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Abstract

The last two decades have seen the development of a profusion of
theoretical models of the term structure of interest rates. This study
provides a general overview and a comprehensive comparative study
of the most popular ones among both academics and practitioners. It
also discusses their respective advantages and disadvantages in terms
of bond and/or interest rate contingent claims continuous time val-
uation or hedging, parameter estimation, and calibration. Finally, it
proposes a unified approach for model risk assessment. Despite the rel-
atively complex mathematics involved, financial intuition rather than
mathematical rigour is emphasised throughout. The classification by
means of general characteristics should enable the understanding of
the different features of each model, facilitate the choice of a model in
specific theoretical or empirical circumstances, and allows the testing
of various models with nested as well as non nested specifications.
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1 Introduction

Understanding and modeling the term structure of interest rates represents
one of the most challenging topics of financial research. There are in fact
many benefits from a better understanding of the term structure of interest
rates. Since the introduction of option trading on bonds and other interest
rate dependant assets, much attention has been given to the development of
models to price and hedge interest rate dependant assets or to manage the
risk of interest rates contingent portfolios.

While the Black and Scholes (1973) model has rapidly established him-
self as ”the” model for stock contingent claims, a large number of continuous
time approaches are simultaneously used among academics and practitioners
in the field of interest rates contingent claims. Despite the widespread use of
Black (1976) model' to value interest rate derivatives such as bond options,
caps, or swaps, interest rate derivatives have some major differences from
those on stocks that need to be resolved. For instance, let us consider the
case of a simple bond: unlike stocks, the bond price at maturity is fixed and
known, and the Wiener process used to model stock prices is inappropriate.
Furthermore, bond prices are dependant on interest rates, which exhibit a
complex stochastic behavior and are not directly tradable, which means that
the dynamic replication strategy is more complex. Similar differences can
be found in the case of more complex interest rate derivatives such as bond
options, caps, floors, or interest rate swaps. Thus, pricing, hedging or man-
aging the risk of interest rate derivatives is a complex task, and each of the
existing models has its own advantages and drawbacks.

The aim of this paper is to provide a comprehensive review of the mod-
eling techniques of the term structure applicable to default-free bonds and
other interest rate derivatives. We propose a typology, describe the most
important models and methodologies in a common framework, explain their
advantages and differences, report the most relevant analytical and empiri-
cal results and provide references for their derivations. Given the vast array
of issues in the field as well as the large number of existing surveys, we at-
tempted to provide an analysis from an overall perspective, focusing on what
the central issues were rather than on specific details.

IThe essence of Black (1976) model is that the underlying variable (bond price for a
bond option, interest rates of the constituent caplets for a cap, swap rate for a swap) is
lognormal at the maturity of the derivative. This allows the use of a slightly modified
version of the Black and Scholes (1973) formula for stock options.



This paper is organized as follows: section 1 introduces the definitions
and notations we will used throughout the paper; section 2 presents the basic
theories of the term structure of interest rates; section 3 proposes a model
taxonomy for interest rate models. Section 4 reviews simple factor interest
rate models, with a strong emphasis on the pricing of contingent claims
using partial differential equations or martingales theory. It also provides
numerous examples of such single-factor models, with both constant and
time varying parameters. Section 5 considers the extension to multifactor
models. Section 6 reviews the extension to a multidimensional space, from
the pioneering work of Ho and Lee (1986) to the most recent work on random
fields and including the Heath, Jarrow and Morton (1992) family of models.
Section 7 presents some of the empirical findings comparing the performance
of alternatives over a brad range of applied interest rate models. Section 8
concludes.

1.1 Definitions

We will first recall some usual notations. All our models will be set up in
a given complete probability space (€, F}, P) and an augmented filtration
(F})t>0 generated by a standard Brownian motion W (t) in R (to keep things
simple, unless explicitly mentioned, the uncertainty will be represented by a
one-dimensional process).

To focus on pure questions of valuation, we will ignore taxes and transac-
tion costs. We denote by B(t,T) the price at time ¢ of a discount bond, i.e.
a zero-coupon bond which pays one currency unit at time 7" and nothing else
at any other time. It follows immediately that B(T,T) = 1. At time ¢, the
yield to maturity R(t,T) of the discount bond B(t,T) is the continuously
compounded rate of return that causes the bond price to rise to one at time
T

B(t, T)e(Tft)R(t,T) -1

or, solving for the yield

_InB(@T)

R(t,T) = T

(1)

For a fixed time ¢, the shape of R(t,T) as T increases determines the term
structure of interest rates. In our framework, the yield curve is the



same as the term structure of interest rates, as we only work with zero-
coupon bonds. Finance traditionally views bonds as contingent claims and
interest rates as underlying assets.

We denote by r(t) the instantaneous risk-free interest rate, also
called short term rate, i.e. the yield on the currently maturing bond.
Thus,

r(t) :%{nt R(t,T)

A roll over position at the short term rate r(¢) is called money market
account. The value of the money market account initialized at time 0 with
one dollar investment is

ﬁ(t) _ ef(fr(s)ds

We denote by f(t,T1,T,) the forward rate, i.e. the rate that can be
agreed upon at time ¢ for a risk-free loan starting at time 7 and finishing at

time TQ.
In B(t, Tl) —In B(t, Tg)

T, — T

Of particular interest is the instantaneous forward rate

f&,T)=f(t,T,T)

f(t7 T17 T2) -

It is the rate that one contracts at time ¢ for a loan starting at time 7" for an
instantaneous period of time. We have

Jln B(t, ) 1 0B(t,T)

ST == —%- . B(t,T) oT

assuming that bond prices are differentiable. Equivalently, one can define
the bond price in terms of forward rates as

B(t, T) = e ftT f(t,s)ds

Note that we can write

r(t) = f(t,1) (2)



1.2 Remarks

Let us recall that there exist a set of bond specific arbitrage restrictions:

e any bond price process has a non stochastic terminal value at the end
of its life
B(T,T)=1

e a bond price will never exceed its terminal value plus the outstanding
coupon payments

e a zero-coupon price cannot exceed the price of any zero-coupon with a
shorter maturity

e the value of a zero-coupon bond must be equal to a value of a replicating
portfolio composed of zero-coupon bonds.

e interest rates should not be negative.

In the following, we will always assume that these arbitrage restrictions
are fulfilled, unless explicitly mentioned.

2 Theories of the term structure of interest
rates

How can we explain the shape of the term structure of interest rates 7 In other
terms, in which manner are the spot rates or discount factors determined
? What explains the shape of the term structure of interest rates is clealy
related to the existence and the value of term premia. There exist three major
theories to explain the relationships between the interest rates of various
maturities: the expectation hypothesis, the liquidity preference, the preferred
habitat theory.

2.1 The expectation hypothesis

According to the expectation hypothesis, the term structure is driven by the
investor’s expectations on future spot rates. The forward rate is an unbiased
estimator of the future prevailing spot rate. The rate of return on a bond



maturing at time 7" should be equal to the geometric average of the expected
short-term rate from ¢t to 7', and the term structure is given by
1 T
R(t,T)=—=—— Ei(r(s))ds
(11) = 7= [ Er(s)
Note that in fact, there exist four continuous-time interpretations of the
expectation hypothesis:

e the naive expectation hypothesis states that the expected return
on any strategy for any holding period is the same. In particular, the
investor should be indifferent between holding a long term bond and
rolling over a short term one.

—% _B {ﬁ /tTr(s)ds]

e the local expectation hypothesis states that for any bond on the
market JB(:.T)
t
E|————=| =r(t)dt
{ B(t,T) } "

or equivalently that

B(t,T)=E [e* Ji7 r(e)ds |7~(t)}

e the return to maturity expectations hypothesis - which is also
called the Lutz hypothesis - states that the expected return on holding
any bond up to its maturity will have the same expected return as
rolling over a set of short term bonds.

B(; = {exp /tTr(s)ds p«@)}

e the unbiased expectation hypothesis - which is also called the
Malkiel hypothesis - states that the forward rate is equal to the fu-
ture expected spot rate

OB(t,T) /0T
BT Er(T)]

9



which is equivalent to
T
W B(L,T) = / E(r(s)ds)
t

Using Jensen inequality, one can show that these theories are mutually
inconsistent, with the exception of the unbiased expectation hypothesis with
the naive expectation hypothesis.

2.2 The liquidity preference theory

According to the liquidity preference theory, investors are risk-averse, tend
to prefer short term maturities and will require a premium to engage in long
term lending. Borrowers prefer long-term securities and agree to pay this
premium. The term structure is then given by

R(,T) = ﬁ MT Eu(r(s))ds + /tT L(s, T)ds]

where L(t,T) > 0 denotes the instantaneous term premium at time ¢ for a
bond maturing at time 7.

An important consequence is that the expected return from a buy and
hold strategy will be higher than the expected return fn a roll over strategy.
The resulting term structure of interest rates should be upward sloping.

2.3 The preferred habitat theory

According to the preferred habitat theory, investors and borrowers have dif-
ferent specific time-horizons. The term structure is still given by

R(,T) = ﬁ MT Ey(r(s))ds + /tT L(s, T)ds}

but depending on the offer and the demand, the risk premium L(s,T) at-
tached to bonds of various maturities can be positive, negative or equal to
zero. Thus, the term structure of interest rates can have any shape.

10



3 Interest rate models taxonomy

In order to better understand interest rate models, it is helpful to identify
some of their characteristic features and distinctions. Unfortunately, these
are not mutually exclusive, and categories are frequently overlapping.

3.1 Continuous versus discrete models

Should we model the term structure dynamics in a discrete or a continuous
framework 7

e as far as the time dimension is concerned, most interest rates models
were specified in a continuous time framework. The power of continuous
time stochastic calculus allows more elegant derivations and proofs, and
provides an adequate framework to produce more precise theoretical
solutions and more refined empirical hypothesis, unfortunately at the
cost of a considerably higher degree of mathematical sophistication.

e on the space dimension, until recently, diffusion models were the rule.
But should we use a diffusion model, or allow for discontinuity ? Re-
cently, models based on jumps or point processes have appeared in
order to model discontinuous real world phenomena such as the central
bank interventions.

3.2 Bond prices, interest rate versus yield curve mod-
els

What should we model ?

e carly models of the term structure attempted to model the bond price
dynamics. Their results did not allow for a better understanding of the
term structure, which is hidden in the bond prices.

e many interest rate models are simply models of the stochastic evolution
of a given interest rate (often chosen to be the short term rate). This
interest rate is often defined as Markovian: its future evolution only
depends on its current value, not on the historical path it followed
to arrive there. As we will see, this translates the valuation problem
into a partial differential equation that can be solved analytically or
numerically.

11



e an alternative is to specify the stochastic dynamics of the entire term
structure of interest rates, either by using all yields or all forward rates.
The approach is intuitively attractive, but the model complexity in-
creases. This has prevented whole yield curve models from coming in
more widespread use.

However, the three approaches are not independent, as there exist rela-
tionships that must hold - even without assuming that markets are free of
arbitrage - between bond prices, short term rates and forward rates or yields.

3.3 Single versus multi-factor models

Factor models assume that the term structure of interest rates is driven by a
set of variables or factors. Most empirical studies using a principal component
analysis have decomposed the motion of the interest rate term structure into
three independent and non-correlated factors (see Wilson (1994)):

e the first one is a shift of the term structure, i.e., a parallel movement
of all the rates. It usually accounts for up to 80-90 percent of the total
variance (the exact number depending on the market and on the period
of observation).

e the second one is a twist, i.e. a situation in which long rates and
short term rates move in opposite directions. It usually accounts for
an additional 5-10 percent of the total variance.

e the third one is called a butterfly (the intermediate rate moves in the
opposite direction of the short and long term rate). Its influence is
generally small (1-2 percent of the total variance).

As the first component generally explains a large fraction of the yield
curve movements, it may be tempting to reduce the problem to a one-factor
model. It must be stressed at this point that this does not necessarily imply
that the whole term structure is forced to move in parallel, but simply that
one single source of uncertainty is sufficient to explain the movements of the
terms structure (or the price of a particular interest rate contingent claim).
For example, almost all arbitrage-based single factor models derive or assume
the instantaneous spot rate to be the single state variable.

12



On the other hand, some securities are sensible to the shape of the term
structure (or to other aspects such as the volatility term structure deforma-
tions, as we will see later) and not only to its level. They will require at least
a two factor model. Generally, a second state variable such as the long rate
or the rate of inflation is added.

3.4 Fitted versus non fitted

In fitted models, a term structure (of interest rates, of forward rates, of yield
volatilities, etc.) is determined exogenously, generally using market data,
and the stochastic differential equation of some state variables is specified
such that this term structure is obtained at a particular date. In a sense,
the models is build specifically to fit an arbitrary (exogenous) initial term
structure.

In other models, we first specify the dynamics of the state variables. As
a consequence of a particular specification, we will obtain endogeneously a
given term structure. These models generally do not fit well the initially
observed term structure?.

3.5 Arbitrage free versus equilibrium models

A fundamental question from the theoretical point of view - but not neces-
sarily in practice - is the distinction between arbitrage-free and equilibrium
models. Arbitrage-free models start with assumptions about the stochastic
behavior of one or many interest rates and about a specific market price of
risk and derive the price of all contingent claims assuming that there are
no arbitrage opportunities on the market. In other terms, there is no risk-
free financial strategy with zero-setup cost that should give with certainty a
positive return®. In contrast, equilibrium models start from a description of
the economy, including the utility function of a representative investor and
derive the term structure of interest rates, the risk premium and other assets
prices endogenously, assuming that the market is at equilibrium.

2Note that Dybvig (1989) proposes a methodology to convert an endogenous model
into an exogenous one.

3The formal definition of the no-arbitrage condition (see Harrisson and Kreps (1979))
would require a rigorous definition of a complete market, a self-financing strategy, an
attainable contingent claim and an implicit price-system.

13



But the distinction is subtle, since equilibrium models should be arbitrage-
free (otherwise, the economy would not be at equilibrium), and as some
so-called "arbitrage-free” models were shown later on to allow for arbitrage
opportunities. Furthermore, as pointed out by Duffie and Kan (1993), it is
always possible to support any (regular) short term rate process in an equi-
librium model based on a representative agent with an appropriate utility
function and consumption stream constructed on the interest rate process.

4 Single factor models

Single factor models assume that all the information about the term struc-
ture at any point in time can be summarized by one single specific factor.
Although any interest rate could be chosen for this single factor, it is usu-
ally specified as the short term interest rate r(t). As a consequence, only
the short term interest rate and the time to maturity will affect the price of
any interest rate contingent claim. In particular, for of a zero-coupon bond
maturing at time T (T > t), we have

B(t,T) = B(t,T,r(t)) (3)

Single factor models start by specifying the stochastic differential equation
driving the spot rate stochastic process {r(t)};>o and deduce from there the
price of various interest rate dependant assets*. The specification can be
exogenous or exogenous (as the result of an equilibrium in the economy). As
they differ in their specification of the dynamics of the short term rate, they
also provide lousy empirical results.

