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COMPUTING  MAXIMUM SMOOTHNESS  

FORWARD RATE CURVES  

 
1. INTRODUCTION 

 Adams and Deventer (1994) presents a new approach1 to yield curve smoothing that 

provides a sound basis for implementing many of the no-arbitrage term structure models such as 

Vasicek (1977), Heath, Jarrow and Morton (1992), Hull and White (1993) and so on. By carefully 

defining the criterion for the best fitting yield curve to have maximum smoothness for the 

forward rate curve, they arrive at a simple but powerful method providing a closed-form 

solution for a yield curve that fits all observed yields. A key result in that paper that enables this 

method or procedure is that the smoothest forward rate curves are produced by a fourth-degree 

polynomial with the cubic term missing. In this paper we show that excluding the cubic term is 

incorrect and sup-optimal. We provide a correct proof of the result that the smoothest forward 

rate curves are produced by an unconstrained fourth-degree polynomial. We also provide the 

numerical algorithm to compute the corresponding yield and the forward rate curves.   

 

2. MAXIMUM SMOOTHNESS FORWARD RATE CURVE 

Let Pi be the price of a zero coupon bond with par value 1 and time to maturity ti. 

Suppose there are m such observations: P1 , P2 , …… , Pm . Let the instantaneous spot yield and 

forward rates be y(t) and f(t) respectively. Then,  
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The relationship between the forward rates and the yield is thus 
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Given the m observed Pi’s, we can find the smoothest forward rate curve such that the m 

constraints in (1) are satisfied. Then, by definition we would also have satisfied all the observed 

yields as in (2). From the forward rate curve f(s), for 0 ≤ s ≤ tm , we can obtain via (2) the yield 

curve. This yield curve should fit all the m observed yields. 

A maximum smoothness forward rate curve is one that minimizes the total curvature of 

the curve and that fits the observed yields exactly. Assuming ( ) [ ]mtCf ,02∈⋅  , tm ≤ T,  where f(.) 

is of a polynomial form, the general criterion for the total curvature is the integral of the squared 

second-order differential function 
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Maximum smoothness obtains when Z is minimized subject to (1) and to some auxiliary 

conditions ensuring continuity of the curve and its derivatives. The estimation of the polynomial 

function coefficients becomes an optimization problem 
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Assumption (4) basically fixes the instantaneous spot rate at r0. Assumption (5) follows that in 

Adams and Deventer (1994). It can be suitably generalized to mm rtf =)('  where rm  is a non-

zero slope. 

Integrating f(.), we obtain  
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Substituting (7) into (6), we obtain 
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Substituting (9) and (10) into (8),  the constraint becomes 
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We use the indicator function  
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The constraint is then expressed as 
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Equations in (12) are identical to equations in (A7) in Adams and Deventer (1994). However, 

the term Qi is now expressed explicitly in terms of integrals of g(s) above in (13). It is important 

to recognize that Qi is a function of g(s). 
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Let λi for i  be the Lagrange multipliers corresponding to the constraints in 

(13). The objective function becomes 

m,...,1=
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Suppose g * is the solution of the optimization problem, then   
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for any continuous function  defined on [  such that h(s)=g(s)-g(.)h ],0 T *(s), where g*(s) is 
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We shall now prove a lemma that we will use in solving for the optimal g*(.). 
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Lemma   

Given A(.) and h(.) are continuous functions and B(.) is integrable, then 
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(L1) can be written as 
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For any continuous h(.), therefore (L1) obtains if and only if (L2) holds.  

Q.E.D. 

Applying the above lemma, (15) equals to zero if and only if  
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Thus  is a continuous function in second-order polynomial form in each interval [ .  )(* tg ], 1+kk tt

By integrating g*(t), we can obtain  

     when tiiiii etdtctbtatf ++++= 234)( ii tt ≤<−1 , mi ,...,1= .           (17) 

 5



The maximum smoothness forward curve f(.) is thus an unconstrained fourth-order polynomial 

function in each segment and is second-order continuously differentiable. This is summarized in 

the following proposition. 

 

Proposition 

When  is known and 0)0( rf = 0)( =′ mtf , the function of the maximum smoothness forward 

curve is a fourth-order polynomial spline and is second-order continuously differentiable in the 

range . ),0( T

 

Proposition 1 shows that it is sub-optimal to omit the cubic term as in Adams and Deventer 

(1994). They had incorrectly ignored the fact that Qi is a function of g(s) and thus omitted some 

terms in the differentiation step as in (15). Indeed it is easy to see that if we constrain bi = ci = 0 

in (17), we arrive exactly at the solution (A14) in their paper. Clearly, avoiding these constraints 

would produce a superior optimal solution, i.e. larger smoothness in our case.  

 

3.  ALGORITHM 

In this section we show how to implement the optimization solution to obtain the 

maximum smoothness forward rate curve and also the corresponding yield curve. The program 

can be transformed to a quadratic form. We then obtain an explicit solution by the Lagrange-

multiplier method. From the forward rate function in (17), by integrating 
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(a) Fitting the observed points: 
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All the constraints (18) to (23) are linear with respect to . We can write the constraints in 

matrix form , where A is a 4m-1 × 5m matrix, and B is a 4m-1 × 1 vector. Let 

 be the corresponding Lagrange multiplier vector to the constraints. The 
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The explicit solution of the parameter vector is thus obtained.  

 

4. YIELD CURVE 

The connection with the yield curve is established in this section. The maximum 

smoothness forward rate curve is obtained using the following fourth degree polynomial. 
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Thus (24) allows the computation of the yield curve based on the maximum smoothness 

forward rate curve where the coefficients x are determined. 

 From (2), we can also show that for each segment i=1,2,…,m, the maximum forward 

rate curve smoothness is equivalent to 
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Thus in general, maximum smoothness of forward rate curve will be different from maximum 

smoothness of yield curve. However, if y ′′′ is small, then the maximizing of forward rate curve 

smoothness will also result in a smooth yield curve. Obviously the continuity conditions for the 

forward rate curve at each segment will be different from those of the yield curve segments, 

although this may not have a major impact if the adjacent coefficients xi and xi-1 are close in 

values. 

  

5. CONCLUSIONS 

This paper introduces a simple method to estimate the maximum smoothness forward 

rate curve and the corresponding yield curve. The integral of the squared second-order 

derivative of the curve function is defined as a measure of smoothness. We provide a correct 

proof of the result that the smoothest forward rate curves are produced by an unconstrained 
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fourth-degree polynomial. We also provide the numerical algorithm to compute the 

corresponding yield and the forward rate curves.   

Increasingly many of the interest rate derivatives pricing and hedging depend on the 

availability of many points on the forward rate curve or the yield curve than is provided by the 

observed finite number of points in the market. The ability to fit an intuitively appropriate 

maximum smoothness forward rate curve allows for such pricing and hedging.  
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ENDNOTES 

1. Other approaches include Schwartz (1989)’s cubic splines and McCulloch (1975)’s polynomial spline 
functions to fit the observed data. However, the use of polynomial function to fit the entire yield curve 
may lead to unacceptable yield patterns. Vasicek and Fong (1982) use the exponential spline for the 
discount function, and choose the cubic form as the lowest odd order form from continuous derivatives. 
Delbaen and Lorimier (1992) introduce the discrete approach to estimate the yield curve by minimizing 
the difference between two adjacent forward rates. Frishling and Yamamula (1996) use a similar approach 
on the coupon bond prices. 
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