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Abstract

Maximum-smoothness approximation of forward interest rate is considered.
The smoothness is measured as the integral of the square of the second-derivative
of the forward interest rate. Well-known results on natural splines are utilized
in order to characterize the optimal solution.

1. Introduction

Assume that we have m zero-coupon bonds, such that bond ¢, ¢+ = 1,..., m, gives
unit value at time ¢;, and its market price at time zero, v;, is known. Here, and
throughout this note, the current time is set to zero and denoted by ;. Without

loss of generality, we assume that 0 =ty <t; < --- < t,,. It is of interest to extend
these market prices to a smooth curve v(t) which is consistent with the information
that is known, i.e., v(tg) = 1 and v(t;) = v;, i = 1,...,m. Alternatively, a function

f(t), which models the forward interest rate, may be formed, where for ¢ € [0,%,,],
the relationship between v(¢) and the function f is given by

o(t) = ¢ SO (1.1)

This note concerns finding a suitable smooth f. We focus on a specific model
proposed by Adams and van Deventer [AvD94] and extended by Bjerksund and
Stensland [BS96]. For a more general discussion, see, e.g., Adams and van De-
venter [AvD94], Bjerksund and Stensland [BS96], Frishling and Yamamura [FY96],
Tanggaard [Tan97], and the references given in these papers.

Using (1.1), the consistency with the market price v; of bond ¢, fori=1,...,m,
may be expressed as

.

- d .
v, =€ ffo fs) 5, 1=1,...,m,
or equivalently, as

—Invy; = /ti f(s)ds, i=1,...,m. (1.2)

to
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2 Mazimum smoothness of forward interest rate

Adams and van Deventer [AvD94] have suggested a choice of f that gives “maximum
smoothness” in the sense that they include a final time of the planning horizon,
tm+1, (tmg1 > tm), and suggest choosing the f that has minimal Lz-norm of its
second-derivative over the planning horizon, i.e., they minimize

[ s as

to
In addition, they require that f € C'[tg, t,np1] and f € CO[tF |, t7],i=1,...,m+1.
Here, and throughout the note, superscripts “—” and “4+” are used to denote limits

from left and right respectively. Taking into account the consistency requirement
(1.2), this measure of smoothness leads to an optimization problem on the form

.« . . tm+1 1" 2
minimize (f"(s))%ds
FEC [t tm+1] t%‘

subject to /lf(s)ds:—lnvi, 1=1,...,m,
to

FeCqtt ], i=1,...,m+1.

For this problem, Adams and van Deventer [AvD94, p. 55] claim that the opti-

mal f may be written as a piecewise fourth-order polynomial, where the cubic

(1.3)

and quadratic terms are absent on each interval. This is not correct. As stated
in Section 2, the solution is given by so-called natural splines, see Schwartz [Sch89,
pp. 126—128]. This means that the fourth-order polynomials have continuous deriva-
tives up to order three over the whole planning horizon.

The purpose of this note is to give the properties of an optimal solution to
problem (1.3), thereby correcting the abovementioned mistake in Adams and van
Deventer [AvD94]. In addition, we characterize an optimal solution of the related
problem that arises when the values of v; are not uniquely determined. This latter
problem has been proposed by Bjerksund and Stensland [BS96]. The solutions to
both these problems are given by natural splines. The results concerning the former
problem are given in Section 2. These results follow immediately from the analysis
of Schwartz [Sch89, pp. 126-128]. In Section 3, the results concerning the latter
problem are given. The proof of the extended results of Section 3 are given in
Appendix A. (In addition, the proof of the results of Section 2 follows as a by-
product.) In Appendix B, explicit nonlinear equations that characterize an optimal
solution to the latter problem are given.