In this section, we will first review the two basic methodologies for pric-
ing interest rate contingent claims in a single factor framework, namely the
partial differential equation and the martingale approach. By the theorem
of Feynman-Kac, these two approaches are equivalent. The former creates
an instantaneous risk-free portfolio to obtain by arbitrage a second order
partial differential equation that any interest rate contingent claim must sat-
isfy. The latter relies on the argument of Harrison and Pliska (1979) that
in a complete market, in the absence of arbitrage, there exists an equiva-

4Note that if the assumption of one unique underlying factor implies that all rates
move in the same direction over any short period interval, but not necessarily by the same
amount, it does not imply that the term structure has always the same shape.
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lent martingale measure under which asset prices can be computed as an
expectation.

In a second step, we will illustrate the methodology by specific examples
of single-factor models.

4.1 Interest rate derivatives pricing: the partial differ-
ential equation approach

Let us consider that the short term interest rate is the single factor driving
the entire term structure. We assume that the dynamics of the short term
rate is given by

dr(t) = p,()dt + o, ()dW (t) (4)

where W (t) is a Wiener process, i, () = p,(t,7(t)) and o,.() = o,.(t,7(t)) are
given real valued functions whose form will totally determine the behavior
of the short term rate’. When p,() and o,() are at most function of the
state variable r(t) and do not depend on time, the model is called time
homogeneous.

Let us denote by V(¢) the value at time ¢ of an interest rate contingent
claim with maturity 7. In reality, V' could be a discount or a coupon bond, a
bond option, a cap, a floor, an interest rate swap, etc. As it derives from the
single factor model assumption, only the short term rate r(¢) and the time
to maturity (7' — t) will affect the price of our claim, and we can write

V(it)=V(t,T,rt)) (5)
By Ito’s lemma,

ov ov 10%*V
dV (t) = —dr + —dt + =——(dr)*
®) or ot 2 Or? (dr)
SMathematically, these functions must fulfill some regularity conditions so that this
stochastic differential equation has only a unique solution:

e 1,0 must be measurable functions from R4 x R to R.

e 3 k; > 0 such that the Lipschitz condition holds, i.e. V¢ € [0,T];z,y € R
lu(t @) — pt,y)l +lo(t,x) —o(t,y)| < kilz -yl
e 3 kg > 0 such that the growth condition is specified, i.e. V¢t € [0,T];2 € R

u(t, ) +lo(t,2)|* < ke (1+ |])

15



Using (4) to compute dr and (dr)? yields the claim dynamics

dv (t) = {%—Z + “’“O%_Z + ”i()%} dt + {8—VUT()} AW,

or

Dividing both sides by V (¢) yields the instantaneous return on the contingent
claim:

avit) 1 [ov vV o)V 1 [ov
Vi = v a0 s e g 0|
that is,
T = e+ o O (0 ()

where py, () and oy () are functions of ¢, T', and r(t).

Now, let us consider two distinct interest rate contingent claims V; and V,
with maturity 77 and T, and let us form a portfolio P made of x; currency
unit of the claim V;(t) = V(¢,71,r(t)) and xo currency units of the claim
Vo(t) = V(t,Tz,7(t)). The portfolio value will be described by a process
denoted {P(t);0 <t <T < min(71,T»)}, and we have

P(t) = n1Vi(t) + naVa(t)

As V] and V5 are interest rate contingent claims, their prices verify (6), and
we will denote

T = (0t + o, (a2
T = 0t + o (W (1)

Thus, the variations of the portfolio value are given by
avi(t) | dVa(t)
T i)
Vi(t) Va(t)
= (a1, ) + 2o 0) dt + (@103, ) + 220, ()) AW (1)
We can easily select ; and x5 to cancel out the instantaneous risk of the
position, i.e. to reduce the volatility of dP(t) to zero. In such a case, in order

to avoid arbitrage opportunities, the return on the portfolio must be equal
to the risk-free rate. This gives the following system of equations

dP(t)

T10 By () + Z20B, () =0

{ 21(pp, () = 7(8)) + 22(pp, () —7(t)) = 0

16



which has a non trivial solution if and only if

pp, 0 =) _ pg,() — ()
0B, () 032()

As this relationship must hold for any 77 and 75, we must have the risk
premium per unit of risk constant for all maturities. We denote

L=t e () )

where A(¢,7(t)) is called the market risk-premium and is independent
of T. This allows us to express the instantaneous return on the bond as

pp() =)+ A, r(t)os()
N—_———

total risk premium

which is quite similar to the Arbitrage Pricing Theory and to classical theories
of the interest rate structure®.

Substituting pz() and og() in (7) by their definitions from equation (6)
gives us a second order partial differential equation (called the Feynman-Kac
equation) that must be satisfied by any interest rate contingent claim in a
no-arbitrage one factor model:

o2() §2

O (10~ Mer o () 2+ 2L v =0 (®)
with one boundary condition. The term p.,.() — Ag()o,() is often called the
risk adjusted drift.

Equation (8) will be the fundamental equation. Any interest-rate contin-
gent claim price can be computed as the solution to such a partial differential
equation subject to an appropriate boundary condition’. Of course, differ-
ent one factor models will produce partial differential equations of identical
structure, but with different ,.() and o,() as inputs, while different interest
rate contingent claims will produce the same partial differential equation,
but with different boundary conditions. For instance, if one considers V' as

6 As mentioned already, these theories distinguish themselves depending on the existence
of a risk premium and its sign. For instance, the expectations hypothesis assumes that
g = r(t), whatever the maturity, which implies A = 0 (no liquidity preference).

"Mathematically, this corresponds to a Green function.
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a zero-coupon bond B(t,T) with maturity date T, we have

B w0 -200 )2 208 g0 )

with the boundary condition

B(T,T) =1

a plain vanilla call option on B(t,T) with maturity date Tc < T, we

have
O+ T 1,0 = M0 ) 5~ )V =0

with the boundary condition

V(TC) = HlaX(B(t, TC’) - K7 0)
a swap of a fixed rate r* against a floating rate r with maturity date
T, we have

O+ 2 O (10 = 000 5 — POV + (=) =0

with the boundary condition
V(0)=0
a caplet at rate r*, we have

B 0T (1,0 = 207 0) 2~ k()Y -+ min(r, ) =0

with the boundary condition

V(T) = max(r(T) —r*,0)

a floorlet at rate r*, we have

O 0T (1,0 = 207 0) 2~ r(B)V -+ max(r ) =0

with the boundary condition

V(T) = max(r* —r(T))

18



In the particular case of a zero-coupon bond, solving this partial differ-
ential equation will give us the bond price B(t,T'), from which we get the
discount function and the whole yield curve using (1).

Proposition 1 The solution to equation (9) for V(t,T) = B(t,T) under the
terminal condition B(T,T) =1 is given by

B(t,T) = Ep [67 S r(s)ds—3 [7 N2(s,r(s))ds— [T A(s,r(s))dW (s) IE, (10)

where F; is the sigma-algebra generated by the past information of process
W (s) up to time t and P is the historical probability measure.

The relation (9) allows us in theory to compute the price of a zero coupon
knowing the real valued functions p,(), o,.(), and A(). Thus, specifying these
functions will fully specify the model. The fact that these functions are exoge-
nously specified only gives us a partial equilibrium model: the equilibrium
is not unique, as different specifications will determine different equilibrium.
Specifying p,.(t,7(t)), o.(t,r(t)) can be done examining long-term statistical
properties of the short term interest rate. But specifying (¢, r(¢)) is a harder
task, as it is not observable.

Note that if A\(¢,7(t)) = 0, equation (7) takes the form of the local ex-
pectation hypothesis, a form of expectation hypothesis compatible with the
no-arbitrage requirement, and the bond price simplifies into

B(t)T) = EP [ef.ftTr(S)ds |Ft (11)

But in general, A(¢,7(t)) differs from zero, and there are two more terms in
the expectation operator, which correspond to non-anticipated variations of
the short term rate.

4.2 Interest rate derivatives pricing: the martingale
approach

The second approach to bond pricing under stochastic interest rates takes a

more probabilistic view. It is based on the martingale framework proposed

Harrison and Kreps (1979) and extended by Artzner and Delbaen (1989) and
Heath, Jarrow, Morton (1992) for term structure modeling.
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4.2.1 The methodology

An essential point is the choice of the numeraire, that is, the common unit on
the basis of which asset prices are expressed. Any asset price can be selected
as a numeraire, as long as it has a strictly positive value in any state of the
world. If we choose asset N(t) as a numeraire, we will denote by

. V(t)
Vi =y

N(t)

the relative price of asset V under the new numeraire N at time t, where
V(t) and N(t) are the prices at time ¢ expressed in the old numeraire.

Proposition 2 Under some regularity conditions, a complete market is ar-
bitrage free if there exists an equivalent martingale measure, i.e. a probability
measure Q) equivalent to P (the historical or actual probability), such that the
relative price process of any security is a QQ-martingale.

Eq [V (T) |F] = Vi (1) (12)

)

where F; denotes the filtration (i.e. all the information) known at time t.

The Girsanov theorem provides the necessary framework to transform a
probability measure in another equivalent (i.e. sharing the same support)
measure.

Proposition 3 Any martingale V;*(t) can be represented as
dVi*(t) = o)V () dW™ (1)
where W*(t) is the Wiener process W (t) under the measure Q.

A particular choice of numeraire is the money market account ((t),
i.e. the price at time ¢ of one currency unit continuously reinvested at the
short-term rate since a specified initial time 7.

B(t) = elrrs (13)
Under this new numeraire, the relative price of asset V' is given by

V() = % (14)
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Using (12) when the asset V' is a zero-coupon bond with maturity 7" and
the numeraire is § with 7 =t yields

B(T,T), .| BT
o | S5y 18] = St = BeT)
that simplifies into
B(t,T) = Eq [e*ftT’“(S)ds |Ft} (15)

Thus, the price of a zero-coupon bond is equal to the expectation
under Q of the reciprocal of the money market account®.

This explains why some researchers focus on models in which ftT r(s)ds is
normally distributed. If a random variable x is normally distributed N (i, o?),
we know that ,

E(e) = et e’

Thus, having a normal distribution for ftT r(s)ds will imply an analytic ex-
pression for the bond price.

In a similar way, one could show that for any interest rate contingent
claim V(t) maturing at time 7', we will have

V(t) = Bq |[V(T)e I 7% | |

In other terms, under Q, discounted asset prices are martingales.
Therefore, using (13) and (14), one can show that the instantaneous return
on V under the measure () is the risk-free rate:

dV (t)

Vi = r(t)dt + oy ()dW*(t)

There are two possible interpretations of this:

e the first one is that we are working in a risk-neutral world using risk-
neutral probabilities (Cox and Ross (1976)). The latter are also
referred to as the equivalent martingale measure (Harrison and
Kreps (1979)), the artificial probabilities (Cox, Ross, and Rubinstein
(1979)), or the objective probabilities.

e the second one is that the local expectations hypothesis (Cox, Ingersoll,
and Ross (1981)) holds, in which case the artificial probabilities are the
actual probabilities.

8This will be a fundamental equation when using lattices to price interest rate contin-
gent claims.
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4.2.2 From one world to another

How do we go from the "real” world to this "risk-neutral” world 7 We start
with the original risk-free interest rate dynamics

dr(t) = p,()dt + o, ()dW (t)

which defines a probability distribution P for r(t). Starting from the P-
Brownian motion W (t) and the risk premium A(¢), we can build a new
stochastic process W*(t) such that

W =w- A)on()ds

Under some technical conditions, using Girsanov’s theorem, we know that
there exist a probability measure Q such that W*(t) is a Q-Brownian motion®.
Investors agree on the unique probability measure (), given by

dP = p(t, \)dQ

where p(t, \) is the Radon-Nikodym derivative defined by

p(t,\) = exp (/Ot AW (t) — % /Ot /\2d3)

We can write the evolution of the short term interest rate under @) as
dr(t) = (1, () — At)o,()) dt + o, (JdW™(t)

From there, it is easy to verify that under the new probability, the zero-
coupon bond price is the expected value of its final value discounted at the
instantaneous rate, that is, equation (15) holds.

Of course, both methods are equivalent. We obtain the same zero-coupon
price under (11) and (15). Using @ rather than P, we have simply removed
the adjustment factors due to the uncertainty in the economy (terms de-
pending on A(t)) from our pricing formula and sent them in our probability

measure!’.

9To be mathematically rigorous, we should check for each model that the equivalent
probability exists and that it is unique.
10Thus, the problem of estimating the risk-premium A(¢) remains a matter of concern.
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4.2.3 Model specification: P or () ?

Some interest rate pricing models specify (4), the dynamics of the short term
rate under the historical probability P. This may be the source of problems,
as the equivalent probability measure () may not be unique.

However, it is important to notice that even combined with a no-arbitrage
restriction, (4) specified under @ is not sufficient to determine uniquely the
price of a particular bond. As in the Black and Scholes framework, we have
one source of randomness and one state process, but the short term rate r(t)
is not the price of a traded asset. Thus, the market is clearly incomplete, and
the corresponding equivalent martingale measure is not necessarily unique.
Fortunately, if we include one single bond in the exogenously specified mar-
ket, then we are able to price all other bonds in term of this "benchmark
bond”, as bonds with different coupon rates and maturities must satisfy cer-
tain internal consistency conditions in order to avoid arbitrage possibilities.

The choice between P and () also has some important consequences on
the parameter estimation: a common features of these models is that there
is a set of observable parameters § (reversion level or speed, volatility, etc.)
that must be estimated from the "real world process”, i.e. under P and not
under (). But @ enters in a partial differential equation collectively with a set
of market prices of risk A\. Thus, estimating € alone is not sufficient, and we
need market traded instruments (bonds, caps, options, etc.) to find the best
(8, A) combination that optimally fits cross-sectionally their prices. Once all
the parameters have been estimated, the partial differential equation can be
solved numerically or analytically.

4.3 Some specific properties of short term interest rate
models

If one is ready to impose restrictions on the drift and diffusion parameters
of the short term rate, very useful results can be obtained. Three particular
restrictions will be presented here: the affine models, the Gaussian models,
and the lognormal models.

4.3.1 The affine class of short term rate models

Most of the one factor models considered in the financial literature are in the
class of what Duffie and Kan (1993) call ”affine factor models”. A model is
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said to be affine if the zero-coupon bond price takes the form
B(t,T) = expla(t, T)r(t) + b(t,T)]

where a(t,T) and b(t, T') are deterministic functions in C'. The term ” affine”
is justified by the observation that in such models, the term structure of
interest rates is an affine function of the short rate:
—a(t,T b(t, T
(1T, BT
T—t T—t

Note that forward rates will also be an affine function of the short term rate.

R(t,T) =

Proposition 4 If under Q, u,.() and o2() are affine in r(t), then the model
is affine.
4.3.2 The Gaussian class of short term rate models

A short term interest rate model is said to belong to the Gaussian class if
it can be written as the following linear differential equation

dr(t) = p,(t,r(t)dt + o.(t,r(t)dW (t)
= (m@)r(t) + p2(t)) dt + o2 (t)dW (t)

This clearly shows that Gaussian models are a particular class of affine
models.

