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Abstract

In this paper a new and very simple method for monotone estima-
tion of discount curves is proposed. The main idea of this approach
is a simple modification of the commonly used (unconstrained) Mc-
Culloch Spline. We construct an integrated density estimate from
the predicted values of the discount curve. It can be shown that this
statistic is an estimate of the inverse of the discount function and the
final estimate can easily be obtained by a numerical inversion. The
resulting procedure is extremely simple and we have implemented it
in Excel and VBA, respectively. The performance is illustrated by
three examples, in which the curve was previously estimated with an
unconstrained McCulloch Spline.

1 Introduction

Yield curve estimation plays a central role in pricing fixed-income derivatives,
risk management and for national central banks. Because the yield curve is
not directly observable and there do not exist enough zero coupon bonds, it
has to be derived from observed market prices of coupon bearing bonds.
From the mathematical point of view it is equivalent to estimate the spot
rates, the forward rates or the discount factors, where the discount factor
δ(t) is the value of 1 unit money, which is payed in time t [see for exam-
ple Deacon, Derry (1994)]. In practice one has different shape restrictions on
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these curves, which are based on economic theory. One very crucial condition
is, that forward rates do not become negative. In other words, the discount
curve has to be monotone decreasing. A second very crucial constraint is the
initial condition δ(0) = 1.
Although there exist a lot of different approaches and literature for estimat-
ing the yield curve [see Anderson et.al. (1996) for a review], there are only a
few articles concerning the problem of nonnegative estimation of the forward
rates1. Wets, Bianchi and Yang (2002) used, so called, EpiCurves to obtain a
monotone estimate of the discount curve. For this approach, which functional
behavior is restricted to a subfamily of smooth curves, linear optimization
with many constraints has to be used. Manzano and Blomvall (2004) pre-
sented a non-linear dynamic programming algorithm, which implements the
forward rate positivity constraint for a one-parametric family of smoothness
measures. Hagan and West (2005) introduced a monotone and convex spline
[see also Kvasov (2000) for a textbook on shape restricted splines]. Here the
curve is guaranteed to be positive if all the inputs are positive.
In this article we present an alternative procedure for the estimation of the
discount curve, which can be used to monotonize any previously estimated
(discount) curve. The method is extremely simple and uses an integrated
density estimate from the predicted values of the unconstrained estimate of
the discount function. It can be shown that this statistic is an estimate of the
inverse of the discount function and the final (non-increasing) estimate can
be obtained by numerical inversion. We will apply the new method to the
widely used McCulloch Spline and illustrate its performance by three exam-
ples. The resulting procedure is very easy to handle and shows better results
than ad hoc methods for monotonizing curves. A program implemented in
Excel and VBA is available from the second author.

2 The McCulloch Spline

Splines are very popular for estimating the term structure of interest rates.
These functions are highly flexible and so suited for most circumstances. A
good review of the statistical aspects of this estimation method can be found
in Eubank (1988).
McCulloch (1975) proposed a simple cubic spline model for the estimation of
the discount curve, which has a rather reliable performance in most circum-
stances. He proposed to chose l− 1 knots, k1, · · · , kl−1, with k1 = 0 and kl−1

corresponding to the longest maturity of a bond. For j < l the j-th spline

1The following three articles are the only ones known to the authors.

2



function is defined as

δj(t) =



0 if t < kj−1
(t−kj−1)3

6(kj−kj−1)
if kj−1 ≤ t < kj

(kj−kj−1)2

6
+ (kj−kj−1)(t−kj)

2
+ (t−kj)

2

2
− (t−kj)

3

6(kj+1−kj)
if kj ≤ t < kj+1

(kj+1 − kj−1)[
2kj+1−kj−kj−1

6
+ t−kj+1

2
] if kj+1 ≤ t,

(1)
and for j = l the function is given as:

δl(t) = t,∀t. (2)

The resulting spline estimator is finally obtained as the least squares fit of
the function δ(t) =

∑l
j=1 α̂jδj(t) to the data.

From a practical point of view it is not easy to handle this method, be-
cause splines are sometimes too flexible. Shea (1984) points out that spline
functions, like any other numerical approximation technique, cannot yield
reasonable estimates without the intelligent use of constraints. First, the
user must choose the number and location of polynomial pieces that will
serve as the building blocks of the spline model. The polynomial order and
the degree of continuity of the spline function are also a matter of choice. If
n is the number of observed bonds, McCulloch (1975) suggested to place l
knots, where l is the nearest integer to