2. Characterization of the optimal solution

If the primitive function F'(t) = fti f(s)dsisintroduced in (1.3), the equivalent result
regarding minimizing the Ly-norm of the third-derivative of F over the planning
horizon is given in Schwartz [Sch89, p. 128]. This result is reviewed in the following
proposition, stated for f(¢), taking into account that f(t) = F’(t). As mentioned
above, superscripts “—” and “4” are used to denote limits from left and right
respectively, such as f(t;) = lim. o f(t;—¢) and f(t}) = lim.jo f(t;+¢). Superscripts
at endpoints of the interval considered in the specific optimization problem, such as
to, will be omitted for brevity.
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Proposition 2.1. (See Schwartz [Sch89, p. 128]) If f is a feasible solution to
(1.3), then f is a global minimizer if and only if

L fMto) = [ (te) =0, 707) = S0, =1, m L,

2. fO(te) = fOt,) =0, fOU)= O, i=1,...,m—1.
3 fO) =0t <t <ty i=1,...,m.

4. ") =0, t, <t <tpir-

In Appendix A, the analysis of Schwartz [Sch89, pp. 126-128] is extended to
the more general case of Section 3 when the values of v; are not uniquely deter-
mined. Schwartz’ proof of Proposition 2.1 is then obtained as a by-product. The
consequence of Proposition 2.1 is that the optimal solution is a piecewise quadratic
polynomial, which is three times continuously differentiable on [tg,#,,4+1]. This re-
sult is a correction to a previous result given by Adams and van Deventer [AvD94],
where the continuity properties of the second and third derivatives are not correctly
stated. Adams and van Deventer [AvD94] claim that the optimal f may be written
as a piecewise fourth-order polynomial, where the cubic and quadratic terms vanish
on each interval. In general, this is not a property which is given by Proposition 2.1,
but rather the second and third derivatives are continuous over the interval limits.

Note that since there are no constraints on f on the interval [t,,,,+1], the
optimal f will be a linear function on that interval, determined by the function
value and derivative at ¢,,. Hence, the optimization may be limited to the interval
[to,tm], which is done for the remainder of this note.

By Proposition 2.1, the optimal f is a piecewise quadratic polynomial, and (1.3)
may be posed as an equality-constrained convex quadratic programming problem,
see the discussion in Section 4. However, following Schwartz [Sch89, pp. 126-128],
the properties of Proposition 2.1 uniquely determine the coefficients of the poly-
nomial. Hence, it is not necessary to explicitly formulate or solve the quadratic
programming problem. To see this, for i = 1,...,m, let

L) =ai(t — i) + 0t —ti)® et —ti1)? + di(t —tiy) + e (2.1)

for t;-1 < t < t;. (As discussed above, we limit the discussion to the interval
[to,tm].) This gives 5m unknown coefficients a;, b;, ¢;, d; and ¢;, i = 1,...,m. The
continuity of f and f’, imposed by f € Clltg,t;ms1] give 2(m — 1) conditions. The
requirements on f” and f®) imposed by properties 1 and 2 of Proposition 2.1, give
2(m + 1) conditions. Finally, v;, ¢ = 1,...,m, are known, giving an additional m
conditions. Consequently, there is a total of 5m conditions for the 5m unknowns.

3. Extensions

A slightly more general model has been proposed by Bjerksund and Stensland [BS96].
It is assumed that, for each bond 7, 7 = 1,...,n, today’s price p’ and the payments
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pf at times ¢;, 7 € I;, are known, where I; C {1,...,m}. The consistency require-
ment on v;, 1 = 1,...,m, then becomes
p]:prvi, j=1,...,n. (3.1)
i€l

By defining pf =0if ¢ ¢ I;, an m X n matrix P with element (7, j) given by pf may
be created, and (3.1) may be written as p/ = 3.7, pfvi, 7 =1,...,n, or equivalently
as p = PTu, if p is defined as the n-dimensional vector with jth component p’ and
v here denotes the m-dimensional vector with ¢th component v;. The associated
optimization problem becomes

minimize /tm (f"(s))%ds

feCtg,tm] to
vEIR™ .
subject to /to f(s)ds = —1Inw;, i=1,...,m, (3.2)

m 4
prvi:pjy j:17"'7n7
=1

FeCott | t], i=1,...,m,

see Bjerksund and Stensland [BS96]. Throughout the note, it is assumed that each
bond affects the value of at least one v;, 7+ = 1,...,m, i.e., that the matrix P of
above has full column rank. (If this is not the case, and there is a feasible solution,
bonds associated with linearly dependent columns of P can simply be removed.)