Proposition 5 In a Gaussian model, r(t) is normally distributed, and
¢ ¢
(0 =00 [r0)+ [ 6 wmtidu+ [ o7 wowaw )
0 0
where ¢(t) solves

¢(0) =1

Proposition 6 Under @), — ftTT(U)dU is normally distributed with a mean
m and a variance v that are easy to calculate. Bond prices are lognormally
distributed and are given by

{ dg(t) = p (t)o(t)dt

B(t,T) =™

This will allow us to compute bond prices easily. Unfortunately, by def-
inition, Gaussian interest rate models do not prevent the interest rate from
becoming negative, which is economically unrealistic.
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4.3.3 The log-normal class of short-term rate models

A short term interest rate model is said to be lognormal if and only if Inr(t)
is Gaussian. The major advantage of lognormal models over Gaussian is that
by definition, lognormal rate models cannot generate negative interest rates.
Unfortunately, as we will see, they generally lack analytical tractability. For
instance, if we take the price of a zero-coupon bond as given by (15), we have
to know the distribution of ftT r(s)ds. Asr(s) is lognormally distributed and
the sum of lognormal random variables is not lognormal, the computational
problem turns out to be quite hard.

However, some of them are very popular among practitioners as they are
simple to calibrate, allow simultaneous fitting to both the yield curve and
the volatility term structure, and provide good pricing of specific instruments
such as caps and floors.

4.4 Some specific examples of one-factor time-invariant
processes

In this section, we will review in detail some specific examples of one-factor
time-invariant processes, namely Merton (1973), Vasicek (1977), and Cox,
Ingersoll and Ross (1985) models. These models are the most famous and
have some interesting computational features. Unless explicitly mentioned,
we assume that the dynamics are specified under the historical probability
P (i.e. in the "real” world).

4.4.1 Merton (1973)

Merton (1973) was the first to propose a general stochastic process as a model
for the short rate. Under the historical probability P, the short term rate is

dr(t) = p,dt + o,.dW(t) (16)

where p, and o, are constant and W (t) is a standard Brownian motion.
Furthermore, Merton assumes a constant risk premium .

Short term rate The explicit solution to (16) is

r(t) = r(s) + .t + o, /t 4V (s)

S
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for any t > s. Given the set of information at time s, the short term rate
r(t) is normally distributed

r(t) [Fe ~ N (r(s) + (t = s)ps,., (t = 5)a7)

The unboundedness of the first and second moment of the distribution allows
the rate to become negative or infinite. In a sense, the model lacks stability.

Discount bond price The stochastic differential equation to be solved is

8_B+0_72“62_B+( -\ )6_3_
ot "2 g2 T\ T AT )

with the boundary condition B(T,T') = 1. Its solution is

r(t)B =0

@T=)2(up—ror) | (T-1)302
- g + 6

B(t,T) = e T=0r®

From there, it is easy to see that the bond price is an increasing function
of the maturity date. In particular, one can show that an infinite maturity
discount bond will have an infinite price, which is unrealistic.
Under P, the bond price dynamics is given by

dB(t,T)

———= = [r(t) = NT —t)o,]dt — (T — t)o,] dW,

B, = M)~ T — ) ]dt ~ (T~ ] dW
which clearly shows the convergence toward a known value: as T'—t becomes
smaller, the diffusion term vanishes.

Term structure The term structure is given by the sum of the short term
rate and of a quadratic function of the time to maturity

In B(t,T)
T —t
(T =t)(p, = Aay) (T —t)*0?

= r(t) + 5 - 5

This implies that changes in the short rate will result in parallel shifts of
the term structure. In addition, yields are a concave function of the term
structure, increases in volatility will result in increase in the curvature of the
term structure, and

R(t,T) =

lim R(t,T) = —o0

T—o00
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Deriving R(t,T) with respect to T gives the slope of the term structure
ORW,T) _ (4 —Aor) (T —t)o7

orT 2 3

If u, > Ao, the term structure is humped with a maximum for the maturity
W. If u, < Ao, the term structure is decreasing. In no case, the term
structure can be increasing.

Given the set of information at time s < ¢, the yield to maturity R(¢,T)

is normally distributed

R(t,T)|F, ~ N (R(s,T) +0(t — s),02(t — s))

This implies that the yield volatility term structure is flat and independent
of the maturity, whereas in practice, we generally observe a larger volatility
on short term rates.

Option price The value at time t of a European call option C(t) with
maturity 7Ty, with exercise price K, on a zero-coupon bond with maturity
Ty < T¢ is given by
o) = Eq [e*ftTc’“(S)dSMax [B(Tp, Tp) — K, 0]
= B(t,Tg)N(dy) — KB(t,Tc)N(dy)
with
1 B(t,Tp) 1
d = —In|{—F—=- =
! T (KB(t,TC)) t3Y

d2 = d1 —v

2)2 = U%(TB — T0)2(TC — t)
4.4.2 Vasicek (1977)

Vasicek (1977) proposes to model the short term interest rate as an Ornstein-
Uhlenbeck process:

dr(t) = k(0 — r(t))dt + odW (t)

where k, 0, and o are positive constants and W(t) is a standard Wiener
process. This defines an elastic random walk around a trend, with a mean
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reverting characteristic: when r(t) goes over (respectively: under) 6, the
expected variation of r(t) becomes negative (respectively: positive) and r(t)
tends to come back to its average long term level 6 at an adjustment speed
k. In addition, Vasicek postulates a constant risk premium .

Short term rate The explicit solution to this stochastic differential equa-
tion is

t
r() = 0+ (r(s) — 0)e " 4 o, / e 0-5) g1 (u)

for any t > s. Given the set of information at time s, the short term rate
r(t) is normally distributed

2
T(t) |Fs ~ N (0 + (7“(3) _ 0)67/@(1575)7 %(1 . 62&(155)))
K

As a consequence, interest rates can become negative, which is incompatible
with no arbitrage in the presence of cash in the economy.

For very large values of ¢, the expected value and variance of the short-
term rate are 6 and %E The mean reversion process precludes these two values
to explode, reducing the probability of unreasonably large or low interest
rates.

Discount bond price The stochastic differential equation to be solved by
the bond price is

2 92
W 208 wo—r) 2oL rp=0 (7

with the boundary condition B(T,T) = 1. Alternatively, the bond price
can be obtained by computing the discounted expected terminal value of the
bond with respect to Q.

B(t,T) = Eq [e*ftT’“(S)ds IF,

The solution is
B(t,T) = e (&T)r(£)+b(¢,T)
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with

at,T) = =(e”TDr _1q)
K
2
_ g —2(T—t)k 1 /\UT g —(T—-t)k
We.T) = T (e >)+;(9_ ’ _%2)(1 e~ (T-0%)
2
_ (9_ A%y _“—;) (T — 1)
K K

Under the original measure P, the bond price dynamics is given by

dB /\0'7« (T—tk Or + _(T—t)k
= = [r(t)+7(e (T=1) —1)]dt+?(e (T=0% — 1) dW (t)

which implies that bond prices are lognormally distributed. Note that the
volatility term increases with 7', but is bounded with respect to the time to
maturity.

Term structure The term structure is given by

R(t.T) = _L l —(T-tx _ 1 t 072“ 1 — e~ ATtk
1) = 7= Jr(t) + g (=00
1 Ao o2
— _ r_zr —(T—-t)k
+K3 (0 K /{2> (1 € )

Noticing that the infinite maturity interest rate is constant and does not
depend on r(t)

2
Ao, O

R(t,c0) =lim R(t,T) =60 —

T—o0 K 2/62

we have



The term structure can be positively shaped (r(t) < R(t,00) — %), nega-
tively shaped (r(t) > R(t,00) + %) or humped (other values of r(t)).

Given the set of information at time s < ¢, the yield to maturity R(¢,T)
is normally distributed

R(t7 T) |Fs ~ N (MR()?OJR())
with

) = (=) (Rt,0) + 0 - Rit o)) + P2

+e "R (s, T)
1_67KT ’ —2k(t—s 0-72“
or() = (T) (1—e 0 ))ﬂ

The volatility term structure of the yields is a decreasing function of the time
to maturity, with limiting value zero.

Options prices Jamshidian (1989) derives analytic solutions for the prices
of European call and put options on discount bonds. The option pricing
formula has similarities with the Black & Scholes formula, since discount
bond prices are also lognormally distributed in the model. The price at time
t of a European call C(t) and put options P(t), with strike K, maturing at
time T¢, on a zero-coupon bond with maturity date T are

C(t) = B(t,Tp)N(di) — KB(t,Tc)N(dz) (18)
with
1 [ BTe) \ 1
h o= o (KB(t,TC)) oY
d2 = dl—’l)
1 0-72“ —2kK — —k(Tp— 2
U2 — 55 (1 —e 26(Tc t)) (1 —e (T Tc))

Jamshidian (1989) also provides expressions for the price of call and put
options on coupon-paying bonds. His approach is of general validity for any
one-factor model as long as the option price is a monotonic function of the
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state variable. Let us examine the case of a call option. Suppose the bond
provides n coupon payments after the option maturity (7). The coupon are
denoted by C;, C, ..., C,, and their corresponding payment dates by 17, T5,
.., T,. Let r* be the value of the short term interest rate at time 7T that
causes the coupon bearing bond price to equal the strike price of the option
(K), and let B*(T,T;) be the value at time T of a zero-coupon bond paying
one currency unit at time T; (i = 1,...,n) when r(T) = r*. At time T, the
payoff from the option is

max |0,> C;B(T,T;) — K
i=1
Since all rates are an increasing function of r(t), all bond prices are a de-
creasing function of r(t). Thus, the option will be in the money at time T
and should be exercised if and only if » < r*. Furthermore, the zero-coupon
bond B(T,T;) is worth more than C;B*(T,T;) if and only if r < r*. The
payoff from the option is therefore

i Cimax [B(T,T;) — B*(T, T;)]

that is, the sum of n options on the underlying zero-coupon-bonds.
Finally, let us note that Sundaresan (1989) provides an analytical solution
in the case of fixed to float interest rate swaps.

4.4.3 Cox, Ingersoll, Ross (1985b)

Cox, Ingersoll and Ross (1985b) have developed an equilibrium model in
which interest rates are determined by the supply and demand of individuals
having a logarithmic utility function. The result is a single factor model
in which the short term rate satisfies

dr(t) = k(0 — r(t))dt + o/r()dW (t) (19)

where £, 6, and o are positive constants, W (t) is a standard Brownian motion
and the risk premium at equilibrium is shown to be

A(r,t) = A/r(t)
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The endogeneously derived short term rate process, also known as the
square-root process, is similar to Vasicek (1977), but its variance is pro-
portional to the short rate rather than constant. This means that as the
short term interest rate increases, its standard deviation increases as well.
Furthermore, if it hits the zero-boundary (which is only possible if 0% > 2k0),
it will never become negative!!.

Short term rate The unique positive solution to the short rate stochastic
differential equation (19) is

r(t) =0 + (r(s) — 0)e ) 4 g e7r() /t e“(“*s)\/@dW(u)

S

for any t > s. Given the set of information at time s, Feller (1951) has shown
that the short term rate r(t) is distributed as a non central chi-squared

r(t) |Fs ~ x(2cr(t),2q + 2,2u)

with 2g + 2 degrees of freedom and non central parameter 2u, where

B 2K
© - 02(1 — e r(t=s))
u = cr(s)e ")
= cr(s)
B 2k0 1
q = J—%—

The distribution can be written explicitly'? as

£ ) () = e () 1, [2vam) (20)

1See Feller (1951) for a proof. Intuitively, the variance o?r(t) is very small if r(t) is

close to zero and is dominated by the drift component.
12This distribution is not a chi-squared. But if we define x(t) = 2¢r(t), then x(t) is a
non central chi-squared with distribution

e (o) = 30 (K [ )

where 2u is the degree of non-centrality and 2(q + 1) is the degree of freedom.
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where I,[] is the modified Bessel function of the first type and of order g.
According to this distribution, the mean and variance of r(t) given r(s)
are

E(r(t) [r(s)) = 0+ (1(s) — B)e ¢~
and
V (r(8) () = r(5) (0 — e 20-0) 172 (1 — gmit-0)2

o2

respectively. When ¢ — oo, the limits are 6 and 05* respectively.
Note that the risk-neutral density fry corresponding to (20) is obtained
by replacing k by (k + A). The resulting distribution has the same number

of degree of freedom, but the degree of non-centrality changes.

Discount bond price The stochastic differential equation to be solved is

OB  ¢?0’B 0B
with the usual boundary condition B(T,T) = 1. Alternatively, the bond
price can be obtained by computing the discounted expected terminal value

of the bond with respect to @,

r)B=0  (21)

B(t,T) = Eq [e*ftTr(s)d”Ft}

- /ooo e O fp (n(T) [r(2)) di(T)

Unlike the normal case, the distribution of — ftT r(s)ds is not known, and we
have to solve the Laplace transform to obtain it, which also leads to solving
a partial differential equation.

The solution is

B(t,T)=a(t,T) exp (—b(t,T)r;)

with




207" — 1)
Fr )™ —1) +2y

= \/%2+20%

K = k+ Ao,

b(t,T) =

Under the original measure P, the bond price dynamics is given by

dB
5 = [r(t)(1 — Ao,.b(t, T)] dt + /r(t)o,b(t, T)dW (t)
Term structure The rate R(t,T) linearly depends on r(t) and R(t, 00).We
have
~ B(T) K+ Ao, +vIn A(T)
R(t,T) = T r(t) — 50 T R(t, )
and 0.0
K
t _ =
R( 700) K + Ao-r + ’y

Thus, the value of r(¢) determines the level of the term structure at time
t, but not its shape. As in the case of Vasicek, upward-sloping, downward
sloping and humped yield curves are admissible.

Options prices Cox, Ingersoll and Ross provide formulas for the price of
European call and put options with strike K and maturity date T on zero-
coupon bonds maturing at time Tz. They are slightly complicated, as they
involve integrals of the non-central chi-square distribution. For instance, the
call option formula is:

O) = Bt To)x (d1, 4:207 ¢2r(t)ewc)

dl/r*
4k0 ¢°r(t)erTe
—KB(t, T d
(7 C’)X(27 0_%7 dg/’l“*

where

dy = 2r'(¢+¢ +b(t,Tp —Tc))
dy = 2r*(¢+)
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<
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and
In (a(t:TB*TC) )

. K
DT W T — To)

is the rate at maturity such that the option is exactly at the money.

Nevertheless, the formula can be interpreted in the same way as the Black
and Scholes framework: the first term is the discounted expected value of
the bond conditional upon an in the money option at maturity. The second
term is the discounted exercise price times the probability of ending up in
the money.

European options on coupon-bearing bonds can be valued using the same
approach as Jamshidian (1989) in the case of the Vasicek model. The Cox,
Ingersoll and Ross (1985b) model has been used widely in the literature to
develop pricing formulas for other contingent claims. Longstaff (1990) has
shown how to value European options on yields, Dunn and McConnell (1981)
mortgage-backed securities, Ramaswamy and Sundaresan (1986) futures and
options on futures, Sundaresan (1989) interest rates swaps, Chesney, Eliott
and Gibson (1993) American options on yields.

Transformation Define

2

h(t) = 2(e% —1),h™ (u) = ~log(1 + )

4K K o?
and
r(u) = e r(h ! ()
Then, the process
N 4k0 —
dr(u) = —du + 2+/7T(u)dW (1)
O-T

is of the class BESQ(%#), which is extensively studied by Revuz and Yor
(1991)
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4.5 One-factor time-varying (fitted) processes: Hull
and White

Most of the time-invariant models that we reviewed in the previous section
suffer from the shortcomings that the short term rate dynamics implies an
endogenous term structure, which is not necessarily consistent with the ob-
served one. As these models cannot be calibrated to effective yield curves,
practitioners are very reluctant to apply them. Furthermore, these models
cannot at the same time fit the initial term structure and a predefined future
behavior for the short term rate volatility.

