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Introdu
toCRE

1.1 Developments in Credit Risk Management

Since the beginning of the 1990s, Credit Suisse First Boston (“CSFB”) has been developing and deploying

new risk management methods. In 1993, Credit Suisse Group launched, in parallel, a major project aimed 

at modernising its credit risk management and, using CSFB’s expertise, at developing a more forward-

looking management tool. In December 1996, Credit Suisse Group introduced CREDITRISK+ - a Credit Risk

Management Framework.

Current areas of development in credit risk management include: modelling credit risk on a portfolio basis;

credit risk provisioning; active portfolio management; credit derivatives; and sophisticated approaches to capital

allocation that more closely reflect economic risk than the existing regulatory capital regime. CREDITRISK+

addresses all of these areas and the relationships between them.

CREDITRISK+ can be applied to credit exposures arising from all types of products including corporate and retail

loans, derivatives, and traded bonds.

1.2 Components of CREDITRISK+

The components of CREDITRISK+ and the interrelationships between them are shown in the following diagram.

Figure 1:

Components of CREDITRISK+

CREDITRISK+ comprises three

main components–a CREDITRISK+

Model that uses a portfolio

approach, a methodology for

calculating economic capital 

for credit risk, and several

applications of the technology.
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A modern approach to credit risk management should address all aspects of credit risk, from quantitative

modelling to the development of practical techniques for its management. In addition to well-established credit

risk management techniques, such as individual obligor (borrower, counterparty or issuer) limits and concentration

limits, CREDITRISK+ reflects the requirements of a modern approach to managing credit risk and comprises three

main components:

• The CREDITRISK+ Model that uses a portfolio approach and analytical techniques applied widely in the

insurance industry.

• A methodology for calculating economic capital for credit risk.

• Applications of the credit risk modelling methodology including: (i) a methodology for establishing provisions

on an anticipatory basis, and (ii) a means of measuring diversification and concentration to assist in

portfolio management.

1.3 The CREDITRISK+ Model

CREDITRISK+ is based on a portfolio approach to modelling credit default risk that takes into account

information relating to size and maturity of an exposure and the credit quality and systematic risk of an obligor.

The CREDITRISK+ Model is a statistical model of credit default risk that makes no assumptions about the

causes of default. This approach is similar to that taken in market risk management, where no attempt is made

to model the causes of market price movements. The CREDITRISK+ Model considers default rates as continuous

random variables and incorporates the volatility of default rates in order to capture the uncertainty in the level

of default rates. Often, background factors, such as the state of the economy, may cause the incidence of

defaults to be correlated, even though there is no causal link between them. The effects of these background

factors are incorporated into the CREDITRISK+ Model through the use of default rate volatilities and sector

analysis rather than using default correlations as explicit inputs into the model.

Mathematical techniques applied widely in the insurance industry are used to model the sudden event of an

obligor default. This approach contrasts with the mathematical techniques typically used in finance. In financial

modelling one is usually concerned with modelling continuous price changes rather than sudden events.

Applying insurance modelling techniques, the analytic CREDITRISK+ Model captures the essential

characteristics of credit default events and allows explicit calculation of a full loss distribution for a portfolio of

credit exposures.

1.4 Economic Capital

The output of the CREDITRISK+ Model can be used to determine the level of economic capital required to cover

the risk of unexpected credit default losses.

Measuring the uncertainty or variability of loss and the relative likelihood of the possible levels of unexpected

losses in a portfolio of credit exposures is fundamental to the effective management of credit risk. Economic

capital provides a measure of the risk being taken by a firm and has several benefits: it is a more appropriate

risk measure than that specified under the current regulatory regime; it measures economic risk on a portfolio

basis and takes account of diversification and concentration; and, since economic capital reflects the changing

risk of a portfolio, it can be used for portfolio management.

4 CREDIT   FIRST
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The CREDITRISK+ Model is supplemented by scenario analysis in order to identify the financial impact of low

probability but nevertheless plausible events that may not be captured by a statistically based model.

1.5 Applications of CREDITRISK+

CREDITRISK+ includes several applications of the credit risk modelling methodology, including a forward-looking

provisioning methodology and quantitative portfolio management techniques.

1.6 Example Spreadsheet Implementation

In order to assist the reader of this document, a spreadsheet-based implementation that illustrates the range

of possible outputs of the CREDITRISK+ Model can be downloaded from the Internet (http://www.csfb.com).

1Introduction



Model
Credit

2.1 Risk Modelling Concepts

2.1.1 Types of Uncertainty Arising in the Modelling Process

A statistically based model can describe many business processes. However, any model is only a

representation of the real world. In the modelling process, there are three types of uncertainty that must be

assessed: process risk, parameter uncertainty and model error.