If n = m, then P is square and nonsingular, and in this situation, v;,72 = 1,...,m,
are uniquely determined. Hence, in this situation, (3.2) is equivalent to (1.3). This
is the case, if for example |I;| =1 for j = 1,...,n. If m > n, then the values of
v; are not uniquely determined, and the problem becomes nonlinearly constrained
and nonconvex. The properties of Proposition 2.1 become necessary optimality
conditions for problem (3.2), with an additional condition on f@ | as stated in the
following proposition.

Proposition 3.1. If f and v;, i =1,...,m, form a local minimizer to (3.2), then
1 f'(to) = f"(tm) =0, f't7)=f"(tH),i=1,...,m— 1.
2. fO(to) = fOUtm) =0, fOT)=fOF), i=1,...,m~ 1L
3. There is a A € IR" such that

FOET) = FOE) = YA =0, i=1,...,m—1,

J=1

f(4)(t7n) — Um szn’\j = 0.
7=1

4o fO@) =0, t; <t <t,i=1,...,m.
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A proof based on the analysis of Schwartz [Sch89, pp. 126-128] is given in Ap-
pendix A.

Rather than requiring the prices to be satisfied exactly, as in (3.1), other ap-
proaches have been proposed, where the equations (3.1) are not required to be
satisfied exactly, but the deviation is penalized by a least-squares term, see Tang-
gaard [Tan97].

4. Solution of the optimization problem

By introducing piecewise quadratic polynomials as defined in (2.1), Proposition 3.1
suggests that problem (3.2) may be posed as

m t;
minimize Z/ (12a;(s — t;_1)* + 6b;(s — t;_1) + 2¢;)?ds
=1 ti—1

a,b,c,d,e,v

subject to ai(ti — ti_1)4 + bi(ti — ti_l)S + Ci(ti — ti_l)Q
+di(ti_ti—1)+ei:€i+17 Z.:17"'7,'71_17

da;(t; — ti1)® 4 3bi(t; — tim1)® + 2¢5(t; — 1)

+d;=dizq, 1=1,...,m—1,
" * (4.1)

/ (ai(s — tic)* +bi(s — timy)® + ci(s — ti1)?

i

i—1

+di(s—tiz1)+e)ds=—Inv,+Inviy, i=1,...,m,

m - .
ZP?WZP]’ J=1,...,n,
=1

a_e R™ be IR, ce IR",de R™,e€ IR™,veE IR™, vg=1.

If the values of v; are uniquely determined by the equations ) i~ pzvi = p,
j = 1,...,n, then (4.1) is a convex equality-constrained quadratic programming
problem in the variables ¢ € IR™, b€ IR™, c € R™,d € IR™ and e € IR™. In this
situation, Proposition 2.1 ensures that (4.1) is equivalent to (1.3). Otherwise, (4.1)
is in general a nonconvex optimization problem. A Newton-type method based on
the Karush-Kuhn-Tucker first-order optimality conditions of (4.1) may be employed
in order to identify a local minimizer, see, e.g., Fletcher [F1e87, pp. 304-317] and
Nash and Sofer [NS96, Chapter 15.5]. We do not focus on not how best to solve
the optimization problem, but note that an alternative to solving the first-order
optimality conditions is is to solve a system of nonlinear equations that arises from
the alternative optimality conditions of Proposition 3.1. Such a system of nonlinear
equations is presented in Appendix B. Both approaches lead to Newton iterations
involving sparse matrices, with a structured sparsity pattern. Our limited com-
putational experience on test problems suggests that these matrices in both cases
may become ill-conditioned. An advantage of a method based on the Karush-Kuhn-
Tucker first-order optimality conditions of (4.1) is that such a method also contains
second-derivative information, and hence, second-order optimality conditions can be
verified, see, e.g., Nash and Sofer [NS96, Chapter 14].
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5. Concluding remarks