This is why Hull and White (1990) introduced a class of models which
allows both and that is consistent with a whole class of existing models. The
Hull and White (1993) most general specification is

dr(t) = (0(t) — s(t)r(t))dt + o(t)rP (t)dW (t) (22)
with an exogeneously specified risk premium
A(r,t) = Ar?

and with A, > 0. The functions 6(t), x(t) and o(t) are time-varying and
can be use to calibrate exactly the model to current market prices (in fact,
what is called non-stability of parameters in calibrating the time-invariant
model is developed here at time-varying parameters)'3. The price to be paid
for this exact calibration is that bond and bond options prices are no longer
analytically obtainable.

4.5.1 Should we consider all parameters as time varying ?

It may be tempting to set x(t) and o(t) as time-varying in order to exactly
match the initial term structure. However, an important consequence is
that the resulting volatility term structure will generally be non stationary
and will often evolve in a quite unpredictable way (Carverhill (1995)). As
a consequence, option prices computed with this volatility should be taken
very cautiously. Very fluctuating values from the parameters can often point
to a misspecified or a misestimated model. Hull and White (1995) themselves
wrote:

3Note that specifications with 3 €]0;0.5[ should be taken cautiously, because the so-
lution to (22) is not necessarily unique(see Arnold (1973, p. 124)). Empirically, Chan,
Karolyi, Longstaff, and Sanders (1992a) suggest 3 ~ 1.5.
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"It is always dangerous to uses time-varying model parameters
so that the initial volatility curve is fitted exactly. Using all the
degrees of freedom in a model to fit the volatility exactly consti-
tutes an over-parametrization of the model. It is our option
that there should be no more than one time varying parameter
used in Markov models of the term structure evolution, and this
should be used to fit the initial term structure”.

This explains why, in practice, the model (22) is often implemented with
k(t) and o(t) constant and () as time-varying.

4.5.2 Example: the extended Vasicek model

In the Hull and White framework, the extended Vasicek (1977) model can
be written as (22) with 5 = 0, or equivalently as

o(t

dr(t) =k (Q - T(t)) dt + o,.dW (t)
K
where k and o are positive constants. In a sense, it is both a Ho and Lee
(1986) model with mean reversion at rate x and a Vasicek model with time-
dependant reversion level (at time ¢, the short term rate reverts to @ at
rate k).
The parameter 6(t) can be estimated using the initial term structure

2

9
0(t) = 5. F(0.8) + kF(0.) + %(1 )

Discount bond prices Discount bond prices are given by
B(t, T) = ea(trT)Tt+b(t,T)

with
1
at,T) = —(e~T=%_1)

bt,T) = In (%) — B(t,T)—aln(gt(O’ t)

Lo kT —rtn2( 2nt
———o0“(e ™ —e (et =1
o P (et —1)
These equations specify the price of bonds at time ¢ in terms of the short

rate and the price of zero-coupon bonds today at time t.
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Option prices The price at time t of a European call and put options with
strike K maturing at time 7" on a zero-coupon bond with principal amount
Lp and maturity date Tz are

C(t) = LpB(0,T5)N(h) — KB(0,T)N(h — op) (23)
P(t) = KB(0,T)N(—h+op) — LgB(0,Tg)N(—h)
where
h:iln LBB(07TB) 2
op B(0,T)K 2
and
_ O wmp-myy, [L— €T
op p (1—e ) o

is the standard deviation of the logarithm of the bond price at time 7. Equa-
tion (23) is the same as (18), but with ¢ = 0. It gives the same results as
using Black’s model with a volatility of Z&.

European options on coupon-bearing bonds can be valued using the same
approach as Jamshidian (1989) in the case of the Vasicek model.

Critiques In addition to the previous analytical expressions, Hull and
White (1990) have developed a very elegant trinomial lattice methodology
that can be used to calibrate the model to market data. But despite its
positive features, the extended Vasicek model still suffers from important
problems

e it still allows for negative interest rates (even if due to the presence of
mean reversion, the probability of this occurrence is limited).

e caution is needed when calibrating the model to cap prices, especially
for some combinations of term structure shapes and market cap volatil-
ities, which give very strong or very low levels of mean reversion (see

Rebonato (1996)).

e an exact day to day fitting to the term structure generally produces
an implausible extreme unstable behavior, in particular for 0(¢). This
explains why the model is often implemented with a constant reversion
speed.
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4.5.3 Other extended models

In the Hull and White (1993) framework, the extended Cox, Ingersoll, Ross
(1985b) model can be written as (22) with 3 = 0.5. In this case, however,
closed form solutions for the zero-coupon bond price and option prices are
not available. The solution involves numerical procedures to solve the partial
differential equation of the bond price. Note that the extended Brennan and
Schwartz (1977) and Courtadon (1982) model can be extended as (22) with
g =1.

Studying the family of models given by (22), Jamshidian (1993b) proves
that if 6(¢)/0?(t) is a constant, then the bond price is analytically tractable.
Strickland (1993) and Carverhill (1994) also discuss the constraints on the
volatility functions for such extended models.

4.6 Some specific examples of lognormal models

In most of the models we have seen, either the sort rate or the forward
rate were modeled as Gaussian processes. This popularity is due to the
analytical tractability of Gaussian processes, but it also implies that there is
a positive probability of negative rates, which implies arbitrage opportunities
in the presence of cash. This has led some authors to propose models with
lognormal rates, thus avoiding negative rates.

4.6.1 Black, Derman, and Toy’s (1987, 1990)

Black, Derman, and Toy (1987) have proposed a one factor binomial model
whose continuous time equivalent is'*

din(r(t)) = (0(t) — aln(r(t))) dt + o,dW (1)

14Using Ito’s lemma, it can be rewritten as
1
dr(t) = r(t) <9(t) — kn(r(t)) + 503) dt + o.r(t)dW(t)

Another possible form often seen in the litterature is:

r(t) = u(t)e?r =1
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where k is the speed of mean reversion. The model is similar to the Ho
and Lee (1986) model in approach, but it incorporates the mean reverting
behavior of interest rates. Furthermore, it assumes a log-normal process for
the short rate, which precludes negative values. In 1990, they extended the
model to allow for time dependant volatility:

dIn(r(t)) = (6(t) — aln(r(t))) dt + o.(t)dW (t)
The model is very popular among practitioners for various reasons:

e it can be constructed to price exactly any set of discount bonds, as
it uses the initially observed term structure to estimate the expected
means and standard deviations of future short rates (in practice, it re-
quires numerical fitting to both the interest rate level and the volatility
term structure)

e (plain vanilla) swap rates, which are a linear combination of discount
bonds, can be priced exactly for any volatility structure,

e caps or swaptions quotes (i.e., implied volatilities) can be used directly
to calibrate the model.

e the current market information can be represented by a simple recom-
bining binomial tree with equally likely up and down moves, which
eases computation and understanding.'®

Unfortunately, the model lack analytical properties, and its implications
and implicit assumptions are unknown. Furthermore, it has been shown
that the model gives infinite expected roll-over returns (see Sandmann and
Sondermann (1993), Haugan and Weintraub (1993)).

An interesting reformulation of the model is obtained by applying Ito’s
lemma to the function r(t, z(t)) with

A(t) = Inr(t) — Inwu(t)

or(t)
where u(t) is the median (which has no analytical expression for a log-normal
distribution). We obtain

dIn(r(t)) = (81%1‘(” + 0“(,; t(t)) (In(u(t)) — In(r(£))) dt + o (H)dW (1)

15 Jamshidian (1991b) suggests a forward induction methology to build the short rate
tree.
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which is very useful in lattice constructions and Monte-Carlo methodologies.
Furthermore, it is easy to see that

e as the reversion speed which determines the volatilities for various ma-
turities is a function of the short rate volatility, the term structure of
volatilities is completely determined by the future volatility of the short
rate

e if 0, is constant, the model does not display any mean reversion

4.6.2 Black and Karasinski (1991)

Black and Karasinski (1991) suggested a binomial tree approach with time
steps of varying lengths. The continuous time version of their model is

dIn(r(t)) = (6(t) — x(t) In(r(¢t))) dt + o.(t)dW (t)

which is an extension of the Black, Derman, and Toy (1987) model with a
time-varying speed reversion speed (k(t)). They postulate that the model
fits the yield curve, the volatility curve, and the cap-curve.

4.6.3 Sandmann and Sondermann (1993b)

Modeling lognormally distributed rates is the simplest solution to avoid the
problem of negative rates. unfortunately, as we have seen, no closed-form
solution have been found for these models. But they suffer from a more
important drawback. As evidenced by Hogan and Weintraub (1993), rates
explode with positive probability, implying infinite roll over return whatever
the maturity, zero prices for bonds, and thus, arbitrage opportunities. As a
consequence, such models cannot value one of the most widely used hedging
instrument, namely the Eurodollar futures contract, which is worth minus
infinity...

As evidenced by Sandmann and Sondermann (1993b), the explosion re-
sults from the choice of the instantaneous period as a compounding period.
Specifying the instantaneous rate as log-normally distributed will result in
exponential of exponential functions. Thus, research is now focusing on mod-
eling simple interest rates r*(¢) over a fixed finite period - rather than in-
stantaneous rates - within the lognormal framework. We have

r(t) = In(1 +r*(t))
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Assuming lognormality for the simple rate
dr*(t)
(1)

implies that the continuously compounded rate follows a diffusion that is
neither normal, nor lognormal, but a dynamic combination of both.

oy (t)
2

= p,- (t)dt + o+ ()dW (1)

dr(t) = (1 — e~ ((MT*@) — (1 — ) ) dt + o, (t)dW(t))

When 7*(t) — oo, the dynamics converges to the normal diffusion

o7 (1)
2

dr(t) = (- (t) — Ydt + o« (£)dW (1)

while when 7*(t) — 0, the dynamics of 7*(¢) and r(t) coincide.

4.6.4 Miltersen, Sandman and Sondermann (1997)

Miltersen, Sandman and Sondermann (1997) developed a lognormal term
structure model for simple annual forward rates. They define the simple
forward rate f*(t,T1,T») as the interest rate set at time t over a fixed period
from T to T, > T,. We have

1

B(t7T2) = B(thl)l —|—af*(t T, T2)

with a = T; — Tj. The limit case a = 0 corresponds to continuously com-
pounded forward rates. This simple forward rate is log-normally distributed

df*(t, 11, T5)

= (8,11, To)dt (8,11, Th)dW (t
f*(t7T17T2) l’l’f (87 1, 2) +0-f (87 1 2) W( )

The initially observed term structure is used to calibrate the model. The
model is very similar to Heath, Jarrow, Morton (1992), except that it is
based on the simple forward rate rather than the continuously compounded
forward rate. Note that their model can be stated in a Heath, Jarrow and
Morton (1992) framework by using a specific form for the volatility function
of the instantaneous forward rate. This form is state dependent.

Miltersen, Sandman and Sondermann (1997) have obtained closed form
solutions for European bond options in such a framework. For a European
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call option with maturity date Tx and strike K, on a zero-coupon bond with
maturity Tg, we have

C(t)=(1—-K)B(t,Tg)N(d1) — K [B(t,Tc) — B(t,T5)] N(d2)
with

o 1 B(t,TB)(l - K) a2(t,T0,TB)
dij2 = a(t, Te, Ts) {m (B(t,To) — B(t, Tp)) K + 2

and T
a’2(t7TC7TB) :/t J?‘*(87TC7TB)d8

They have also obtained closed form solutions for caps and floors, which are
very similar to those obtained with Black (1976) formula which is widely
used in the market.

4.7 Other models

In this section, we will briefly discuss some other one-factor interest rate
models. These models are generally less popular than the ones we have
examined already; either they do not provide analytical solutions, either they
rely on too restrictive or unrealistic assumptions. However, we mention them
briefly as they are often the starting point of a more elaborate and accepted
model. We will first present models based on a volatility that is proportional
to the level of the short term rate, or to a power of the level of the short
term rate. Then, we will expose models that focus on the zero-coupon bond
price dynamics rather than on the short term rate. We will end by presenting
Black (1976) model, which is widely used among practitioners dealing with
caps and floors on interest rates. However, despite the use of these models to
price specific derivatives, one should always remember that their conceptual
background remains fragile. In particular, they are not necessarily arbitrage-
free.

4.7.1 Dothan (1978), Brennan and Schwartz (1977)

In Dothan (1978) model, the short term rate follows a geometric Brownian
motion without drift:

dr(t) = o,r(t)dW(t)
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Given the set of information at time s < ¢, the short term rate r(t) is log-
normally distributed

r(t)|Fs ~ Ln (7‘(3), e7r(t=s) _ 1)

and thus cannot become negative. The model is also called the geometric
random walk, or the elastic random walk. The resulting term structure is
a monotonically decreasing function of the time to maturity, an increasing
concave function of r(t), and a decreasing convex function of o2.
Courtadon (1982) has shown that by the Law of Iterated Logarithms, in
Dothan (1978) model,
lim r(t) =0

t—o0

As a consequence, the model is inadequate to represent the long term behav-
ior of interest rates. Other major restrictions for the use of Dothan (19878)
model are that there is no known distribution for the integral of r(t), nor
for its Laplace transform. As a result, there is no simple solution for bond
or option prices. Despite this, the model was used numerically by Dothan
(1978) to value discount bonds and by Brennan and Schwartz (1977) to value
savings, retractable and callable bonds.

4.7.2 Brennan and Schwartz (1980), Courtadon (1982)

Brennan and Schwartz (1980) have proposed to extend Dothan (1978) model
by adding a mean reverting term:

dr(t) = k(0 — r())dt + o,r(£)dW (1)

But there is no known distribution for r(¢), and contingent claim prices must
be computed using numerical procedures. Brennan and Schwartz (1980) use
the model to price convertible bond and Courtadon (1982) to price discount
bond prices.

4.7.3 Rendleman and Bartter (1980)

Rendleman and Bartter (1980) assumed that r(t) follows a geometric Brow-
nian motion with a constant drift and diffusion parameters.

dr(t) = p,r(t)dt + o.r(t)dW(t)
The model was also studied by Marsh and Rosenfeld (1983).
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4.7.4 Cox, Ingersoll and Ross(1980)
Cox, Ingersoll and Ross(1980) have proposed the following diffusion

dr(t) = o,r(t)*2dW (t)

to study variable-rate securities. The model was also used by Constantinides
and Ingersoll (1984) to value bond in the presence of taxes.

4.7.5 Cox (1975), Cox and Ross (1976)

Cox (1975) and Cox and Ross (1976) have proposed using a constant-elasticity
of variance diffusion to model the short term rates dynamics.

dr(t) = pr(t)dt + o.r7 (t)dW,;

This model nests the Dothan (1978), Brennan and Schwartz (1980) and Cox,
Ingersoll and Ross (1980) models. The application of this process is discussed
in Marsh and Rosenfeld (1983), footnote 4.