Process Risk

Process risk arises because the actual observed results are subject to random fluctuations even where the

model describing the loss process and the parameters used by the model are appropriate. Process risk is

usually addressed by expressing the model results to an appropriately high level of confidence.

Parameter Uncertainty

Parameter uncertainty arises from the difficulties in obtaining estimates of the parameters used in the model.

The only information that can be obtained about the underlying process is obtained by observing the results

that it has generated in the past. It is possible to assess the impact of parameter uncertainty by performing

sensitivity analysis on the parameter inputs.

Model Error

Model error arises because the proposed model does not correctly reflect the actual process - alternative

models could produce different results. Model error is usually the least tractable of the three types of

uncertainty.

2.1.2 Addressing Modelling Issues

As all of these types of uncertainty enter into the modelling process, it is important to be aware of them and

to consider how they can be addressed when developing a credit risk model. Indeed, a realistic assessment of

the potential effects of these errors should be made before any decisions are made based on the outputs of

the model.

6 CREDIT   FIRST
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Modelling Credit Risk

The CREDITRISK+ Model

makes no assumptions

about the causes of default.

This approach is similar to

that taken in market risk

management, where no

assumptions are made

about the causes of market

price movements.

All portfolios of exposures

exhibit credit default risk, as

the default of an obligor

results in a loss.

CREDITRISK+ addresses these types of uncertainty in several ways:

• No assumptions are made about the causes of default. This approach is similar to that taken in market risk

management, where no assumptions are made about the causes of market price movements. This not only

reduces the potential model error but also leads to the development of an analytically tractable model.

• The data requirements for the CREDITRISK+ Model have been kept as low as possible, which minimises the

error from parameter uncertainty. In the credit environment, empirical data is sparse and difficult to obtain.

Even then, the data can be subject to large fluctuations year on year.

• Concerns about parameter uncertainty are addressed using scenario analysis, in which the effects of stress

testing each of the input parameters are quantified. For example, increasing default rates or default rate

volatilities can be used to simulate downturns in the economy.

2.2 Types of Credit Risk

There are two main types of credit risk:

• Credit spread risk: Credit spread risk is exhibited by portfolios for which the credit spread is traded and

marked-to-market. Changes in observed credit spreads impact the value of these portfolios.

• Credit default risk: All portfolios of exposures exhibit credit default risk, as the default of an obligor results

in a loss.

2.2.1 Credit Spread Risk

Credit spread is the excess return demanded by the market for assuming a certain credit exposure. Credit

spread risk is the risk of financial loss owing to changes in the level of credit spreads used in the mark-to-

market of a product.

Credit spread risk fits more naturally within a market risk management framework. In order to manage credit

spread risk, a firm’s value-at-risk model should take account of value changes caused by the volatility of credit

spreads. Since the distribution of credit spreads may not be normal, a standard variance-covariance approach

to measuring credit spread risk may be inappropriate. However, the historical simulation approach, which does

not make any assumptions about the underlying distribution, used in combination with other techniques,

provides a suitable alternative.

Credit spread risk is only exhibited when a mark-to-market accounting policy is applied, such as for portfolios

of bonds and credit derivatives. In practice, some types of products, such as corporate or retail loans, are

typically accounted for on an accruals basis. A mark-to-market accounting policy would have to be applied to

these products in order to recognise the credit spread risk.

2.2.2 Credit Default Risk

Credit default risk is the risk that an obligor is unable to meet its financial obligations. In the event of a default

of an obligor, a firm generally incurs a loss equal to the amount owed by the obligor less a recovery amount

which the firm recovers as a result of foreclosure, liquidation or restructuring of the defaulted obligor. 

All portfolios of exposures exhibit credit default risk, as the default of an obligor results in a loss.

2



Credit default risk is typically associated with exposures that are more likely to be held to maturity, such as

corporate and retail loans and exposures arising from derivative portfolios. Bond markets are generally more

liquid than loan markets and therefore bond positions can be adjusted over a shorter time frame. However,

where the intention is to maintain a bond portfolio over a longer time frame, even though the individual

constituents of the portfolio may change, it is equally important to measure the default risk that is taken by

holding the portfolio.

CREDITRISK+ focuses on modelling and managing credit default risk.

2.3 Default Rate Behaviour

Equity and bond prices are forward-looking in nature and are formed by investors’ views of the financial

prospects of a particular obligor. Hence, they incorporate both the credit quality and the potential credit quality

changes of that obligor.