Natural splines have been used to characterize the solution of the maximum smooth-
ness problems (1.3) and (3.2). We note that the analysis of Schwartz [Sch89, pp. 126
128] can be used to give similar results also if the smoothness measure [, (f'(s))*ds
is used, as proposed by Frishling and Yamamura [F'Y96]. In addition, from the proof
of Proposition A.1, it can directly be deduced from (A.4) how the characterization of
the optimal f is altered, if different boundary conditions are imposed on f. For ex-
ample, if f(#g) is assumed to be fixed, this condition replaces the boundary condition
@) (o) = 0 in Propositions 2.1 and 3.1. Finally, Bjerksund and Stensland [BS96]
propose the model in which equations (3.1) are replaced by

i€l

where p/ denotes the bid price of bond j and $’ denotes its ask price. For the sake
of brev?ty and clarity, we have not put problem (3.2) in this form, but we note that
the discussion can be modified to cover this case. This would lead to a modified
optimization problem of the form (4.1), the difference being that the inequalities
(5.1) replace the equations (3.1).
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A. Calculus of variation

In this appendix, the analysis of Schwartz [Sch89, pp. 126-128] is reviewed and
applied to problems (1.3) and (3.2). This is straightforward if the primitive function
F(t) = flf; f(s)ds is introduced. The results for problem (1.3) follow immediately
from the results of Schwartz, whereas the following proposition gives the required
generalization of Schwartz’ analysis to the case when the values of v; are not unique.

Proposition A.1. Consider the problem defined by

tm
minimize / (F®)(s))2ds

FEC2[tg,tm] 10
veEIR™

subject to F(t;))=—Inv;, i=0,...,m,
Vg = 1, (Al)
m . .
pr%‘:p]y .7:17"'7n7
=1
FeCotr ¢7], i=1,...,m.

If Fand v;, i =1,...,m, form a local minimizer to (A.1), then

1. FO () = FO(t,,) =0, FO@)=FC@F), i=1,...,m—1.
2. FO(ty) = FW(t,,) =0, FOE)=FW@Eh), i=1,...,m—1.

3. There is a A € IR™ such that

F(S)(ti_)_F(S)(tj_)—Uinz/\jZO, i=1,...,m—1,

i=1

FO(t,,) — v, prnx\j =0.
7=1

4. FO@) =0, t;y <t <t;i=1,...,m.

Moreover, if the equations -, pfvi =p/, j=1,...,n, have a unique solution,
then the above conditions are sufficient for F and v;, 1 =1,...,m, to form a global

minimizer to (A.1).

Proof. Let I" and v, 1 = 1,...,m, form a locally optimal solution to (A.1).
Let G € C?tg,t,] be such that G € CO[tF [, t7], i = 1,...,m, G(tg) = 0 and
S plviG(t;) =0, 7=1,...,n. For 7 near zero, define

Fr(t) = F(t) — In(1 + rG(1)). (A.2)

Then Fr(to) = 0 and F;(t;) = —In(v; + T0;G(t;)), @ = 1,...,m. Moreover,
S pl(vitTuG(t)) = ', = 1,...,n. Hence, for 7 near zero, F; and vi+7v;G(t;),
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i=1,...,m, form a feasible solution to (A.1). A Taylor-series expansion of (A.2)
gives
tm tm tm
/ m@@ﬁ@:/ w®@f@—%/ FO(5)G®) (s)ds + o(7),
to 1o to

where o(7) is a remainder term such that lim,._q(o(7)/7) = 0. Consequently, it
follows that necessary conditions for " and v;, ¢ = 1, ..., m, to form a local minimizer

to (A.1) is that
tm
/ FO ()G (s)ds = 0. (A.3)

to

Integration of (A.3) by parts, taking into account that G € C?[tg,t,,] and F €
COtd ,t7),i=1,...,m, gives

0= / ) (5)G®(s)ds = i / . FO) ()G (s)ds

to i=1 7 ti—1

= FO ()G (1) — FO ()G (t0)
+ 5 O - PO
PO ) + PO )
S 06 - PO )
+ FO)G() - PO Gl

+ ?g(F(5)(tf) - FOH)G(1)
—iZZF@@G@@. (A.4)