4.7.6 Longstaff (1989) and the double square-root model
Longstaff (1989) modified the Cox, Ingersoll and Ross (1985b) model as

follows:
dr(t) = k(0 — \/r(t))dt + o+/r(t)dW (t)

This model is sometimes referred to as the double square-root model. Longstaff
(1989) provides a closed form expression for the price of a zero-coupon bond.
His empirical tests suggest that this model outperforms the Cox, Ingersoll
and Ross (1985b) model in most situations.

4.7.7 Black and Scholes (1973) and Merton (1973)

Black and Scholes (1973) and Merton (1973) have developed the complete
framework for option valuation on an asset whose price follows a geometric
Brownian motion. While this asset is traditionally considered as being a
stock, the pricing of bond option was already discussed by Merton (1973),
who used the zero coupon bond price itself as a state variable to obtain a
preference free closed form formulae for an European call option price on
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a zero-coupon bond. In this framework, the discount bond price follows a

diffusion process
dB(t,Tp)

B(t,Tp)
The price C; of a call option (with maturity 7. and strike K') on such a bond
is given by:

= pdt + odW (t)

Cy = B(t,Tg)N(dy) — Ke "= N (dy)
where
In(B(t, Tg)/K) + (r — a?/2)(T. — t)
ovT, —t
dy = dy—or\T,—t

This is a direct extension of the original formula for stocks. It is used widely
for short-dated options on long term bonds. despite its simplicity, at the
conceptual level, it suffers from major drawbacks:

dl ==

e The volatility parameter is known to decrease as we get closer to the
bond maturity, as the redemption price is known with certainty.

e If the bond price is lognormally distributed, the instantaneous return
will be normally distributed. In a one factor model, this implies that
the short term rate is also normally distributed and can take negative
values.

e How can one imagine that the short term rate is constant, while long
term bond prices are stochastic 7

e The information included in the term structure is not used at all. Fur-
thermore, the implied term structure is not necessarily compatible with
the observed term structure, which may create arbitrage opportunities.

4.7.8 Ball and Torous (1983)

Ball and Torous (1983) incorporated the constraint of bond price approaching
its face value at maturity by assuming that the bond price follows a Brownian
bridge process rather than the original geometric Brownian motion of Black
and Scholes (1973).

The model suffers from important drawbacks:
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e it is incompatible with the initial term structure

e the instantaneous variance of the bond price is constant. Thus, the
volatility of the corresponding yield to maturity increases without bounds
as we get close to maturity.

e assuming the existence of an equivalent risk-neutral probability, Ball
and Torous (1983) derive closed-form solutions for options on zero-
coupon bonds. But the model is in fact not arbitrage free: as evidenced
by Cheng (1989), the corresponding risk-neutral probability does not
exist.

4.7.9 Black (1976)

The property of positive interest rates can be recovered by assuming that
interest rates are lognormally distributed. A possible alternative is the use
of the Black (1976) model to price options on forward contracts. If F is the
forward price, the price of a call option on the forward price becomes

Cy = e T [FN(dy) — KN(dy)]
where
g In(F/K) + (0?/2)(T. — 1)
! oI, —1
do=dy —o\/T,—1

This model is widely used to price caplets and floorlets, as they can be
considered as options on the forward rate multiplied by a nominal value. In
such a case, we replace F' and K by the forward rate and the strike rate.

5 Extensions to a multi-dimensional space

So far, we have been mostly working with interest rate models where the short
rate r(t) was the only explanatory variable. These models were characterized
by their analytical tractability and their ease of use. However, single factor
models have been often criticized on various grounds:

e the long rate is a deterministic function of the short term rate and that
the prices of bonds with different maturities are perfectly correlated (or
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equivalently: there is a perfect correlation between movements in rates
of different maturities).

e models often fail to match observed prices, as we will see later on in
the empirical review.

e from an economic point of view, it seems unreasonable to assume that
the entire term structure is governed only by the short rate.

e it is difficult to obtain realistic volatility structures for the forward rate
without going to very complicated specifications for the short rate.

For these considerations, some authors have suggested using more than
one explanatory factor to model the interest rates uncertainty. By going from
a single factor to a multi-factor, one should get an improved fit. The price to
pay is generally a loss of tractability, partial differential equations of a higher
dimensionality, and slower results. The choice of the correct factors is also
important. Here again, we find models based on the no-arbitrage condition
and equilibrium models

Most multi-factor models are in fact based on two factors. Cox, Ingersoll
and Ross (1985b) and Richard (1978) used the spot rate and the rate of
inflation, Longstaff and Schwartz (1991) the spot rate and its volatility, Duffie
and Khan (1993) the yields on a fixed set of bonds, Brennan and Schwartz
(1979) the long and the short rate, Schaefer and Schwartz (1987) the short
rate and the spread, Fong and Vasicek (1991) the short rate and its volatility,
Das and Foresi (1996) the short rate and its mean, etc. More recently, three
factor models have been developed. A comprehensive analysis of specific
forms of such three factor models can be found in Chen (1994).

Since the analysis of multi-factor models is rather lengthy, we will only
provide hereafter the major results of some multi-factor models. We will suc-
cessively examine a sample of arbitrage and fitted models. As in the case of
their single-factor equivalents, multifactor arbitrage models create an instan-
taneous risk-free portfolio with respect to all the considered factors in order
to obtain by arbitrage a partial differential equation that any interest rate
contingent claim must satisfy. Fitted models will extend them by allowing
for time-varying parameters..
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5.1 Simple extensions of single-factor models: Langetieg
(1980)

The simplest extension of a single-factor model is obtained by defining the
short term rate as being the sum of two stochastic factors. More gener-
ally, one can always extend a single factor model to a multi-factor model by
defining the short term rate as a function of a set of stochastic factors.

It should be noted that some single-factor model do not necessarily gain
anything by being extended to a multi-factor case. For instance, let us extend
Merton (1973) model by defining the short term rate as being the sum of n

factors .
r(t) = le(t)
i=1
where each factor obeys
dx;(t) = 0;dt + o;,dW;(t)

and where W;(t) are n independent Brownian motions, ; and o; being con-
stant. Then, given r(s), at time ¢ > s, r(¢) is again normally distributed with
mean r(s) + (t — s)6, with = Y 0;, and variance o(t — s), with 0% = > o72.
Thus, the multifactor extension resumes in a single factor case.

However, in some cases, extensions of single factor models provide useful
results. For instance, Langetieg (1980) extended the Vasicek (1977) model
by considering the short term rate as the sum of n factors which obey

dz;(t) = k;i(0; — z;(t))dt + o;dW;(t) (24)

where W;(t) are n independent Brownian motions, «;, 6; and o; being con-

stant. In such a case, one can show that the discount bond price is given
by
B(t,T) = B(r(t),t,T) = [ [ B(x:(t),t,T) (25)
i=1
and the value of a European call option C(t) with maturity To and exercise
price K on a zero-coupon bond with maturity Ty is given by

C(t) = B(t,Tp)N(di) — KB(t, Tc)N(ds)
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where

1. BT 1
dy = —ln——028) | -
! v "KBETo) 2"
d2 = dl—’l)

n

2
2= ) %% ((1 — erilTa=To))? _ (gmnilTs=t) _ e—m(To—t))Q)

i=1

The Cox, Ingersoll and Ross (1985b) model can be extended in a similar
way. We obtain again (25) for the bond price, and the expression for the
option price can be derived in a similar way.

For a thorough discussion of these extensions and specific examples, see
Langetieg (1980), Hull and White (1990), Buser, Hendershott and Sanders
(1990) for the Vasicek case and Cox, Ingersoll and Ross (1985b), Hull and
White (1990) and Richard (1978) - presented hereafter - for the Cox, Ingersoll
and Ross case. However, one has to remember that adding another factor
may be easy, but its interpretation in terms of economic signification has to
be coherent.

5.2 Duffie and Kan (1993) and the affine models

Duffie and Kan (1993) have introduced models in which the drifts and volatil-
ity coefficients of the state-variable processes are affine functions. Two ap-
proaches have been pursued in the term structure literature:

e the first one assumes that the short term rate is a linear combination of
an unobserved state vector Y (t), which itself follows an affine diffusion
model which remains to be specified.

r(t) = 6Y(t)

In this framework, one can decompose the term structure movements
in factor such as ”curvature”, "twist”, ”slope”, or "level”. Examples
of these are the square-root diffusion models used by Chen and Scott
(1993), Pearson and Sun (1994), and Duffie and Singleton (1996).

e the second one posits a model for the short rate in terms of its own lag
and other state variables, such as long term mean and volatility of r(t).
Examples of these are Chen (1996), Balduzzi, Das and Foresi (1995),
and Backus, Foresi and Telmer (1996).
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Yield-factor models are multi-factor model of the term structure in which
the factors are the yields of zero-coupon bonds of n various fixed maturi-
ties. Each yield factor is defined by a Markov process, is observable on
the current yield curve, and its increment can have an arbitrarily specified
correlation with other yields. Discount bond prices are given as the solution
to an ordinary differential Ricatti equation, and path-independent contin-
gent claims can be priced using the traditional partial differential equation
approach. These models have also proved an interesting result, that is, for
the forward rate to be affine in the spot rate, the volatility of the short term
interest rate must be restricted to the form

a?(t,r(t)) = a(t) + b(t)r(t)

Ritchken and Sankarasubramanian (1996) have extended this result by show-
ing that the class of volatility structures is the same if the forward rate is a
finite degree polynomial of the short rate.

5.3 Richard (1978), Cox, Ingersoll, Ross (1985b)

Richard (1978) proposed a model in which the term structure of interest
rates is determined by two factors: the real short term rate ¢(¢) and the
expected instantaneous inflation rate m(¢). Both factors are assumed to follow
independent diffusion process

{ dq(t) = py(t)dt + o4 (£)dW,(t)
dr(t) = p(t)dt + o (£)dW,(t)

where W, and W, are two independent Brownian motions. The model is also
presented in the Cox, Ingersoll, Ross (1985b) paper.

Applying Ito’s lemma to the price of a zero-coupon gives us a diffusion
process for the bond price, and a partial differential equation to be solved
for the price of any interest rate contingent claim:

0. 9?B 02 B OB OB OB
S— 4+ L — — N0 —AOp)— —TB+—=0
2 9F T2 amz T e T M) G+ (s = Aron) 5 =B A

But this partial differential equation now depends on 7(t), q(t), and r(t),
plus the two risk premium A\, and A,! Fortunately, it is possible (after some
manipulations) to express r(t) as a function of m(¢) and ¢(¢) and to rewrite
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our partial differential equation in a simplified form involving seven parame-
ters: the short real rate dynamics (p,,07), the short expected inflation rate
dynamics (u,,02), the inflation volatility, and two risk premia (A, A;). As-
suming a representative investor economy with a logarithmic utility function,
using a square-root process for dq(t) and dn(t) and proportional risk-premia,
Richard obtains a complicated, but analytical, solution for the zero-coupon
bond price.

5.4 Brennan and Schwartz (1979, 1982)

Brennan and Schwartz (1979) have suggested a two factor model, in which
the term structure of interest rates depends on both the short term rate r(t)
and the long term rate [(t). The long term rate is defined as'

I(t) :Tlim R(t,T)

The short term and long term rates dynamics in the real world are given by
a joint diffusion process:

{ dr(t) = p,()dt + o, ()dW,(t) (26)
di(t) = m()dt + o ()dW(t)

where W,.(t) and W,(t) are two correlated standard Brownian motions, with
EW,(t),Wi(t)) =pt  Vtel0,T]

and p,.(), o, (), oi() are functions of ¢, r(t), and [(¢). The specification
allows the model to reflect the assumption that the long term rate contains
some information about the future value of the short rate.

The zero-coupon bond price is defined as a function of the time to matu-
rity, the short term and the long term rate.

B(t,T) = B(t,T,r(t),l(t))

16In practice, the long term rate can be approximated by the yield on a consol bond

(infinite time-to-maturity bond that only pays coupons) which is quoted on some markets.
However, hogan (1993) shows that this may yields some problems such as the explosion of
the solution of the partial differential equation we will obtain and on the compatilibility
between the dynamics specifications for both rates.
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Applying Ito’s lemma, we have

dB(t, T) = ,uB()dt + JByr()dW,«(t) + 0371()dW1(t)

with
0 9P 0P 9P  0l3°P  oiO°P 02 O°P
ne() = grtmgr thgr T Y o TPy gl
0 = 0,2
OBr - o-rar
opP
03,1() = —01—F57 ol

Applying the same arbitrage methodology we used for the one-factor model
gives
pp() —r@)B(t,T) = At r, Dop, () + Mi(t,m,1)op() (27)

which is the equivalent of (7) in the two factors framework. The functions

A(t,r, 1) and Ay(t,7,1) do not depend on the maturity date T'; they are call

the risk premium for the short rate and the risk premium for the long rate.
Substituting pgz(), op,() and op,() in (27) by their definitions gives us

the partial differential equation with the boundary condition that must be

verified by the bond price:

0B OB OB 020*°B 0?9°B 0’B

o =Moot —ho)ar + a5+ Fe +pooig o

—rB=0

(28)
with the usual boundary condition B(T,T) = 1, where pu,., o, ;, 07, A, and
A; are real valued functions of ¢, r(¢), and I(t) that have to be specified. The
general solution is of the form

B(t T) Ep [6 ft dsfl [t (A2422) ds+ft ArdWor (s +[t AdWi(s |F

Fortunately, equation (28) is valid in particular for a consol bond paying
a continuous time coupon, whose price is given by L(t,00) = ﬁ From there,
we can compute the various derivatives of L(t,c0) and replace them in (28).

We obtain )

—A,al:%H(Z—r)
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that is, the partial differential equation (28) can be rewritten in a form that
is independent of u; and A;:

2
0 = a—B+(ur—Arar)a—B+(J—’+l(l—r))a—B

ot or ! ol
LORO°B B B
2 o T o TP % T

with the usual boundary condition B(T,T) = 1, where u, — A0, and 0712 +
(I —r) are the risk adjusted drifts. Thus, the bond price will depend on the
stochastic processes parameters .., o,., 0, p, and on one preference parameter
A.. The equation must be solved numerically or by simulation.

In order to perform a quantitative estimation, Brennan and Schwartz
choose specific forms of the drift and volatility functions in equations (26),
namely,

dr(t) = (a1 + by (I(t) — r(t))dt + r(t)o dWi(t)
{ dl(t) = U(t)(az + bar(t) + col(t))dt + [(t)o2dWo(t)

However, this specification approach has been questioned recently by Hogan
(1993) and Duffie, Ma and Yong (1994), who proves that there are no real-
valued solutions to the diffusion equations, thus allowing for the existence of
arbitrage.

5.5 Schaefer and Schwartz (1984)

Schaefer and Schwartz (1984) have also suggested a two factor model of the
term structure of interest rates, but they have expressed their model in terms
of the long term rate [(t) and the spread s(t) between the long rate and the
short rate. The choice of these variables was based on the empirical evidence
of orthogonality between di(t) and ds(t) . It allowed them to obtain an
(approximated) analytical formula for the bond price.