Therefore, the default rate of a particular obligor, inferred from market prices, will vary on a continuous scale

and hence can be viewed as a continuous random variable. In modelling credit risk, one is concerned with

determining the possible future outcomes over the chosen time horizon.

The process for the default rate can be represented in two different ways:

• Continuous variable: When treated as a continuous variable, the possible default rate over a given time

horizon is described by a distribution, which can be specified by a default rate and a volatility of the default

rate. The data requirements for modelling credit default risk are analogous to the data requirements for

pricing stock options - a forward stock price and the stock price volatility are used to define the forward

stock price distribution. The following figure illustrates the path that a default rate may take over time and

the distribution that it could have over that time.

• Discrete variable: By treating the default rate as a discrete variable, a simplification of the continuous

process described above is made. A convenient way of making default rates discrete is by assigning credit

ratings to obligors and mapping default rates to credit ratings. Using this approach, additional information

is required in order to model the possible future outcomes of the default rate. This can be achieved via a

rating transition matrix that specifies the probability of keeping the same credit rating, and hence the same

value for the default rate, and the probabilities of moving to different credit ratings and hence to different

values for the default rate. This is illustrated in the following figure.
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The discrete approach with rating migrations and the continuous approach with a default rate volatility are

different representations of the behaviour of default rates. Both approaches achieve the desired end result of

producing a distribution for the default rate.

The above two representations of default rate behaviour are summarised in the following table:

Treatment of default rate Data requirements

Continuous variable • Default rates

• Volatility of default rates

Discrete variable • Credit ratings

• Rating transition matrix

The CREDITRISK+ Model is a statistical model of credit default risk that models default rates as continuous

random variables and incorporates the volatility of the default rate in order to capture the uncertainty in the

level of the default rate. A mapping from credit ratings to a set of default rates provides a convenient approach

to setting the level of the default rate.

2.4 Modelling Approach

2.4.1 Risk Measures

When managing credit risk, there are several measures of risk that are of interest, including the following:

• Distribution of loss: The risk manager is interested in obtaining distributions of loss that may arise from the

current portfolio. The risk manager needs to answer questions such as “What is the size of loss for a given

confidence level?”.

• Identifying extreme outcomes: The risk manager is also concerned with identifying extreme or catastrophic

outcomes. These outcomes are usually difficult to model statistically but can be addressed through the use

of scenario analysis and concentration limits.

Table 1: 

Representations of the

default rate process
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Figure 3:
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random variable
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2.4.2 A Portfolio Approach to Managing Credit Risk

Credit risk can be managed through diversification because the number of individual risks in a portfolio of

exposures is usually large. Currently, the primary technique for controlling credit risk is the use of limit systems,

including individual obligor limits to control the size of exposure, tenor limits to control the maximum maturity

of exposures to obligors, rating exposure limits to control the amount of exposure to obligors of certain credit

ratings, and concentration limits to control concentrations within countries and industry sectors.

The portfolio risk of a particular exposure is determined by four factors: (i) the size of the exposure, (ii) the

maturity of the exposure, (iii) the probability of default of the obligor, and (iv) the systematic or concentration

risk of the obligor. Credit limits aim to control risk arising from each of these factors individually. The general

effect of this approach, when applied in a well-structured and consistent manner, is to create reasonably well-

diversified portfolios. However, these limits do not provide a measure of the diversification and concentration

of a portfolio.

In order to manage effectively a portfolio of exposures, a means of measuring diversification and concentration

has to be developed. An approach that incorporates size, maturity, credit quality and systematic risk into a single

portfolio measure is required. CREDITRISK+ takes such an approach.

2.4.3 Modelling Techniques Used in the CREDITRISK+ Model

The economic risk of a portfolio of credit exposures is analogous to the economic risk of a portfolio of

insurance exposures. In both cases, losses can be suffered from a portfolio containing a large number of

individual risks, each with a low probability of occurring. The risk manager is concerned with assessing the

frequency of the unexpected events as well as the severity of the losses.

In order to keep model error to a minimum, no assumptions are made about the causes of default.

Mathematical techniques applied widely in the insurance industry are used to model the sudden event of an

obligor default. In modelling credit default losses one is concerned with sudden events rather than continuous

changes. The essential characteristics of credit default events are captured by applying these insurance

modelling techniques. This has the additional benefit that it leads to a credit risk model that is analytically

tractable and hence not subject to the problems of precision that can arise when using a simulation-based

approach. The analytic CREDITRISK+ Model allows rapid and explicit calculation of a full loss distribution for a

portfolio of credit exposures.