Since there are only constraints on G(¢;),7 = 0,...,m, conditions 1, 2 and 4 follow.
From the values of G(¢;), i =0, ..., m, it follows that

m—1

FO()G () + D2 (FO7) = FOU)G (1) =0,

=1

where (G(t;) are arbitrary numbers such that "/, pgviG(ti) =0,7=1,...,n. Since
the range space of a matrix is the orthogonal complement to the null space of its
transpose, this is equivalent to condition 3, see, e.g., Horn and Johnson [HJ85,
pp- 16-17]. '
Finally, if v;, 7 = 1,..., m, are uniquely determined by the equations Y./*; plv; =
p’, 5 =1,...,n, let I be a feasible solution such that the above conditions hold,
and let F' be any other feasible solution. Then, with G(t) = F(t) — F(t), it follows
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that G(t;) = 0,¢=0,...,m. Hence, for this choice of G, the expansion of (A.4) in
conjunction with conditions 1, 2 and 4 imply that (A.3) holds, and it follows that

/t:m(ﬁ’(S)(s))st: / O ()2ds 4 [ (G (s)2ds > / " RC) (5)) 2.

10 to to

tm

Consequently, I’ is a global minimizer. |

This proposition is the key to the analysis, in that the proofs of Propositions 2.1
and 3.1 follow directly. The proof of Proposition 2.1 is a review of the proof given
by Schwartz [Sch89, pp. 126-128]. It is given here for the sake of completeness, since
it appears as a by-product of the slightly more general result of Proposition A.1.

Proof of Proposition 2.1. The integral in the objective function may be split
into two parts, as

/t:m+l(f//(8))2d82/t:m(f//(s))2d5—|—/t;mﬂ(f//(s))st‘

There is no constraint other than continuity of f and f’ at ¢,, on the second term.
Hence, f is linear on this part, determined by f(t,,) and f'(¢,,). For the first term,
let F'(t) = ftto f(s)ds. The result then follows from Proposition A.1. Condition 3 of
Proposition A.1 is superfluous, since the values of v; are unique. 1

Proof of Proposition 3.1. Let F(t) = ftto f(s)ds. The result then follows from
Proposition A.1. 1

B. Alternative nonlinear equations

Similar to the equations derived by Schwartz [Sch89, pp. 128-130], an alterna-
tive system of nonlinear equations, based on Proposition 2.1, can be derived, that
characterizes the first-order optimality conditions of (3.2). Let F(t) = ﬁ f(s)ds
For i = 1,...,m, let f;(t) be defined by (2.1) on the interval [t]_,,#7] and let
h; = (t; — t;—1). We want the condition F(¢;) = —Inv; to hold for i =0,...,m. To
simplify the notation, F'(#;) is denoted by y; initially. A substitution y; = —Inv;
will be made later. Then, we have for 1 = 1,...,m,

ath bl d»h?

Fi(ti-1) = yi Fi(t;) = 1 3 T —t +eihi +yioa,
Fl(ti—1) = e, FZ»’(Z):ah‘l—I—th—I—thQ—I—dh + e,
Fl'(t;_y) = d;, FI'(t;) = 4a;h? + 3b;h? 4 2¢;h; + d;,
F} (tie1) = 2¢; FO(t;) = 12a;h2 + 6b;h; + 2c;,
@ (t;_1) = 6b; D (t;) = 24a;h; + 6b;.

In addition to y; = F(t;), we may introduce y/ = F"(t;) and y2(4) = FU(¢) for
1 =0,...,m. If the function values as well as second- and fourth-order derivatives
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are required to be continuous, we may express «a;, b;, ¢;, d;, and e; in these quantities
fori=1,...,m as

1 4 4

a; = m(yf ) yz(—)l)7

1 (4
by = gyz(_)p

L hi (2 (4)

c; = o (Wi =y y) 12(%’ +2y;71),
di - y'fl—h

1

3
7yt 48y,

" gl
Yi + yz—l) 360

e; = h_z(yz — Yio1) — E(
The continuity of the first- and third-order derivatives must be handled too. From
above,