The specific form of the stochastic processes assumed is given by

{ ds(t) = m(pu — s(t))dt + vdW(t)
di(t) = B(s(t), (1), t)dt + o/1(t)dWy(t)

i.e. a mean-reverting Ornstein-Uhlenbeck process for the spread (which al-
lows for negative spread), and long rate with a variance of change that is
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proportional to the current long rate. As 3(s(t),[(t),t) will not enter in the
valuation equation, it can be a function of the parameters ¢, r(¢) and [(¢). In
addition, Schaefer and Schwartz assume that \,, the market price of risk of
the spread, is a constant.

Under these assumptions, Schaefer and Schwartz show that the partial
differential equation for the discount bond price is given by

1 9°B 1 ,,0°B 0V AsY
= Y= 0 l— — — 2
! 2a2+ az2+am(“ — (29)
0B 0B
with 7 =T — t and subject to the boundary condition
B(T,T)=1

This equation has no known analytical solution, but Schaefer and Schwartz
provide an approximate analytical solution. They show that (29) is closely
related to

1 B 1 ,0°B oV Ay
0= 5?*‘ ZW+0_ =y =) (30)
0B 0B

where S is a constant. The solution to (30) subject to the terminal bond
price boundary condition can be written as

B(t,T) = X(s,7)Y(l,7)
where X (s, 7) solves

Ok B

and Y (I, 7) solves
{ga%%%ﬂ — 5% lY =0
Y (5,0) =

Equation (31) is isomorphic to (17) derived in the Vasicek model. Its
solution is

(32)

X(s,7) =exp {%(1 — e ™) (800 — 8) — TSo0 —
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with
Ay 197

m  2m?
Equation (32) is isomorphic to (21) derived in the Cox, Ingersoll and Ross
(1985) model. Its solution is

Y (l,7) = A(1) exp[—B(7)]]

Soo

with
B 200 exp ((§+ oz)%) 2
Alr) = (5+ a)(exp(ar) — 1) 4+ 2«
B(r) — 2(exp(ar) — 1)

(5+ a)(exp(ar) — 1) + 2a

a = V524202

Thus, the bond price is analytically determined by the product of X(s, )
and Y (I, 7). This analytical bond price is an accurate approximation to the
solution of (29).

5.6 Longstaff and Schwartz (1992)

Longstaff and Schwartz (1992) developed an equilibrium model of the econ-
omy and derived from there a two-factor term structure model. The two
factors are (indirectly) the short term rate r(¢) and the variance of changes
in the short term rate v(t).

In their framework, the representative investor has a logarithmic utility
and has the choice between investing or consuming the only good available
in the economy, whose price P(t) follows the following stochastic differential
equation
dpp—é’;) = (uX (1) + 0Y (1))t + o/T AW, (1)
where X (t) and Y'(t) are two specific economic factors and Wi (t) is a Brow-
nian motion. The two factors are chosen in such a way that X (¢) is the
expected return part that is unrelated to dWi(t) and Y (¢) is the factor cor-

related with dP(t). The two factors dynamics are given by

dX (1) = (a — bX(1))dt + cy/X O dWs(t)
{ dY (t) = (d — eY (1))dt + F/Y () dWa(?)
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where Wy (t) and W;5(t) are non correlated Brownian motions and a, b, ¢, d,
e, f>0.

Longstaff and Schwartz do not provide any intuitive interpretation for the
two factors X(¢) and Y (¢). But they show that in this specific framework,
X(t) and Y (t) can be related to observable quantities, as the equilibrium
instantaneous rate r(t) and the variance of its changes v(t) are given by a
weighted sum of these two factors

{ r(t) = aX(t) + BY(t)
v(t) = ®X (t) + 7Y (1)

with a = pc? and 8 = (0 — 02)f?, so that 7(t) and v(t) are non-negative for
all feasible values of the state variables. This can be rewritten as

pr(t) —V(t)
T
VO =

that is, we can easily go back and forth between X (¢),Y (t) and r(t), V (¢) .
The model can be seen as an affine two factor model, in which one is the
short term rate and the second one is its volatility.

If the representative investor maximizes his expected utility of wealth and
consumes C(t), Longstaff and Schwartz (1992) compute his wealth dynamics
and deduce from there the general partial differential equation obeyed by any
interest rate contingent claim V:

1 0V 1 9*V ov ov ov

§xw+§ya—y2+(v—5w)a—x+(n—(€+k) )a_y_W_ or (33)

subject to a boundary condition with z = f—g, Yy = }/2, Yy=%,0=bmn= f2,

¢ = e, and )\ represents the market price of the risk of changes in the level
of production uncertainty (which is governed by Y (¢)). It is important here
to note that the fact that the market price of risk is proportional to y is en-
dogenously determined by the model rather than exogenously imposed, which
ensures that the risk premium is consistent with the absence of arbitrage.

Solving (33) with B(T,T) = 1 as a boundary condition will give us the
price of the discount bond as

B(t,T) = AY(1)B*"(1) exp (k7 + C(7)r(t) + D(T)V (1))
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with 7 =71 — ¢ and

_ 2¢
Alr) = (64 ¢)(e?™ — 1) + 20
_ 2y
B(r) = (v+1p)(e¥™ — 1) + 20
o) = ag(e’” —1)B(1) — fip(e?” — 1) A(T)
oY(B — )
(¥ — )B(7) + (e’ — 1) A(r)
b = (3 —a)

The discount bond price depends on six parameters «, 3, v, 6, n, and v. It
is important to notice that the market price of risk enters in the equation
only through v, the sum of A and £. Thus, both parameters need not to be
separately specified. This reduces the number of parameters to be specified,
but also implies that there is an infinity of values of A and £ that give rise to
an identical fit of a given term structure.

Longstaff and Schwartz (1992) also provide analytical expression for the
case of an option on a zero-coupon bond. For instance, a European call price
on a discount bond satisfies (33) with

O(T) = Maz [0, B(T,, T) — K|

as a boundary condition. If we denote by 7 = Ty —t the time to maturity of
the option, we have

C(t) = O(T7 V7T7K7 TB)
= B(T7 V7TB)\IJ(01792;4’774777(")17(")2)
_KB(T7 V7 T)\Ij(e?n 94; 4’77 4777 ws, w4)
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6, — 469" 9, 4Cy”
aedm — 1)214(7;3) BledT — 1)23(7;3)
0, — ACo 6, — At
ale?™ —1)2A(1)A(Tp — 1) B(e™ —1)2B(1)B(Ts — 1)
W — Age?™ A(Tp)(Br = V) oy 4pe¥" B(Tp)(V — ar)
" aB-a)(e —DA(Tz —7) " B(B—a)(e’ —1)B(Ts —7)
o Aee A (Br = V) o e B()(V —ar)
Toalf-a)e -1 TBB-a)(e -1

and
(=kT+2ymA(Tg —7)+2nInB(Tg —7) —In K

The function W(#;,0s;4v,4n, w1, ws) is the bivariate non-central chi-square
distribution function given by

01 [0>—0s5
U(0;,029; 47,40, w1, ws) = / / X2 (u; 47y, wi) X (v; 4y, wo ) dvdu
o Jo

where x%(.;p,q) is the non-central chi-square density!” with p degrees of
freedom and non-centrality parameter q.

Given that the Longstaff and Schwartz (1992) model is affine, it provide
closed-form solutions for zero-coupon bonds and European options. However,
the difficulty is now to estimate the numerous input parameters. Longstaff
and Schwartz (1993) have outlined a parameter estimation method that
uses the historical time series of interest rates and interest rates volatilities,
but Clewlow and Strickland (1994) have shown that its implementation was
rather difficult due to the financial time series generally available in practice.

5.7 Fong and Vasicek (1991, 1992a, 1992b)

In a series of papers, Fong and Vasicek (1991, 1992a, 1992b) have derived
a two-factor model using the same factors as the Longstaff-Schwartz (1992)
paper, i.e. the short term rate r(¢) and the variance of changes in the short
term rate v(t). In their framework, the short term rate evolves under the
risk-neutral measure according to

dr(t) = a(F — r(t))dt + /v(t)dW,(t)

17See Johnson and Kotz (1970), chapter 28, page 133
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where T is the long term mean of the short term rate, and v(t) is its instanta-
neous volatility. This process is very similar to Vasicek (1977), with an extra
uncertainty resulting from the variance that is stochastic and that evolves
under the risk-neutral measure according to

dv(t) = (U — v(t))dt + &/v(t)dWy(t)
where T is the long term mean of the volatility. The two variations dW(t)
and dWy(t) are correlated. Note that the specification does not preclude the
short term rate from becoming negative.

In this framework, Fong and Vasicek derive the general partial differential
equation obeyed by any interest rate contingent claim V'
ov oV oV vV oV 0*V

B ) G ) G e T e TV e

subject to a boundary condition.
Solving (34) with B(T,T) = 1 as a boundary condition will give us the
price of the discount bond as

B(t,T) = exp(—rA(r) + vB(1) + C(1))

—rV =0 (34)

where 7 =T —t and
1 — e 07
Ay = 1=
is the duration measure of the Vasicek (1977) paper. The functions B(r)
and C(7) are slightly complicated and require the use of complex - as op-
posed to real - algebra. Selby and Strickland (1995) provide efficient series
approximations.

5.8 Chen (1996)

Chen (1996) proposed a three factor model of the term structure. In his
model, the short rate dynamics depends on the current short rate, the stochas-
tic mean of the short rate, and the stochastic volatility of the short rate.

dr(t) = k(0(t) — r(t))dt + /o (t)/T(t)dWa(t)
df = v(0 — 0(t))dt + E/BAW,(2)
do(t) = p(G — o(t))dt +n\/adWs(t)
A discrete time version of the model can be implemented using a four di-

mensional lattice. Closed form solutions for discount bonds and some interest
rate derivatives are obtained in very specific cases.
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5.9 Hull and White (1994b)

In order to overcome the limitations of their one factor model, Hull and White
(1994b) have also proposed a two factors model that is a new extension of
their extended Vasicek model:

{ dr(t) = (0(t) +u —r(t)) dt + o1dW:(t)
du(t) = —bu(t)dt + o2dWa(t)

with E(dW;(t),dWs(t)) = pdt and u(0) = 0. The model is similar to their
one factor model (1990), but with a stochastic drift: the short term rate is
mean reverting, u is a component of r(t) mean-reversion level, and u itself is
mean reverting to 0 at a rate b. Note that there is no loss of generality in
the specification, as if u reverts to some level ¢, u* = u — ct reverts to 0; we
can define u as the second factor and absorb the difference between v and u*
in O(t). The parameter 0(t) is used to make the model consistent with the
initial term structure.
The differential equation satisfied by the bond price is

0B 9B 9B
1 ,0°B 1 ,®B 9°B -
50152 T 3% g T P70 5 B =0

As the model belongs to the affine class, discount bond prices have a very
lengthy and complicated but analytical expression, that can be found in Hull
and White (1994b), Annex B.

6 Extension to an infinite dimensional space

Even with a multi-factor model, the term structure of interest rates has a
rather limited number of degrees of freedom. The observed term structure
does not necessarily match the theoretical one, at least in non-fitted models.
Furthermore, fitted finite factor models suffer from the difficulty that they
need to be recalibrated constantly to remain consistent with the observed
term structure. Thus, an alternative approach to single and multi-factor
interest rate modeling is to specify the dynamics of the term structure of
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interest rates as a whole. Rather than using a finite number of state vari-
ables, we use one state variable of infinite dimension, namely, the term
structure itself.

For instance, forward curve based models attempt to model the forward
rate stochastic processes {F(t,T)}o<i<r- The first contribution to this ap-
proach was made by Ho and Lee (1986) in discrete time, but the most signif-
icant one was made by Heath, Jarrow and Morton (1992). One should note
that such forward interest rate models are an infinite dimensional stochastic
system, as there is one equation for each fixed 7. The advantage of the ap-
proach is that if at time 0, we set the theoretical forward rate f(0,7) equal
to the observed one f*(0,T), we have a perfect fitting of the whole current
term structure and the problem of inverting the yield curve to calibrate is
avoided.

6.1 Ho and Lee (1986)

The discrete multi-period binomial model of Ho and Lee (1986) is especially
important since it was the first to model movements in the entire term struc-
ture. Ho and Lee take the initial term structure as exogenously given at a
point in time (by a set of zero-coupon prices) and derive the subsequent feasi-
ble term structure movements so that they are compatible with no-arbitrage
opportunity. Note that they create a binomial lattice of the term structure
rather than a binomial process for the bond price.

6.1.1 The lattice model

Ho and Lee define a set of equidistant trading dates separated by a period of
At (the step size is time dependant to ensure that the bond price converges
to the face value at maturity). At time ¢ty = 0, the term structure is set equal
to the currently observed term structure. Then, they introduce two maturity
dependant perturbation functions hA(7) and h*(7). At time t + At, there
is a draw of an upstate and a down state (the draws are i.i.d. over time),
and the new term structure is equal to the original one at time ¢ multiplied
by the perturbation function A(7) with probability 7 or by the perturbation
function h*(7) with probability 1 — 7. To ensure that = and (1 — 7) are
correctly interpreted as risk-neutral probabilities, they set

wh(t) + (1 —m)h*(t) =1
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and
h(0) =h*(0) =1

This defines a binomial tree that they assume to be recombining (there
is a path independence of price movements of all zero-coupon bonds). This
allows them to compute explicitly the perturbation functions h(7) and h*(7)
in terms of the measure 7 and of a given parameter 6:

1
(m+ (1 —m)o")

h(t) = (35)

and

6’7’
(r+ (1 —m)éT)
Which of the up-state or down-state corresponds to an upward shift in the

yield curve depends on whether ¢ is larger or smaller than one. In term of
discount bond prices, if the up-state occurs at time t,

W (1) = (36)

Mnﬂ:h@—w%%}%% (37)
and
BT = w7 — 2 =LT) (38)

Bt —1,1)

if the down-state occurs at time t.

6.1.2 Forward rates

The one period forward rate, i.e. the rate quoted at time t for borrowing
from T to T+ 1 is given by

-5

which can be transformed in

T+ (1— 7r)6T+1t) (39)

ft,T)=f(t—1,T)+log ( STy

63



using (37) and (35) for the upstate, and in
T+ (1 —m)t
74+ (1 —m)s"

f&,T)=f(t—1,T)+log (

using (38) and (36) for the downstate.
Equations (39) and (40) can be rewritten as
T+ (1 - 7T)5T+17t
T+ (1—m)s" "

) Clog(s)  (40)

f(t,T):f(t—l,T)—l—log( ) — (1 —m)log(6) + € (41)

where

| (1 —m)log(6) if there is an up-state
< —mlog(6) if there is a down-state

so that F(e;) = 0. This implies that the new forward rate is the sum of
the old forward rate, a constant depending on the time-to-maturity and the
probabilities, plus an i.i.d. random noise term that is the same for all matu-
rities.

6.1.3 Short term rate

Aggregating (41) over time, we obtain

F6T) = f(0,T)+ é (log (”:f - ”)5“”) — (1= ) log(6) + ej)

(1—m)6"

7+ (1 —m)6"
T4+ (1 —m)s"

= f(O,T)—l—log( ) —t(l—w)log(é)—l—Zej

and using (2),

t

r(t) = f(t,t) = f(0,t) +log (7 + (1 — m)8") — (1 — ) log(8) + Z ¢

Differentiating with respect to time gives
r(t) = rt—=1)+(f(0,¢) = f(0,t = 1))

7+ (1 —m)é
+lo — (1 —m)log(6) + €
(T ) - (=t
that is, the interest rate at time ¢ depends on the interest rate one period
ago, the relevant slope of the yield curve, a constant depending on time, 7
and 0, plus some noise.
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6.1.4 Estimation

The probability 7 of the up and down movements of the term structure and
the parameter ¢ have to be estimated from the data (and it is not obvious
how sensitive the model depends on them). Since the methods uses the whole
term structure as an input, bond prices are already in the model and © and
6 have to be estimated using other contingent claims (for instance, options
on bonds).