2.5 Time Horizon for Credit Risk Modelling

A key decision that has to be made when modelling credit risk is the choice of time horizon. Generally, the time

horizon chosen should not be shorter than the time frame over which risk-mitigating actions can be taken.

CREDITRISK+ does not prescribe any one particular time horizon but suggests two possible time horizons that

can provide management information relevant for credit risk management:

• A constant time horizon, such as one year.

• A hold-to-maturity or run-off time horizon.

10 CREDIT   FIRST
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2.5.1 Constant Time Horizon

A constant time horizon is relevant, as it allows all exposures to be considered at the same future date. 

For various reasons, one year is often taken as a suitable time horizon: credit risk mitigating actions can

normally be executed within one year, new capital can be raised to replenish capital eroded by actual credit

losses during the period, and, furthermore, one year matches the normal accounting period. Given these

factors, CREDITRISK+ suggests a time horizon of one year for credit risk economic capital.

2.5.2 Hold-to-Maturity Time Horizon

Alternatively, a hold-to-maturity time horizon allows the full term structure of default rates over the lifetime of the

exposures to be recognised. This view of the portfolio enables the risk manager to compare exposures of

different maturity and credit quality and is an appropriate tool, in addition to the constant time horizon, for

portfolio management. The role that the CREDITRISK+ Model plays in active portfolio management is discussed

later in this document.

A benchmark time horizon of one year can be used for portfolios where there is an intention to maintain

exposures for longer than the term of the booked transactions (e.g. traded bond portfolios).

2.6 Data Inputs to Credit Risk Modelling

2.6.1 Data Inputs

Any modelling of credit risk is dependent on certain data requirements being met. The quality of this data will

directly affect the accuracy of the measurement of credit risk and therefore any decision to be made using the

results should be made only having fully assessed the potential error from uncertainties in the data used.

The inputs used by the CREDITRISK+ Model are:

• Credit exposures

• Obligor default rates

• Obligor default rate volatilities and

• Recovery rates.

The CREDITRISK+ Model presented in this document does not prescribe the use of any one particular data set

over another. One of the key limitations in modelling credit risk is the lack of comprehensive default data.

Where a firm has its own information that is judged to be relevant to its portfolio, this can be used as the input

into the model. Alternatively, conservative assumptions can be used while default data quality is being improved.

2.6.2 Credit Exposures

The exposures arising from separate transactions with an obligor should be aggregated according to the legal

corporate structure and taking into account any rights of set-off.

The CREDITRISK+ Model is capable of handling all types of instruments that give rise to credit exposure,

including bonds, loans, commitments, financial letters of credit and derivative exposures. For some of these

transaction types, it is necessary to make an assumption about the level of exposure in the event of a default:

for example, a financial letter of credit will usually be drawn down prior to default and therefore the exposure

at risk should be assumed to be the full nominal amount.

In addition, if a multi-year time horizon is being used, it is important that the changing exposures over time are

accurately captured.
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Figure 4:

Rated corporate defaults

by number of issuers

One-year default rates

show significant fluctuations

from year to year.

12 CREDIT   FIRST
SUISSE BOSTON

Credit Risk Measurement

Exposures Default Rates

CREDITRISK+ Model

Recovery
Rates

Default Rate
Volatilities

Table 2:

One-year default rates (%)

2.6.3 Default Rates

A default rate, which represents the likelihood of a default event occurring, should be assigned to each obligor.

This can be achieved in a number of ways, including:

• Observed credit spreads from traded instruments can be used to provide market-assessed probabilities of

default.

• Alternatively, obligor credit ratings, together with a mapping of default rates to credit ratings, provide a

convenient way of assigning probabilities of default to obligors. The rating agencies publish historic default

statistics by rating category for the population of obligors that they have rated.

Credit rating One-year default rate

Aaa 0.00

Aa 0.03

A 0.01

Baa 0.12

Ba 1.36

B 7.27

Source: Carty & Lieberman, 1997, Moody’s Investors Service Global Credit Research

A credit rating is an opinion of an obligor’s overall financial capacity to meet its financial obligations (i.e. its

creditworthiness). This opinion focuses on the obligor’s capacity and willingness to meet its financial

commitments as they fall due. An assessment of the nature of a particular obligation, including its seniority in

bankruptcy or liquidation, should be performed when considering the recovery rate for an obligor.

It should be noted that one-year default rates show significant variation year on year, as can be seen in the

following figure. During periods of economic recession, the number of defaults can be many times the level

observed at other times.