3

1 hs
Fi(tic1) = —(yi — yim1) — —(vi +2yi_1) + 7y + 8yW)

h; 6 ( 360(

1 h.; h3 .
F(ti) = —(yi — yim1) + =y + v ) 4 7y
Pt = 5 —vim) 5 (0 F vin)) — 5o B + Tyia),
1 h;
FO(tim) = 0 = vl — 5 W + 22,
1 h;
FOw) = o = vl + 5 2o o),
for : = 1,..., m. Requiring continuity gives
1 h; h3
F(t;) = e — i) — i+l on i+1 (4) (4)
= (- v 1)+E(2y"’+y"’ )= 2= 8y + Ty,
hi 7t 7T 6 7 Y360
1 hivi, (a
FO@) = e (yiy —¥i) - %(yfﬁl +2y™)
1 h;
= —wil) + g(ny "),
fori=1,...,m — 1. This gives 2(m — 1) equations as

_7h?yz(i)l (ha + hz-}-l)yz( - 7h2+1y2(+)1
+ 60h Y | + 120(h; + hiy1)y! + 60h2+1y¢+1

360 1 1 360
- 11— T ) s .:1,..., —1, B.1
I —1y;—1 + 360 <hi " ) y hz+1y +1 =0, % m (B.1a)

hi yz( )1 + 2(h + hz+1)
6
‘§71+6< H)

'+ h2+1y2+1

=0, i=1,...,m—1. (B.1b)
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The boundary conditions on F®) and F(*) give

1 h

FOt0) = - = ) — 5 1" + 20" = 0, (B.22)
1 b

FO(t) = 7=y = ) + 7(2%@3) +y ) =0, (B.2b)

yV =0, (B.2¢)

i.e., four additional constraints.

If we replace y; by — Inv; for i = 0,...,min (B.1), and add together (B.1), (B.2),
the m constraints imposed by condition 3 of Proposition 3.1, plus the additional
constraints Y i~ plv; = p',j=1,...,n, and vy = 1, imposed by feasibility in (3.2),
a total of 3(m + 1) + n equations results for the 3(m + 1) + n unknowns, v;, ¥/’ and
y2(4), t=0,...,m,and A;, 7 =1,...,n. Such a system of equations may be written
on the form

Vo = 1,
6 6

2h1y(()4) + h1y§4) + h_yg - h_yi/ =0,
1 1

=0,

—7h3y® = 8(h3 + b )yl — 7R3y

k3

+ 60Ry;_ 1 + 120(h; + hig1)y; + 60hi11y,

360 1 360 .
+ I In v;_q — 360<h_i+hi+1)1 Z—I_hH_llnvZH_O i1=1,...,m—1,
hiy™ 4 2(hi + hip )yt + higry$
6 1 (1 1 ) 1 6 1" -
_ _ = =1,....m—-1
hi Yi—1 +6 hz + hi+1 Y; hi+ Yi+1 07 ? ’ y M 3
L (L, 1N @_ :
_h_iyi_l—l_(h_i—i_m)y ot yH_l—vZZp]/\ =0, 2=1,...,m—1,
6
Ry |+ 2R,y — /=0
2+ 20y, hm h )
=0,

1
W yfn)ﬁr m—vapM—O

prvi:pj, j=1,...,n.

The associated Newton equations are sparse with a structured sparsity pat-
tern. However, our limited computational experiments suggest that they may be
ill-conditioned.



Addendum to A note on marimum-smoothness approximation of
forward interest rate

After completion of the report, it has been brought to our attention by Donald
R. van Deventer that the incorrect result of Adams and van Deventer [AvD94],
regarding the shape of the fourth-order polynomials that give an optimal solution
o (1.3), has been corrected by van Deventer and Imai [vDI97, Chapter 2].
Unfortunately, the name Schwarz is misspelled throughout the report.

Reference to correction

[vDI97] D. R. van Deventer and K. Imai. Financial Risk Analytics: A Term Structure Model Ap-
proach for Banking, Insurance and Investment Management. Irwin Professional, Chicago,
I, 1997. ISBN 0-7863-0964-4.