√
n. Additionally these knots have to

be located, such that between two knots there are (nearly) the same number
of bonds. There are more sophisticated rules for chosing smoothing parame-
ters in spline estimation [see e.g. Eubank (1988)], but with this heuristic rule
the McCulloch Spline is easy to implement and yields, under normal condi-
tions, satisfactory results. Unfortunately the estimates obtained with the
McCulloch Spline (and by other spline estimators) do not necessarily satisfy
the shape restrictions from economic theory. This is a general drawback of
splines and discussed in detail by two papers of Shea (1984, 1985). In par-
ticular it is possible that the estimates of the forward rates become negative
and we have illustrated this phenomenon in Figure 1 analyzing data from 81
Swiss mortgage bonds issued by the Pfandbriefbank of Swiss Cantonal Banks
with settlement date 01.11.2003. This Figure shows the (unconstrained) es-
timates of the forward rates obtained with the McCulloch Spline, which are
negative at some places. Nonnegative estimates of the forward rates can be
avoided using parametric estimates for the discount curve. However, such
methods are usually not very flexible. To illustrate this phenomenon, Fig-
ure 1 also shows the forward rates estimated with the techniques proposed
by Nelson and Siegel (1987) and Svensson (1994). The parametric models
proposed by these authors are often used by federal banks [see for example
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Schich (1996)]. The shapes of the parametric and spline curves are totally
different. It is obvious that the parametric estimates are much smoother,
but unfortunately the two methods are too inflexible and imprecise for many
practical investigations.

-insert Figure 1 about here-

3 Monotone smoothing by inversion

In this section we briefly explain a very simple procedure for monotonizing
curve estimates, which was recently proposed by Dette, Neumeyer and Pilz
(2006). In the following we will use this method for monotonizing the McCul-
loch Spline described in Section 2, but it should be noted that this approach
of monotonization can be used to monotonize any unconstrained estimate.
For this reason we describe it in the general nonparametric regression model

Yi = δ(Xi) + σ(Xi)εi, i = 1, · · · , n, (3)

where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations [see e.g. Fan

and Gijbels (1996)]. This means in our case, that Xi is some time to ma-
turity, Yi the corresponding discount factor and the function δ represents
the discount curve. After an appropriate scaling we may assume without
loss of generality that the explanatory variables Xi vary in the interval [0,1].
We further assume that the random variables εi are i.i.d. with E[εi] = 0,
E[ε2

i ] = 1. The regression function δ : [0, 1] → R is assumed to be twice
continuously differentiable. For the asymptotic analysis of the following es-
timate some more assumptions have to be made [see Dette, Neumeyer and
Pilz (2006) for details], but these will not be repeated, because the focus of
the present paper are applications.
Our procedure starts with an unconstrained curve estimate, say δ̂. There
are several proposals to estimate the function δ in model (3) [see e.g. Härdle
(1990), Fan and Gijbels (1996) and Eubank (1988)] and in the following
any of these estimates could be used as initial (unconstrained) estimate in
our method. In the applications discussed in the following section δ̂ will be
the McCulloch Spline. If there is evidence that the regression function δ is
(strictly) decreasing we define for N∈ N

δ̂−1
A (t) :=

1

Nhd

N∑
i=1

∫ ∞

t
Kd(

δ̂( i
N

)− u

hd

)du, (4)
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where Kd denotes a positive and symmetric kernel with compact support,
say [-1,1], existing second moment and hd is the corresponding bandwidth
converging to 0 with increasing sample sizes. The statistic in (4) can easily be
motivated by replacing the points 1/N ,2/N, . . . , 1 in (4) with an i.i.d. sample
of uniformly distributed random variables, say U1, . . . , UN ∼ U([0, 1]). If δ is
a strictly decreasing function on the interval [0, 1] with negative derivative,
then

1

Nhd

N∑
i=1

Kd

(δ(Ui)− u

hd

)
(5)

is the classical kernel estimate of the density of the random variable δ(U1) [see
Silverman (1986)]. From elementary probability it follows that this density
is given by

−(δ−1)′(u)I[δ(1),δ(0)](u).

Consequently, if one integrates (5) appropriately, one obtains an estimate of
the function δ−1 at the point t. Finally, the unknown regression function
δ is replaced by an appropriate estimate δ̂ and the random variabes Ui are
substituted by the deterministic points i/N (i = 1, . . . , N), which yields the
statistic defined in (4).
As the Kernel Kd is positive, it follows that the estimate δ̂−1

A is strictly
decreasing. Finally an antitone estimate, say δ̂A, of the regression function δ
is simply obtained by reflection of the function δ̂−1

A at the line y = x. Note
that the estimator δ̂−1

A (t) is equal to 0 and 1 if

t >
N

max
i=1

δ̂(
i

N
) + hd and t <

N
min
i=1

δ̂(
i

N
)− hd,

respectively. Because of this, the second crucial condition, δ̂A(0) = 1, is
trivially fulfilled, if hd is chosen sufficiently small and the preliminary uncon-
strained estimate satisfies δ̂( i

N
) ≤ 1 for all i, which is normally the case in

applications [see our examples in the following section].
For an increasing sample size and a bandwidth hd converging sufficiently fast
to 0 it is shown in Dette, Neumeyer and Pilz (2006) that in cases where the
”true” regression function δ is in fact decreasing the constrained estimate δ̂A

is consistent and first order asymptotically equivalent to the unconstrained
estimate δ̂. Thus from an asymptotic point of view the new estimate δ̂A

shares the same nice properties as the unconstrained estimate δ̂ and is addi-
tionally antitone.