Source: Standard & Poor’s Ratings Performance 1996 (February 1997)

• Another approach is to calculate default probabilities on a continuous scale, which can be used as a

substitute for the combination of credit ratings and assigned default rates.
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Table 3:

Default rate standard

deviations (%)
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2.6.4 Default Rate Volatilities

Published default statistics include average default rates over many years. As shown previously, actual

observed default rates vary from these averages. The amount of variation in default rates about these averages

can be described by the volatility (standard deviation) of default rates. As can be seen in the following table,

the standard deviation of default rates can be significant compared to actual default rates, reflecting the high

fluctuations observed during economic cycles.

One-year default rate (%)

Credit rating Average Standard deviation

Aaa 0.00 0.0

Aa 0.03 0.1

A 0.01 0.0

Baa 0.12 0.3

Ba 1.36 1.3

B 7.27 5.1

Source: Carty & Lieberman, 1996, Moody’s Investors Service Global Credit Research

The default rate standard deviations in the above table were calculated over the period from 1970 to 1996

and therefore include the effect of economic cycles.

2.6.5 Recovery Rates

In the event of a default of an obligor, a firm generally incurs a loss equal to the amount owed by the obligor

less a recovery amount, which the firm recovers as a result of foreclosure, liquidation or restructuring of the

defaulted obligor or the sale of the claim. Recovery rates should take account of the seniority of the obligation

and any collateral or security held.

Recovery rates are subject to significant variation. For example, the figure below shows the price distribution

of defaulted bank loans and illustrates that there is a large degree of dispersion.

Source: Defaulted Bank Loan Recoveries (November 1996) , Moody’s Investors Service Global Credit Research
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There is also considerable variation for obligations of differing seniority, as can be seen from the standard

deviation of the corporate bond and bank loan recovery rates in the table below.

Seniority and security Average Standard deviation

Senior secured bank loans 71.18 21.09

Senior secured public debt 63.45 26.21

Senior unsecured public debt 47.54 26.29

Senior subordinated public debt 38.28 24.74

Subordinated public debt 28.29 20.09

Junior subordinated public debt 14.66 8.67

Source: Historical Default Rates of Corporate Bond Issuers, 1920-1996 (January 1997) Moody’s Investors Service Global Credit Research

Publicly available recovery rate data indicates that there can be significant variation in the level of loss, given

the default of an obligor. Therefore, a careful assessment of recovery rate assumptions is required. Given this

uncertainty, stress testing should be performed on the recovery rates in order to calculate the potential loss

distributions under different scenarios.

2.7 Correlation and Incorporating the Effects of Background Factors

Default correlation impacts the variability of default losses from a portfolio of credit exposures. The CREDITRISK+

Model incorporates the effects of default correlations by using default rate volatilities and sector analysis.

2.7.1 The Random Nature of Defaults and the Appearance of Correlation

Credit defaults occur as a sequence of events in such a way that it is not possible to forecast the exact time

of occurrence of any one default or the exact total number of defaults. Often, there are background factors

that may cause the incidence of default events to be correlated, even though there is no causal link between

them. For example, if there is an unusually large number of defaults in one particular month, this might be due

to the economy being in recession, which has increased the rates of default above their average level. In this

economic situation, it is quite likely that the number of defaults in the following month will also be high.

Conversely, if there are fewer defaults than on average in one month, because the economy is growing, it is

also likely that there will be fewer defaults than on average in the following month. The defaults are correlated

but there is no causal link between them - the correlation effect observed is due to a background factor, the

state of the economy, which changes the rates of default.

2.7.2 Impact of the Economy on Default Rates

There is general agreement that the state of the economy in a country has a direct impact on observed default

rates. A recent report by Standard and Poor’s stated that “A healthy economy in 1996 contributed to a

significant decline in the total number of corporate defaults. Compared to 1995, defaults were reduced by

one-half….”1 Another report by Moody’s Investors Service stated that “The sources of [default rate volatility]

are many, but macroeconomic trends are certainly the most influential factors”.2

As the above quotations indicate and as can be seen in Figure 4 above, there is significant variation in the

number of defaults from year to year. Furthermore, for each year, different industry sectors will be affected to

different degrees by the state of the economy. The magnitude of the impact will be dependent on how sensitive

an obligor’s earnings are to various economic factors, such as the growth rate of the economy and the level of

interest rates.
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Economic models that attempt to capture the effect of changes in the economy on default rates can be

developed in order to specify the default rates for subsequent use in a credit risk model. However, this

approach can have several weaknesses, including the following:

• Since there are limited publicly available default rate statistics by country or by industry sector, it is difficult

to verify the accuracy of an economic model used to derive default rates.

