi_{2} + \Psi_{1} (1 + k))^t \right] $$
5.4. Valuation of the contract

Computation of the fair value of the liabilities
(variable annuity)

\[
FV(L_k)_{x,n} = L \sum_{t=1}^{n} t p_x \left[\frac{1}{1+r} \right]^t \left[1 + \beta \gamma \frac{\mu^2 - \lambda^2}{2\mu(1+r)} \right]^t
\]

\[
= L \sum_{t=1}^{n} t p_x \left(\frac{1}{1+i^*} \right)^t = L \bar{a}^{i^*}_{x,n}
\]
5.4. Valuation of the contract

Equilibrium relation:

\[i^* = \text{equilibrium constant discount rate given by:} \]

\[i^* = \left(r - \beta \gamma \frac{\mu^2 - \lambda^2}{2 \mu (1 + r)} \right) / \left(1 + \beta \gamma \frac{\mu^2 - \lambda^2}{2 \mu (1 + r)} \right) \]

\[\rightarrow \text{if } \beta = 0 \text{ or } \gamma = 0 : i^* = r \]

\[\rightarrow \text{if } \beta > 0 \text{ and } \gamma > 0 : i^* < r \]
5.5. Numerical illustration

Central scenario:
\[u = 1.1 \quad d = 0.99 \]
\[r = 0.03 \]
\[i = 0.025 \]
Mortality: GRM 95
\[n = 5 \]

Risk premium: \(\lambda = 0.02 \)
Volatility: \(\mu = 0.06 \)
5.5. Numerical illustration

The graph illustrates the performance of different investment strategies over various fixed annuity periods. The strategies range from 0% to 100% stocks, with each strategy represented by a different color. The x-axis represents the fixed annuity period, while the y-axis shows the total return. The legend at the bottom of the graph indicates the percentage of stocks in each strategy.
5.5. Numerical illustration

Volatility sensitivity analysis: (60% in risky asset)
5.5. Numerical illustration

Value of the equilibrium discount rate : central scenario

1° for $\beta = 0.5$ and $\gamma = 0.6$:
 $i^* = 2.21\%$

2° for $\beta = 1$ and $\gamma = 0.6$:
 $i^* = 1.42\%$

3° for $\beta = 0.9$ and $\gamma = 0.4$:
 $i^* = 2.05\%$

4° for $\beta = 1$ and $\gamma = 1$:
 $i^* = 0.4\%$

$\lambda = 2\%$
$\mu = 6\%$
$r = 3\%$
$i = 2.5\%$
5.5. Numerical illustration

Value of the equilibrium discount rate: other scenario
(less volatile)

1° for $\beta = 0.5$ and $\gamma = 0.6$:
 $i^* = 2.60\%$ versus 2.21%

2° for $\beta = 1$ and $\gamma = 0.6$:
 $i^* = 2.21\%$ versus 1.42%

3° for $\beta = 0.9$ and $\gamma = 0.4$:
 $i^* = 2.52\%$ versus 2.05%

4° for $\beta = 1$ and $\gamma = 1$:
 $i^* = 1.68\%$ versus 0.4%
5.5. Numerical illustration

Equilibrium technical rate

![Equilibrium technical rate graph]

Legend:
- 100%stocks
- 80%stocks
- 60%stocks
- 40%stocks
- 20%stocks
- 0%stocks

Pierre Devolder 09/2004
5.5. Numerical illustration

EQUILIBRIUM TECHNICAL RATE(II)
6. CONCLUSION

- State prices, risk neutral measures and deflators are easy tools in order to valuate stochastic future cash flows correlated to future financial markets.

- This is exactly the situation of life insurance products.

- One of the most important result is the way to valuate bonus and to define properly a technical interest rate in a complete ALM framework.
devolder@fin.ucl.ac.be