5



4 Implementation and tests

In the present section we illustrate the monotonization method for the prob-
lem of constructing a decreasing estimate of the discount curve, where the
McCulloch Spline is used as initial unconstrained estimate. We have imple-
mented the monotonizing procedure in Excel and VBA, respectively.
For the application of the procedure we have used the McCulloch Spline, with
knots placed as suggested in McCulloch (1975), for the preliminary estimate δ̂
in formula (4), which also requires the specification of a kernel Kd, a number
N of evaluation points and a bandwidths hd. For sake of transparency we re-
strict ourselves to the Epanechnikov-kernel, but it is notable that other types
of kernel estimators yield very similar results. The Epanechnikov-kernel is
defined by

Kd(u) :=
{ 3

4
(1− u2) if |u| < 1

0 else,
(6)

easy to handle and fulfills the above assumptions. After integrating equation
(4) is basically a sum of N terms, where for the i-th summand the integration
yields 0, if

δ̂(
i

N
) + hd < t,

h, if

δ̂(
i

N
)− hd > t

and
3

4

[
δ̂(

i

N
)− t +

2

3
hd −

(δ̂( i
N

)− t)3

3h2
d

]
else. It was observed by Dette, Neumeyer and Pilz (2006) empirically that
the choice of the bandwidth hd is not too critical as long as it is chosen suf-
ficiently small. We use hd = 0, 00001 as bandwidth in estimate (4).
The three charts below show the resulting unconstrained and constrained es-
timates in three examples. The dotted lines represent the estimates obtained
with the classical McCulloch Spline, while the solid lines are the correspond-
ing monotonizations obtained from (4).
Our first example considers the situation investigated in Section 2. We have
estimated the term structure of interest rates of 81 Swiss mortgage bonds
issued by the Pfandbriefbank of Swiss Cantonal Banks with settlement date
01.11.2003. The classical estimation with the MCulloch spline yields highly
fluctuating forward rates, which become even negative [see the upper panel
in Figure 2]. The new estimate δ̂A, which was obtained with N = 2340,
modifes the initial estimate in regions where it is not decreasing. Note that
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there is a maximal difference of 79 base points between the discount factors
of the constrained and the unconstrained estimate [see Figure 3].

-insert Figure 2 about here-

-insert Figure 3 about here-

Figure 4 shows an constructed example. We took Finnish government bonds
with settlement date 30.06.2005 and manipulated these data. As the sample
size was only 12 changing the coupon of 1 bond was enough to get negative
forward rates [see the upper panel in Figure 4]. This example is not unreal-
istic from a practical point of view as some errors in the data often occur.
We calculated the monotone estimate with N = 2627 and observe a similar
picture as for the swiss bonds.

-insert Figure 4 about here-

The last picture shows an estimate of the term structure of a portfolio. This
portfolio contains 18 European government and corporate bonds, which are
all listed in Iboxx indices. The settlement date is 03.03.2006. Again, the
unconstrained estimate yields negative forward rates and is corrected by the
constrained estimate, which is obtained with N = 1860 [see the upper panel
in Figure 5].

-insert Figure 5 about here-

In all three cases the estimated forward rates seem to be more reliable and
less fluctuating after monotonization. In addition to that the two estimates of
the discount curves do not differ in regions, where the unconstrained estimate
is already antitone. Additionally the shapes of the curves are much closer to
each other then to curves obtained by parametrical models.

5 Conclusions

We have presented a new procedure to monotonize any prior unconstrained
estimate of the discount curve. The method is very easy to implement and
a procedure in Excel and VBA has been implemented, which is available
from the second author. We have illustrated the new estimation procedure
by three examples. These tests show some improvement with respect to
the estimation of the forward rates. The new estimate coincides with the
initial unconstrained estimate in regions where this is already decreasing and
corrects all other parts. The resulting statistic is a decreasing estimate over
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the full observation region. Because of these advantages and its simplicity
we recommend this method for practical investigations.
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Figure 1: Unconstrained estimates of the forward rates from 81 Swiss mort-
gage bonds. Solid line: McCulloch Spline; dashed line: Parametric estimate
of Nelson and Siegel (1987); dotted line: Parametric estimate of Svensson
(1994).
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Figure 2: Estimated discount curves and forward rates of Swiss mortgage
bonds. Dotted lines: unconstrained McCulloch Spline; solid lines: mono-
tonized McCulloch Spline.

Figure 3: Difference in base points between discount factors estimated from 81
Swiss mortgage bonds with the unconstrained and the constrained McCulloch
Spline.
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Figure 4: Estimated discount curves and forward rates of Finnish government
bonds. Dotted lines: unconstrained McCulloch Spline; solid lines: mono-
tonized McCulloch Spline.

Figure 5: Estimated discount curves and forward rates of European govern-
ment and corporate bonds listed in Iboxx indices. Dotted lines: unconstrained
McCulloch Spline; solid lines: monotonized McCulloch spline.
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