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Main Themes

• Calibration of financial models is a statistical problem

• Researchers in mathematical finance are experts in probability
theory but often are less knowledgeable about statistical
modeling and data analysis

• Unfortunately, statisticians have, with some notable exceptions,
not recognized finance as an important area of application

• Transformation and weighting in regression can improve the
calibration of financial models

• Splines are an effective tool for data analysis and statistical
modeling
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Overview

• Recent example where a statistician could have helped

• Example of curve fitting – dynamics of interest rates

• Penalized splines

• Two examples:

– Return to interest rate dynamics

– Term structure – estimating the forward rate curve



Splines and Finance 4

Example: Estimation of Default Probabilities

Data:

• ratings: 1 = Aaa (best), . . . , 16 = B3 (worse)

• default frequency: estimate of default probability

– many zero values at best ratings

From recent book on credit risk
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• nonlinear model:

Pr(default|rating) = exp{β0 + β1rating}
• linear/transformation model (in recent textbook):

log{Pr(default|rating)} = β0 + β1rating

– Problem: cannot take logs of default frequencies that are 0

– (Sub-optimal) solution in textbook: throw out these
observations
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• Transform-both-sides (TBS) model – see Carroll and
Ruppert (1984, 1988):

Pr(default|rating)α = exp[α{β0 + β1rating}]
– α chosen by residual plots (or maximum likelihood)

– α = 1/2 works well

– α = 0 ⇒ log transformation

∗ if we x 7→ xα by x 7→ (xα − 1)/α
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method P̂ r{default|Aaa} % of TEXTBOOK estimate

TEXTBOOK 0.005% 100%

nonlinear 0.002% 40%

TBS 0.0008% 16%
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Comments:

• Suppose sample sizes were large so that all categories had at
least one default

– log transformation would have been applied to all 16 sample
proportions

– but this might have caused outliers and unstable estimates

• Perhaps a logistic regression fit should be compared with the
TBS fit.
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Estimating Volatility

Parametric model:

Var{(∆Rt)} = β0R
β1
t−1

E.g.,

• β1 = 0 (Vasicek, 1977)

• β1 = 1/2 (Cox, Ingersoll, Ross, 1985)

• β1 = 1 (Courtadon, 1982)

• β1 a free parameter (Chan, Karolyi, Longstaff, and Sanders,
1992)
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Nonparametric model:

Var{(∆Rt)} = σ2(Rt−1)

where σ(·) is a smooth function

• will be modeled as a spline

• In these models: no dependence on t
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Penalized Splines for Semiparametric Modeling

Underlying philosophy

1. minimalist statistics

• keep it as simple as possible

2. build on classical parametric statistics

3. modular methodology



Splines and Finance 24

Reference

Semiparametric Regression by Ruppert, Wand, and Carroll
(2003)

• Lots of examples.

• But most from biostatistics and epidemiology
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Semiparametric regression

Partial linear or partial spline model:

Yi = WT
i βW + m(Xi) + εi.

Here m(·) is a smooth function. We will model it as a spline with a
truncated polynomial basis:

m(x) = XT
i βX + BT(x)b.

XT
i = ( Xi · · · Xp

i )

BT(x) = { (x− κ1)
p
+ · · · (x− κK)p

+ }

The intercept is part of WT
i βW .
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Example

m(x) = β1x + b1(x− κ1)+ + · · ·+ bK(x− κK)+

• slope jumps by bk at κk
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Fitting interest-rate data with plus functions
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Generalization

m(x) = β1x + · · ·+ βpx
p + b1(x− κ1)

p
+ + · · ·+ bK(x− κK)p

+

• pth derivative jumps by p! bk at κk

• first p− 1 derivatives are continuous
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Ordinary Least Squares
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Penalized least-squares

Minimize
n∑

i=1

ω2
i

{
Yi − (WT

i βW + XT
i βX + BT(Xi)b)

}2

+ λ bTDb.

E.g.,
D = I.

ωi = 1/σ̂(Yi|Wi, Xi)
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Penalized Least Squares – Non-adaptive
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Ridge Regression

From previous slide:
n∑

i=1

ω2
i

{
Y − (WT

i βW + XT
i βX + BT(Xi)b)

}2

+ λ bTDb.

Let X have row (WT
i XT

i BT(Xi) ). Then



β̂W

β̂X

b̂


 =

{XTΩX + λ blockdiag(0,0, D)
}−1 XTΩY ,

where
Ω = diag(ω2

1 , . . . , ω2
n)
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Penalized LSE is also

• a BLUP in a mixed model

– (βW , βX) is the fixed effect vector

– b is the random effect vector

– λ is a ratio of variance components

• empirical Bayes estimator.
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Selecting λ

1. cross-validation (CV)

2. generalized cross-validation (GCV)

3. ratio of variance components estimated by ML or REML in
mixed model framework

4. as in 3., but estimated in a fully Bayesian framework

5. EBBS = empirical bias bandwidth selection

– useful if m′(x) is of primary interest
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Selecting the Knots Locations

1. I use sample-quantiles of X so there are (approximately) an
equal number of observations between any pair of consecutive
knots

2. Some prefer equal-spaced knots

1. and 2. give similar results, except in extreme cases.
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Selecting the Number of Knots
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Additive Models

Model:
Yi = m1(X1) + · · ·+ mp(Xp) + εi

Basis functions:

XT
i,j = ( Xi,j · · · Xp

i,j ) andBT
j (x) = { (x− κ1,j)

p
+ · · · (x− κKj ,j)

p
+ }

Let X have row

(WT
i XT

i,1 . . . XT
i,p BT

1 (Xi,1) . . . BT
p(Xi,p) )

Estimation: Minimize
nX

i=1

ω2
i

(
Y −

 
WT

i �W +

pX
j=1

XT
i,j�X,j +BT

j (Xi,j)bj

!)2

+

pX
j=1

λj bT
jDjbj .