6.1.5 Continuous time limit

As shown by Dybvig (1988) and Jamshidian (1991a), in the continuous time
equivalent version of the Ho and Lee (1986) model, the short rate is driven
under () by the stochastic differential equation

dr(t) = p (t)dt + o,dW (t)

where p,.(t) is deterministic and bounded and o is constant. As shown by
Heath, Jarrow, Morton (1992), discount bonds prices can be valued analyti-
cally:

B(t,T) = B(0, T)ef%%Tt(Tft)for(Tft)W(t)
’ B(0,1t)
Options on discount bond also have an analytical solution which is close to

the Black and Scholes (1973) formula. For instance, for a call option with
maturity 7" and strike price K, on a bond with maturity time Tz, we have

C(t) = B(t, Tg)N(h) — KB(t,T)N (h — 0, (Ty — T)JT — t))
with

KB(t,T)
o.(Tp —T)VT —t
European options on coupon-bearing bonds can be valued using the same
approach as Jamshidian (1989) in the case of the Vasicek model.

In (w) +30,(Ts —T)*(T — t)
h =

6.1.6 Critiques and extensions

By definition, the Ho and Lee (1986) model is a Markov analytically tractable
model that fits perfectly the observed term structure. But
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e it will always generate upward sloping term structures.

e it does not incorporate any mean-reversion feature. Regardless of how
high or low interest rates are, the average direction in which they move
over the next period of time is always the same. Thus, at extreme
points, interest rates can become infinite or negative, and the zero
coupon price can exceed the face value. This can lead to serious mis-
pricing.!®

e it implies that all spot and forward rates have the same instantaneous
constant standard deviation o,.

e it is not necessarily arbitrage-free.

One should also note that there exist numerous extensions to the Ho and
Lee (1986) model. For instance, Bliss and Ronn (1989) develop a trinomial
model based on the Ho and Lee’s binomial model; they incorporate state
dependant shifts that are determined by observable state variables. Sand-
mann and Sondermann (1993a) propose a path independent binomial model
in which the current term structure is reflected, but that does not generate
negative interest rates. Their perturbation function is based on the local
volatility of the spot rate and on the transition probability to an up or a
down state. By choosing particular volatility and probability, they obtain
specific continuous time limits of the short term rate process.

6.2 Heath, Jarrow, Morton (1992)

Heath, Jarrow and Morton (1992) have significantly extended the Ho and
Lee (1986) model in three directions. First, they consider forward rates
rather than bond prices as their basic building blocks. Second, they allow for
continuous trading, which results in a valuation formula which is independent
of the pseudo probabilities 7 that we have in the Ho and Lee model . Third,
they extend it from a one factor model to allow for multiple factors.
Although their model is not explicitly derived in an equilibrium frame-
work, the Heath, Jarrow and Morton (1992) model is a model that explains
the whole term structure dynamics in an arbitrage-free framework in the

I18f one sets up a boundary condition, this will cut off some undesirable paths in the
tree, and the volatility resulting from the model will not correspond anymore to the input
data volatiliy.
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spirit of Harrison and Kreps (1979), and it is fully compatible with an equi-
librium model. The same model was developed independently and simulta-
neously by Babbs (1991).

Heath, Jarrow and Morton (1992) set the forward rate for each fixed
maturity 7 to evolve under the historical probability P as

dF (6, T) = s (t, T)dt + o4 (£, T)AW (1) (42)

where (¢, T) and o (t,T) are adapted processes for each T. This speci-
fication is very general as the drifts p(t,T") and volatilities o¢(¢,7') can in
fact depend on the history of the Brownian motion W (t) and on the forward
rates themselves up to time ¢. The model can be written in an integral form
as

f(t,T) :f(O,T)—i-/O ,uf(s,T)ds—i—/O os(s, T)dW (s)

As a boundary value at time 0, we use the observed forward curve f*(0,7),
that is, for all T', we set

f(()?T) = f*(()?T)

By construction, the model will perfectly fit the observed term structure.

One should note that a direct implication is that there is no such thing
as "the” Heath, Jarrow, Morton model; rather, there exists a whole class of
models, each being characterized by specific functional forms of the drifts
and volatilities.

6.2.1 Restrictions on the possible parameters values

The major result of Heath, Jarrow, Morton is the following proposition which
is essential for the existence of a unique equivalent martingale measure!?, that
is, for computing the price of contingent claims by discounting their terminal
expected values.

Proposition 7 The following conditions are equivalent:

1. the market price of risk A(t) is independent of the maturity dates

19 Artzner and Delbaen (1989) also propose a martingale approach to model the term
structure of interest rates, in which they price discount bonds in a first step and contingent
claims in a second one. Heath, Jarrow and Morton (1992) have only one step in their
methodology because they take the bond prices and forward prices processes as given.
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2. a unique martingale measure exists

3. the parameters y;(t,T) and o(t,T) cannot be freely specified: drifts of
forward rates under the risk-neutral probability are entirely determined
by their volatility and by the market price of risk

The third part of the proposition is probably the major contribution of
the Heath, Jarrow, Morton model, as it allows the model to be arbitrage-
free?’, a major improvement over the Ho and Lee (1986) and other similar
models.

Proposition 8 Assume that the family of forward rates are given by (42).
Then, in order to avoid arbitrage opportunities, there must exist an adapted
process A(t) which is independent of the maturity T such that under P

w6 T) = o (2,T) M o (t, 8)ds — A(t) (43)

One can show that \(t) represents the instantaneous market price of risk and
that it is independent of the maturity T .

This proposition is similar to the arbitrage condition used in the one
factor models. But it implies that the choice of a particular model from
the general specification of Heath, Jarrow and Morton can be reduced to
the specification of the volatility coefficient. For a particular risk premium,
the drift coefficient can easily be retrieved using (43). Furthermore, as the
volatility is the same under the risk-neutral and the subjective probability,
it can be estimated using historical data.

Accounting for this new no-arbitrage condition, equation (42) can be
rewritten as

df(t,T) = o4(t,T) M op(t,s)ds — At)| dt + op (6, T)AW () (44)

20Tn addition to this no-arbitrage condition, additional restrictions are often postulated.
A first necessary condition on the volatility function is that

(ff(t,t) =0

whatever ¢, as there is certain redemption at par of any discount bond. Another interesting
restriction is developed in Miltersen (1994) to restrict the forward rates from becoming
negative.
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under P, the historical probability.
Under the corresponding risk-neutral measure (), we can suppress the
explicit dependance on the market price of risk, and we can rewrite equation

(43) as .
(4, T) :(If(t,T)/t o (¢, 5)ds

and equation (44) as

df (t,T) = o4(t,T) [/t af(t,s)ds] dt + o (t, T)dW*(t)

or equivalently in an integral form as

t t t
FLT) = £(0,T) +/ o4 (s, T) V Jf(s,u)du} ds +/ o (s, T)dV* (s)
0 s 0
(45)
where dW*(t) is a standard Wiener process.

6.2.2 Short term rate

Since r(t) = f(t,t), the dynamics of the short rate under the historical
probability P can be obtained from (44) as

d
dr(t) =df (t,t) + ﬁf(t,T) o dt
that is,
0f(t,T)
dr(t) = { o |~ af(t,T)A(t)] dt + o (t,T)dW (t)

Later on, we will show that particular specifications of the functions
o¢(s,t) will allow us to obtain specific well-known short term interest rate
models. But this is just a consequence of the model, as the short term rate
is just a specific forward rate.

Under the corresponding risk-neutral measure (), the explicit dependence
on the market price of risk can be suppressed, and we obtain

dr(t) = {‘W o1

] dt +o¢(t,T)dW™(t)

T=t
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or in an integral form

r(t) :f((),t)—l—/o Jf(s,t)/ Jf(s,u)duds+/0 of(s, t)dW*(s)  (46)

where dW*(t) is a standard Wiener process generated by the risk-neutral
probability measure (). As we could expect, the principal difficulty of es-
timating a Heath, Jarrow, Morton model will arise because of the non-
Markovian term in equation (46), which depends on the history of the process
from time 0 to time .

6.2.3 Discount bond price

The bond prices are contained in the forward rate informations, as bond
prices can be written down by integrating over the forward rate between t
and T in terms of the risk-neutral process.

B(t7 T) =e I F(t,s)ds

Thus, an exogenous specification of the forward rates is equivalent to a speci-
fication of the bond prices for all maturities. Integrating the original equation
for the forward rates f(t,T), using Ito’s lemma and a generalized version of
the Fubini’s theorem, Heath, Jarrow and Morton found that

B(t, T) _ ef(f(f(foT Uf(s,u)du)dW(s)%»ftT f(O,u)du+fg ftT ,uf(s,u)duds)
that is, the bond price dynamics is given by

M — :uB(t7T(t))dt —+ O'B(t, T(t))th (47)

Bt T)
pat.r(0) =f.) — [ nyltewdu+ 5| [ osudu

r(t)
op(tr(t)) = — /t o 1 (t, u)du (49)

In general, pg(t,7(t)) and o (t,7(t)) could depend on the entire information
set at time ¢. However, using the no-arbitrage condition (43), equation (48)
can be rewritten as

with
2

(48)

pp(t,r(t)) =r(t) + At)op(t,T)
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or equivalently as

t,r(t)) —r(t
/\(t):’uB( 7T( )) T( )
OB (t7 T)
Note that under the objective probability ), all bond prices continuously
discounted at the spot rate are martingales:
dB(t,T)

W =r(t)dt + op(t,r(t))dW;

6.2.4 Additional possible restrictions to obtain a Markovian model

As we mentioned already, most models of forward rates evolution in the
Heath, Jarrow and Morton family result in non Markovian models (i.e. path-
dependant) of the short term interest rate evolution. But numerical methods
for Markovian models are usually more efficient than those necessary for non-
Markovian models. Thus, a common, but very restrictive condition set on
interest rates models is that the short term rate has to be Markovian (as this
allows the mapping on a recombining lattice). Hull and White (1993) and
Carverhill (1994, 1995) have shown that the equivalent condition was that
the volatility function had to be of the form

op(t,T) = =(t) (y(T) — y(t))

where x(7) and y(7) are appropriately well behaved functions?!.

Ritchken and Sankarasubramanian (1995) have extended Carverhill (1994,
1995) results showing that if the volatilities of forward rates were differen-
tiable with respect to their maturity date, for any given initial term structure,
a necessary and sufficient condition for the prices of all interest rate contin-
gent claims to be completely determined by a two-state Markov process is
that the volatility of forward rate is of the form

of (t7 T) =0r (t)ef I k(s)ds (50)
Examples of such volatility structures are

o (t,T) = a,(t)e" T

2 Jeffrey (1995) derives the conditions for a Heath, Jarrow, Morton model to result
in a Markovian spot interest rate and have a term structure at time t function of time,
maturity, and spot interest rate at time t.
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af(t,T) = on(t)r(t)

Under (50), Ritchken and Sankarasubramanian show that the price of a zero-
coupon bond is of the form

B, 1) = 2D s emsersnnison—ro)

B(0,t)
where
UB(t7T) T — (¥ d
ot,T) = ——:/ e~ Je m(s)ds gy,
( ) Uf(t7T) t

(1) = /0 o2 (s, £)ds

that is, the term structure is uniquely determined by the spot interest rate
r(t) and the integrated variance ¢(t).

Bhar and Chiarella (1997) have also shown that if the volatility of the
forward rates is defined as deterministic function of time of the form

of(t,T)=p(T — t)e*“(T*t)

where p(7) is a n-degree polynomial function of u and a is a number (both to
be estimated), then, the instantaneous spot rate r(t) and bond price B(t,T)
are determined by a (n+2) dimensional Markovian stochastic differential
equation. When the volatility of the forward rates are defined as the same
function times a function of the short term rate, i.e.

05(t,T) = p(T —t)e T Db(r(1))

the instantaneous spot rate r(t) and bond price B(t,T) are determined by a
5(n? + Tn + 8) dimensional Markovian stochastic differential equation.

If, in addition to the Markovian property we require the volatility function
to depend only on the time to maturity (7' —t), and not on the calendar time
t, Carverhill (1995) has shown that the volatility function had to be of the
form
]{3(1 _ efa(Tft))

O'f(t,T) = 4

Additional restrictions and conditions on the volatility function for the short
rate to be Markovian can be found in Carverhill (1994). In particular, it is
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shown that when the volatility of the zero-coupon bond is a function that
depends only on time, the prices of options on zero-coupon bonds can be
recovered analytically, even if the resulting term structure evolution is path-
dependant.

6.2.5 Practical implementation

For practical purposes, when one uses an Heath, Jarrow, Morton model, it
is necessary to proceed as follows:

1. specify the volatilities o (¢, 7). In theory, any specification of o¢(t,T)
can be used. In practice, however, one should check for the conse-
quences of a particular specification. We do not need to specify the
forward rates drifts, as they will be uniquely determined by

b (6, T) = Jf(t,T)/t o, u)du

1. Observe the effective forward rate structure f*(0,7) for 7' > 0.

2. Compute the forward rate according to
t t
f(t,T)= f(0,T) +/ py(s, T)ds —|—/ os(s, T)dW (s)
0 0
3. Compute bond prices according to

B(t,T) = exp (— /t ' f(t,s)ds)

Example 9 Consider the case of a constant volatility o(t,T) = o. The
corresponding drift is p;(t,T) = o*(T —t). The forward rate is given by

FT) = £(0,T) + /Ot (T — s)ds + /Ot odW (s)

= f*(0,T) + o*t(T — %) + oW (t)
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We have

/tT ft,T) = /tT 5(0,8)ds + o*tT(T —t) 4+ o (T — t)W ()

B(t,T) = exp (— /t e s)ds)

_ B (o, T)efé 2P (T—t)—o(T—t)W (2)
B*(0,t)

so that

We can compute the spot rate r(t) as

r(t) = f(t,t) = O 4 a2§ + oW (t)

from which we can extract oW (t) and replace it in the bond price to obtain

Bt T) = %e”w*(w%a?t(Tw?(Tt)r(t)

that is, the bond price as a function of r(t).

6.2.6 From the Heath, Jarrow, Morton model to short term in-
terest rate models and back

What is the link that exists between short term interest rate models and
Heath, Jarrow, Morton models 7 A short term rate is simply a particular
forward rate. This implies that specifying a given model in the Heath, Jar-
row, Morton framework will result in a particular behavior for the short term
interest rate. Particular specifications of the forward rates dynamics
allows us to recover specific short term interest rate stochastic pro-
cesses. The link between both specifications can be evidenced by recalling
equation (46), which specifies the short term rate dynamics under Q:

r(t) :f((),t)—i-/o Jf(s,t)/ Jf(s,u)duds—i-/o os(s,t)dW*(s)

The converse is not true: any short term interest rate model is not neces-
sarily compatible with an Heath, Jarrow, Morton model. The compatibility
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is verified only when condition (43) is also verified by the short term rate
drift and volatility.