• Even if a causal relationship could be established relating default rates to certain economic variables, it is

questionable whether such relationships would be stable over several years.

Therefore, alternative approaches that attempt to capture the observed variability of default rates have to be

sought.

2.7.3 Incorporating the Effects of Background Factors

It is possible to incorporate the effects of background factors into the specification of default rates by allowing

the default rate itself to have a probability distribution. This is accomplished by incorporating default rate

volatilities into the model.

The CREDITRISK+ Model models the effects of background factors by using default rate volatilities that result

in increased defaults rather than by using default correlations as a direct input. Both approaches, the use of

default rate volatilities and default correlations, give rise to loss distributions with fat tails.

Section 3 of this document describes in detail how the CREDITRISK+ Model uses default rate volatilities in the

modelling of credit default risk.

The CREDITRISK+ Model does not attempt to model correlations explicitly but captures the same concentration

effects through the use of default rate volatilities and sector analysis3. There are various reasons why this

approach has been taken, including the following:

• Instability of default correlations: Generally, correlations calculated from financial data show a high degree

of instability. In addition, a calculated correlation can be very dependent on the underlying time period of

the data. A similar instability problem may arise with default rate volatilities: however, it is much easier to

perform scenario analysis on default rate volatilities, owing to the analytically tractable nature of a model

that uses volatilities rather than correlations.

• Lack of empirical data: There is little empirical data on default correlations. Defaults themselves are

infrequent events and so there is insufficient data on multiple defaults with which to calculate explicit

default correlations. Since default correlations are difficult to calculate directly, some approaches use asset

price correlations to derive default correlations, but this can only be considered a proxy. This technique

relies upon additional assumptions about the relationship between asset prices and probabilities of default.

Furthermore, it is questionable how stable any relationship, that may be inferred or observed during a period

of normal trading, would be in the event of default of a particular obligor. In addition, where there is no asset

price for the obligor, for example in a retail portfolio, there is no obvious way of deriving default correlations.

2Modelling Credit Risk

The CREDITRISK+ Model

captures concentration risk

through the use of default

rate volatilities and sector

analysis.

3 Sector analysis is
discussed in Sections 
2.8 and 3.4



2.8 Measuring Concentration

The above discussion has highlighted the fact that there are background factors that affect the level of default

rates. The state of the economy of each different country will vary over time and, within each country, different

industry sectors will be affected to differing degrees. A portfolio of exposures can have concentrations in

particular countries or industry sectors. Therefore, it is important to be able to capture the effect of

concentration risk in a credit risk model.

The CREDITRISK+ Model described in this document allows concentration risk to be captured using sector

analysis. An exposure can be broken down into an obligor-specific element, which is independent of all other

exposures, and non-specific or systematic elements that are sensitive to particular driving factors, such as

countries or industry sectors.
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The CREDITRISK+ Model 3
Credit Risk Measurement

Exposures Default Rates

CREDITRISK+ Model

Recovery
Rates

Default Rate
Volatilities

3.1 Stages in the Modelling Process

The modelling of credit risk is a two stage process, as shown in the following diagram:

By calculating the distribution of default events, the risk manager is able to assess whether the overall credit

quality of the portfolio is either improving or deteriorating. The distribution of losses allows the risk manager to

assess the financial impact of the potential losses as well as measuring the amount of diversification and

concentration within the portfolio.

3.2 Frequency of Default Events

3.2.1 The Default Process

The CREDITRISK+ Model makes no assumption about the causes of default - credit defaults occur as a

sequence of events in such a way that it is neither possible to forecast the exact time of occurrence of any

one default nor the exact total number of defaults. There is exposure to default losses from a large number of

obligors and the probability of default by any particular obligor is small. This situation is well represented by the

Poisson distribution.

What is the
FREQUENCY
of defaults?

What is the
SEVERITY

of the losses ?

Stage 1

Stage 2 Distribution of
default losses



We consider first the distribution of the number of default events in a time period, such as one year, within a

portfolio of obligors having a range of different annual probabilities of default. The annual probability of default

of each obligor can be conveniently determined by its credit rating and a mapping between default rates and

credit ratings. If we do not incorporate the volatility of the default rate, the distribution of the number of default

events will be closely approximated by the Poisson distribution. This is regardless of the individual default rate

for a particular obligor.

However, default rates are not constant over time and, as we have seen in the previous section, exhibit a high

degree of variation. Hence, default rate variability needs to be incorporated into the model.

3.2.2 Distribution of the Number of Default Events

The CREDITRISK+ Model models the underlying default rates by specifying a default rate and a default rate

volatility. This aims to take account of the variation in default rates in a pragmatic manner, without introducing

significant model error.