Splines and Finance 40

Adaptive Penalties

• the penalty λ(·) is allowed to vary with spatial position

• see Ruppert and Carroll (2000), Australian and New Zealand
Journal of Statistics

– λ(·) is itself a spline

Minimize:
nX

i=1

ω2
i

(
Y −

 
WT

i �W +

pX
j=1

XT
i,j�X,j +BT

j (Xi,j)bj

!)2

+

pX
j=1

bT
jDjbj .

where
Dj = diag ( λ(κ1,j) · · · λ(κKj ,j) )
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Partial Spline Model

∆Rt = m1(Rt) + m2(t) + σ(Rt, t)εi
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Partial Spline Model

∆Rt = β1Rt + m2(t) + σ(t, Rt)εi

Output:

• β̂1

• m̂2(t) + β̂1Rt

Corresponds to model with drift:

a{θ(t)−Rt}

where

a = −β1 and θ(t) = −m2(t)
β1
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Multiplicative Models for Volatility

Var(Yt) = σ2
0 s2

1(X1) · · · s2
p(Xp)

Example:

Var{(∆Rt)} = σ2
0σ2

1(Rt−1)σ2
2(t)
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Backfitting algorithm:

Assume the Yt has mean zero, e.g., are residuals.

1. fit a model s2
1(X1) for Y 2

t as a function of X1

• “de-volatilize”: replace Yt by yt/s1(X1)

2. fit a model s2
2(X2) for Y 2

t as a function of X2

• “de-volatilize”: replace Yt by Yt/sx(X2)
...

3. fit a model s2
p(Xp) for Y 2

t as a function of Xp

• “de-volatilize”: divide Yt by s1(X1) · · · sp(Xp)

4. either STOP or go back to 1.

Weighting is built into the algorithm.
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Estimating the Term Structure of Corporate
Debt with a Semiparametric Model

Joint work with:

• Bob Jarrow (Cornell)

• Yan Yu (University of Cincinnati)
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Bond prices and the forward rate

• t = time to maturity

• P (t) = price of zero-coupon bond at current time (t = 0)

• D(t) = discount function

• y(t) = yield to maturity

• f(t) = forward rate

P (t)
PAR

= D(t) = exp{−F (t)} = exp {−ty(t)} = exp
{
−

∫ t

0

f(s)ds

}
.
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Estimation of the forward rate

Suppose the ith bond pays Ci(ti,j) and time ti,j

• i = 1, . . . , n

• j = 1, . . . , zi

Let f(s, δδδ) = δδδ′B(s) be a spline model for the forward rate.

Model for price of ith bond:

P̂i(δδδ) =
zi∑

j=1

Ci(ti,j) exp{−δδδ′BI(ti,j)}

where

BI(t) :=
∫ t

0

B(s)ds =
(
t · · · tp+1

p+1

(t−κ1)
p+1
+

p+1 · · · (t−κK)p+1
+

p+1

)′
.
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Estimate δ by minimizing

Qn,λ(δδδ) =
1
n

n∑

i=1

{
Pi −

zi∑

j=1

Ci(ti,j) exp{−δδδ′BI(ti,j)}
}2

+ λδδδ′Gδδδ.
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Selection of λ

• Estimation of λ by GCV did not work well

• GCV targets MSE of the estimated regression function

• But the forward rate is the derivative of the (log of) the
regression function

• Derivatives require a different amount of smoothing
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Corporate Bonds

• Problem: often there are not enough bonds to fit a fully
nonparametric model

• Jarrow, Ruppert, and Yu solve this by using a semiparametric
model
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Algorithm

Step 1: Nonparametric spline fit of a forward rate to US Treasury
bonds.

• δδδ is estimated by minimizing Qn,λ(δδδ)

• λ is chosen by GCV, RSA, or EBBS

• f̂Tr(t) = δ̂δδ
′
B(t), where δ̂δδ are the estimated spline coefficients

Step 2: Parametric estimation to obtain the forward rate curve for
a corporation’s bonds.

• credit spread is parametric with parameter α

• for example, if the credit spread is a constant, then

fC(t) = f̂Tr(t) + α = δ̂δδ
′
B(t),

• fix δ̂δδ at value from Step 1 and estimate α by OLS
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θ was used by Fisher, Nychka and Zervos (1995) to induce more
smoothing –

GCV (λ) =
n−1Pn

i=1

n
Pi − bPi(δδδ)

o2

{1− n−1θ trA(λ)}2 ,

where A(λ) is the “hat” or “smoother” matrix: P̂ = A(λ)P
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Summary

• Statisticians and financial engineers would each benefit from
more collaboration

• Calibration of financial models is an interesting and challenging
problem in statistics and data analysis

– transformation and weighting can be important

• Penalized splines are an attractive method for semiparametric
modeling