As an illustration, we provide some examples hereafter of original short
term interest rate models and the ” corresponding” compatible Heath, Jarrow,
Morton model. However, in practice, it is impossible to do this analytically
for most short-rate Markov models, and numerical techniques have to be
used.

Ho and Lee (1986) The Ho and Lee (1986) model
dr(t) = p,dt + o.dW(t)
corresponds to a constant volatility
of(t,T) =0,

In Heath, Jarrow, Morton terms, the equivalent model is

df(t,T) = o2(T —t)dt+ o,.dW(t)
0.T) = r(0)+ =0T ' d
F0.7) = r(0)+ 5027+ [

that is, all forward rates are normally distributed and display exactly the
same volatility.

Generalized Ho and Lee The generalized Ho and Lee model
dr(t) = p,.(t)dt + o, (t)dW (t)
corresponds to

df(t,T) = o2(t)(T —t)dt + o, (t)dW (t)

T

f0,7) = 7“(0)—1-%/0 Jf(s)(T—s)ds—f—/O w,(8)ds

Forward rates (and instantaneous short rates) are normally distributed.
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Vasicek (1977) The Vasicek (1977) model
dr(t) = k(0 — r(t))dt + odW(t)
corresponds to the specific forward volatility function
oi(t,T) =g T

Compared to the Ho and Lee (1986) model, this introduces a maturity de-
pendance on the volatility surface. In Heath, Jarrow, Morton terms, the
equivalent model is

2

F0,T) =0+ e "T(r(0) — ) — ——(1 — eT)?

2K
Generalized Vasicek (1977) The Hull and White model
dr(t) = k(t)(0(t) — r(t))dt + o(t)dW (¢)
corresponds to a specific exponentially decaying volatility
o1(t,T) = o, (D(t, )

with v(¢,T) = e~ S rdu Heath, Jarrow, Morton terms, the equivalent
model is

FO.T) = r(0)4(0.T)+ /0 B (10(E)Y(s, T)ds

- [ st ([ 2t.man) as

and the forward rates are normally distributed, which means that the bond
prices are log-normally distributed. Both the short term rate and the forward
rates can become negative.

Generalized Cox, Ingersoll and Ross (1985b) The generalized Cox,
Ingersoll and Ross (1985b) model

dr(t) = k(t)(0(t) — r(t)) + o(t)r(t)dW(t)
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corresponds to

0X(t,T)
oT

where X (t,T') solves the following Ricatti equation

or=o0,(t)\/r(t)

{ G =30 OX2(T) + £(6)(¢T) — 1
X(T,T) =0

This equation has no analytic solution, but is well studied numerically. In
Heath, Jarrow, Morton terms, the equivalent model is

£(0,7)=r(0)X(0,T) +/O k(8)0(s)X (s, T)ds

6.3 Multifactor generalization of the Heath, Jarrow,
Morton (1992)

Multifactor generalizations of the Heath, Jarrow, Morton (1992) model have
been developed in the literature as

df(t,T) = ps(t, T)dt +> 044t T)dWi(1)

i=1

where p,(t,T) is the drift of the forward rate with maturity T, o,(t,7T)
are its volatility coefficients and W;(t) are independent standard Brownian
motions??. This can be rewritten in an integral form as

f(t,T):f(O,T)+/O ,uf(s,T)ds—i-Z/O o p1(s, T)AWi(s)

As in the single factor versions, since bond prices depend on forward rates,
and we have

B(t,T) = B(0,T) + /Ot pip(s, T)B(s,T)ds + Z /Ot op.i(s,T)B(s, T)dW;(s)

22Note that in the most general specification, ,uf(t, T) and o #(t,T) could depend on the
path of the Brownian motions.
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with (i = 1,2, ..., K)
T
opi(t,T) = —/ oyi(t,s)ds
t , : .
o(6T) = 70 = [ gy 4535 h.7)

Such a K-factor model is arbitrage free if there exist K market prices of risk
Ai(t) such that

() = Bl T) ()

> im0, T)
for all finite 7. Then, the forward rate drift is uniquely determined by the
volatility structure and the market price of risk

pe(t,T) = gam(t, T) {Ai(t) + /tT of,i(t,s)ds}

There exist a K-factor martingale representation theorem which is similar
to the one-factor model representation theorem. In this context, Jamshidian
(1991) also introduced a forward risk-adjusted measure in order to facili-
tate the calculation of closed form solutions for European style interest rate
contingent claims.

Particular cases of such multifactor models have a deterministic volatility
structure o¢(¢,7). They are called Gaussian models, as forward rates
become normally distributed and bond prices are normally distributed 2*
and have analytical expressions in some circumstances.

For instance, Heath, Jarrow and Morton (1992) propose a two factor
model which is basically a combination of a Ho and Lee (1988) and Vasicek
(1977), in which

O'fyl(t,T) = 01

ora(t,T) = oge "1

23 Jamshidian (1991) uses a more restricted definition of Gaussian models, as he imposes
specific constraints on the volatility structure so that the resulting short term rate is
Gaussian.
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Heitmann and Trautmann (1995) propose the combination of two Vasicek
(1977) processes

ot T) = oe (T

ora(t,T) = ope 2T

6.4 Goldstein (1997), Kennedy (1997)

Goldstein (1997) and Kennedy (1997) recently introduced a new model of
the term structure based on random fields. This is an infinite factor model
in which the forward rate follows the following diffusion

df (t,T) = ps(t, T)dt + o(t, T)dWr(t)

The innovation is the following: corresponding to each maturity date T', there
is one unique Brownian motion Wr(t), with the characteristics that Wrp(t)
does not correspond to any linear combination of a finite number of other
Brownian motions Wy (t), 7" # T. The random field is characterized by the
correlation

AW, (1)dWr, (t) = Corr(t, Ty, Ty)dt

As in the Heath, Jarrow, Morton (1992) case, the drift coefficient p((t,T') is
completely determined by the volatility structure o¢(¢,T") and the correlation
structure Corr(t, Ty, T3).

Unfortunately, no partial differential equation exists (yet !) for interest
rate contingent claims.

7 Empirical assessment of alternative models

The empirical issues relative to the performance of alternatives term structure
models are large enough to call for a separate survey. In the following, we will
briefly review some of the issues that have been addressed in the empirical
work to date and their major findings. Without discussing implementation
details, models of the term structure can be tested in three different ways:

e directly, using a cross-section across bonds of different maturities.
This technique has the advantage of explicitly identifying the market
price of risk, but makes it difficult to test for a whole class of models
in a nested fashion.
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e directly, using a time series approach, since we can infer the pa-
rameters from actual interest rates time series. Apart from the fact the
method does not provide the market price of risk, the series of obser-
vation must be large enough and is subject to a discretisation bias.

e indirectly, through based on alternative models results in pricing or
hedging interest rate contingent claims, or through an examination of
how well do models fit the term structure of interest rates or the term
structure of volatilities.

Despite a bewildering large set of models, relatively little work has been
done to examine how these models compare in terms of their ability to cap-
ture the behavior of the short term rate, of the term structure, or the pricing
of interest rate contingent claims. Because of the lack of a common frame-
work, most studies have been focusing on specific models rather than on a
comparison across models.

Many authors have shown that one-factor models do not fit well the yield
curve: see for instance Chen and Scott (1993) or Pearson and Sun (1990) us-
ing maximum likelihood, Heston (1989) or Gibbons and Ramaswamy (1993)
using the generalized method of moments, or Litterman and Scheinkman
(1991) using factor analysis. De Munnick and Schotman (1992) has found
similar quality of fit for the Vasicek and Cox, Ingersoll and Ross model on
the Dutch bond market. However, these results are not glaring and often
depend on the set of data and the econometric methodology used. For in-
stance, Brown and Dybvig (1986) tested the Cox, Ingersoll and Ross (1985b)
model with cross-sectional data. They concluded that the long term mean
and the volatility parameter were unstable over time, which may indicate
a misspecification of the model. This conclusion was rejected by Gibbons
and Ramaswamy (1993) on short term T-Bill data using generalized method
of moments estimators of the unconditional short rate distribution, but was
confirmed by Pearson and Sun (1994) using maximum likelihood estimates.

Chan, Karolyi, Longstaff and Sanders (1992) develop a general framework
to estimate and compare a set of nested single factor models for the short
term interest rate on the U.S. market. They obtain surprising results, such
as an elasticity of 1.5, which would imply that the series is non-stationary.
According to their study, Vasicek (1977) and Cox, Ingersoll and Ross (1985b)
perform poorly compared to less famous models such as Dothan (1978) or
Cox, Ingersoll and Ross (1980). Furthermore, it is not important to have
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mean reversion, but it is critical to model the volatility correctly: models
that better describe the dynamics of the short term rate allow the volatility
to depend on the rate level. But these conclusions may be due to inefficient
estimation methods: they use generalized method of moments, assuming
that the distributions are ergodic, but they are not in this case (see Eom
(1994)). Furthermore, Nowman (1997) obtains opposite results regarding
the mean-reversion and the volatility importance on the U.K. market. On
the Swedish and Danish markets, Dahlquist (1994) finds that mean-reversion
is important, that there seems to be positive relation between interest rate
levels and volatility, and that there is evidence of a structural change in the
Danish interest rate process.

Using non parametric techniques over the 1965-1985 period, Stanton
(1997) finds non linearities in the drift coefficient of single-factor models:
the mean reversion is low for low rates, but increases as the short term rate
level increases. Ait Sahalia (1996) estimates the diffusion coefficient non-
parametrically by comparing the marginal density implied by each model
with that implied by the data, given a linear specification for the drift. His
conclusions are that the fit is bad and the tests reject "every parametric
model of the spot rate previously proposed in the literature”, that is, all
linear drift short term interest rate models.

Stambaugh (1988), Longstaff and Schwartz (1992), Litterman, Scheinkman
and Weiss (1991) observe that adding factors improves the fit, and suggest
using two factors. But Pearson and Sun (1994) do not find that two-factor
model are sufficient. The shift, twist and change in curvature would tend to
imply a three factor model. However, the implementation of such models for
bond options is extremely complex.

In the Heath, Jarrow, Morton (1992) framework, Carverhill (1995) finds
that the specific one factor Markovian models provide good results in pricing
and hedging; more complex models capture more of the properties of the term
structure evolution, but they are harder to calibrate and understand and too
slow in implementation. Amin and Morton (1994) tested contingent claim
pricing implications of six alternative models with absolute, square root,
proportional, linear absolute, exponential, and linear proportional volatility,
respectively. Their result are that the implied volatility functions are unsta-
ble, and that two factor models provide a better pricing, but increase the
instability. Heath, Jarrow, Morton (1992) propose a two factor model that is
a combination between the continuous time version of the Ho and Lee (1986)
model and the Vasicek (1977) model. But Heitmann and Trautmann (1995)
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recommend using a two-factor model from the Heath, Jarrow, Morton fam-
ily, and more specifically a two-factor Vasicek (1977) model, which provides
better fitting.

8 Conclusions

In this paper, we have reviewed a number of specifications of diffusion based
term structure of interest rates models. Rather than being exhaustive, we
have presented an overview of the most popular models by means of some
general characteristics. Our primary goal was to expose the models one
could use rather than specifying the models one should use. Given the
profusion of models, one may wonder if there are any empirical or numerical
aspects which can motivate the choice of one family of models for a given
application. Whereas for equity contingent claims, the lognormality of prices
(as in the Black and Scholes model) is the standard starting point, there
is no equivalent in the interest rate world. Each of these models have its
own advantages as well as disadvantages. Practitioners use a large variety of
models based on wide range of assumptions, objectives, and /or constraints.

Of course, one may use different models at the same time to value different
assets. But when the hedging or the risk management of the interest rate
sensitive global portfolio comes into consideration, or when pricing arbitrage
relationships have to be studied, can we freely mix these models, even if they
are based on contradictory assumptions?* ? This question is essential for
derivatives traders or bank regulators.

Which model should one use ? Unfortunately, there is no simple answer
to this question. An ideal interest rate model should be theoretically consis-
tent, flexible, simple, well-specified (in that required inputs can be observed
or estimated) and realistic; it should provide a good fit* of the data (i.e. be

24 As an example, cap prices and percentage volatilities are quoted in the market on the
basis of the Black model (i.e. with lognormal rates). These volatilities are often plugged
into a different model. What are the consequences 7 For instance, if the model assumes
normal rates, there very little difference for at the money strikes, but larger and larger
ones for different moneyness.

2>Note that an exact fitting is not necessarily desirable, as there are possible sources
of "errors” in quotations of the market price of bonds (liquidity, tax effects, market im-
perfections, bid-ask spread, etc.), so that the discount rates that would exactly match
the observed term structure resulting from a set of quotations would include these bond
specific effects.
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relevant with both interest rate volatility and the term structure’s shape),
be relevant with theories of the term structure of interest rates, and be con-
sistent with a bond market equilibrium situation, or at least consistent with
the absence of arbitrage paradigm; finally, hedging and pricing of derivatives
should be tractable, efficient, and implemented analytically or using an effi-
cient numerical algorithm. When all conditions are not met, the trade-offs
start. For instance, single factor time-invariant models do not fit well the
term structure, do not explain some humped yield curves, do not allow for
particular volatility structures and cannot match at the same time caps and
swaptions prices?S. But they provide analytical solutions for bonds and bond
options prices.

In fact, the answer to the model choice will certainly depend on the
specific use of the model. The main questions are: how many factors do
we need 7 which factors ? is the model incremental complexity justified
in light of their pricing and risk management effectiveness ? what is the
main goal of the model ? An increased model generality is not always an
advantage, as there is a trade-off between the incremental effort necessary
for parameter estimation and model accuracy, while a model that has closed
form expressions for the price of bonds will allow derivatives pricing, but will
not necessarily fit the initial term structure.

Currently, a lot of empirical research is still required to evaluate and
assess all these different models performance. A comparison framework is
needed. The Heath, Jarrow and Morton model displays a great financial and
intellectual appeal as well as undeniable elegance. It starts with a family
of forward rate processes and initializes it to an arbitrary but fixed initial
forward curve. As such, it offers several advantages:

e first, the current term structure is matched by construction, without
requiring an arbitrary time-varying parameter.

e second, it assumes nothing regarding investors preferences, and it yields
a pricing function that is uniquely determined by the specification of the
variance structure of interest rates changes, as the volatility parameter

26 A cap is a portfolio of independent options, while a swaption is an option on portfolio

of rates and therefore depends on the imperfect correlation between them. As single factor
models assume perfect instantaneous correlations between all rates, they can account for
all the cap prices, but not for any swaption simultaneously. As shown by Rebonator and
Cooper (1996), two-factor models do not do much better: they can match all cap prices,
plus one swaption.
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in the Black and Scholes (1973) equation. Drifts estimates are not
needed, which simplifies the estimation procedure.

e third, all other interest rates models based on diffusion processes are
nested into its general specification, including non-Markovian ones.

For these reasons, we believe that currently the Heath, Jarrow and Morton
(1992) class of term structure models is the most broadly defined yet unified
framework for model comparison and model risk assessment.
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