The effect of using default rate volatilities can be clearly seen in the following figure, which shows the

distribution of the number of default events generated by the CREDITRISK+ Model when default rate volatility

is varied. Although the expected number of default events is the same, the distribution becomes significantly

skewed to the right when default rate volatility is increased. This represents a significantly increased risk of an

extreme number of default events.

3.3 Moving from Default Events to Default Losses

3.3.1 Distribution of Default Losses

Given the number of default events, we now consider the distribution of losses in the portfolio. The distribution

of losses differs from the distribution of default events because the amount lost in a given default depends on

the exposure to the individual obligors. Unlike the variation of default probability between obligors, which does

not influence the distribution of the total number of defaults, the variation in exposure magnitude results in a

loss distribution that is not Poisson in general. Moreover, information about the distribution of different

exposures is essential to the overall distribution. However, it is possible to describe the overall distribution of

losses because its probability generating function has a simple closed form amenable to computation.
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In the event of a default of an obligor, a firm generally incurs a loss equal to the amount owed by the obligor

less a recovery amount, which the firm obtains as a result of foreclosure, liquidation or restructuring of the

defaulted obligor. A recovery rate is used to quantify the amount received from this process. Recovery rates

should take account of the seniority of the obligation and any collateral or security held.

In order to reduce the amount of data to be processed, two steps are first followed:

• The exposures are adjusted by anticipated recovery rates in order to calculate the loss in a given default.

• The exposures, net of the above recovery adjustment, are divided into bands of exposure with the level of

exposure in each band being approximated by a common average.

The CREDITRISK+ Model calculates the probability that a loss of a certain multiple of the chosen unit of

exposure will occur. This allows a full loss distribution to be generated, as shown in the figure below.

3.3.2 Impact of Incorporating Default Rate Volatilities

Figure 7 compares the default loss distributions calculated without default rate volatility and with default rate

volatility. The key features and differences are:

• Same expected loss: Both default loss distributions have the same level of expected losses.

• Fatter tail: The key change is the level of losses at the higher percentiles; for example, the 99th percentile

is significantly higher when the impact of the variability of default rates is modelled. There is now

considerably more chance of experiencing extreme losses.

Since the tail of the distribution has become fatter, while the expected loss has remained unchanged, it can be

concluded that the variance of the default loss distribution has increased. This increase in the variance is due

to the pairwise default correlations between obligors. These pairwise default correlations are incorporated

into the CREDITRISK+ Model through the default rate volatilities and sector analysis. It should be noted that

when the default rate volatilities are set to zero, the default events are independent and hence the pairwise

default correlations are also zero.

In Appendix A, we give an explicit formula for the pairwise default correlations implied by the CREDITRISK+

Model when default rate volatilities are incorporated into the model.
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3.4 Concentration Risk and Sector Analysis

The CREDITRISK+ Model measures the benefit of portfolio diversification and the impact of concentrations

through the use of sector analysis.

3.4.1 Concentration Risk

Diversification arises naturally because the number of individual risks in a portfolio of exposures is usually large.

However, even in a portfolio containing a large number of exposures, there may be an opposing effect owing

to concentration risk. Concentration risk results from having in the portfolio a number of obligors whose

fortunes are affected by a common factor. In order to quantify concentration risk, the concepts of systematic

factors and specific factors are necessary.

Systematic factors

Systematic factors are background factors that affect the fortunes of a proportion of the obligors in the

portfolio, for example all those obligors having their domicile in a particular country. The fortunes of any one

obligor can be affected by a number of systematic factors.

Specific factors

In general, the fortunes of an obligor are affected to some extent by specific factors unique to the obligor.

Systematic factors impact the risk of extreme losses from a portfolio of credit exposures, while diversification

largely eliminates the impact of the specific factors.

Concentration risk is dependent on the systematic factors affecting the portfolio. The technique for measuring

concentration risk is sector analysis.

3.4.2 Sector Analysis - Allocating all Obligors to a Single Sector

The most straightforward application of the CREDITRISK+ Model is to allocate all obligors to a single sector. 

This approach assumes that a single systematic factor affects the individual default rate volatility of each

obligor. Furthermore, this use of the model captures all of the concentration risk within the portfolio and

excludes the diversification benefit of the fortunes of individual obligors being subject to a number of

independent systematic factors.

Therefore, the most straightforward application of the CREDITRISK+ Model, in which all obligors are allocated

to a single sector, generates a prudent estimate of extreme losses.

3.4.3 Sector Analysis - Allocating Obligors to one of Several Sectors

In order to recognise some of the diversification benefit of obligors whose fortunes are affected by a number

of independent systematic factors, it can be assumed that each obligor is subject to only one systematic factor,

which is responsible for all of the uncertainty of the obligor’s default rate. For example, obligors could be

allocated to sectors according to their country of domicile. Once allocated to a sector, the obligor’s default rate

and default rate volatility are set individually. In this case, a sector can be thought of as a collection of obligors

having the common property that they are influenced by the same single systematic factor.

3.4.4 Sector Analysis - Apportioning Obligors across Several Sectors

A more generalised approach is to assume that the fortunes of an obligor are affected by a number of

systematic factors. The CREDITRISK+ Model handles this situation by apportioning an obligor across several

sectors rather than allocating an obligor to a single sector.
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So far it has been assumed that all risk in the portfolio is systematic and allocable to one of the systematic

factors. In addition to the effects of systematic factors, it is likely that the fortunes of an obligor are affected

by factors specific to the obligor. Potentially specific risk requires an additional sector to model each obligor,

since the factor driving specific risk for a given obligor affects that obligor only. However, the CREDITRISK+

Model handles specific risk without recourse to a large number of sectors by apportioning all obligors’ specific

risk to a single “Specific Risk Sector”.

3.4.5 The Impact of Sectors on the Loss Distribution

As stated above, the CREDITRISK+ Model allows the portfolio of exposures to be allocated to sectors to reflect

the degree of diversification and concentration present. The most diversified portfolio is obtained when 

each exposure is in its own sector and the most concentrated is obtained when the portfolio consists of a

single sector.

The figure below shows the impact of sectors on the loss distribution. As the number of sectors is increased,

the impact of concentration risk is reduced. The graph illustrates this by plotting the ratio of the 99th percentile

of the credit default loss distribution for a given number of sectors to the 99th percentile of the credit default

loss distribution when the portfolio is considered to be a single sector.

3.5 Multi-Year Losses for a Hold-to-Maturity Time Horizon

As discussed in Section 2.5, the CREDITRISK+ Model allows risk of the portfolio to be viewed on a hold-to-

maturity time horizon in order to capture any default losses that could occur until maturity of the credit

exposure.

Analysing credit exposures on a multi-year basis enables the risk manager to compare exposures of different

size, credit quality, and maturity. The loss distribution produced provides, for any chosen level of confidence, an

indication of the possible cumulative losses that could be suffered until all the exposures have matured. 

The benefits of looking at portfolio credit risk from this viewpoint include the following:

• The full term structure of default probabilities is taken into account.

• The full uncertainty of default losses over the life of the portfolio is also captured.

For example, because the one-year average default rates for investment grade obligors are relatively small but

the corresponding exposures may be large, a one-year time horizon may not be the best measure for active

portfolio management. However, a multi-year view will reflect the fact that defaults follow a decline in credit

quality over many years.
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3.5.1 Using the CREDITRISK+ Model to Calculate Multi-Year Loss Distributions

The CREDITRISK+ Model can be used to calculate multi-year loss distributions by decomposing the exposure

profile over time into separate elements of discrete time, with the present value of the remaining exposure in

each time period being assigned a marginal default probability relevant to the maturity and credit quality. These

decomposed exposure elements can then be used by the CREDITRISK+ Model to generate a loss distribution

on a hold-to-maturity basis.

3.6 Summary of the CREDITRISK+ Model

The key features of the CREDITRISK+ Model are:

• The CREDIT RISK+ Model captures the essential characteristics of credit default events. Credit default

events are rare and occur in a random manner with observed default rates varying significantly from year

to year. The approach adopted reflects these characteristics by making no assumptions about the timing

or causes of default events and by incorporating the default rate volatility. By taking a portfolio approach,

the benefits of diversification that arise from a large number of individual risks are fully captured.

Concentration risk, resulting from groups of obligors that are affected by common factors, is measured

using sector analysis.

• The CREDIT RISK+ Model is scaleable and computationally efficient. The CREDITRISK+ Model is highly

scaleable and hence is capable of handling portfolios containing large numbers of exposures. The low data

requirements and minimum of assumptions make the CREDITRISK+ Model easy to implement for a wide

range of credit risk portfolios, regardless of the specific nature of the obligors. Furthermore, the efficiency

of the model allows comprehensive sensitivity analysis to be performed on a continuing basis, which is a

key requirement for the ability to quantify the effects of parameter uncertainty. 
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4.1 Introduction to Economic Capital

4.1.1 The Role of Economic Capital

The analysis of uncertainty is the essence of risk management. Therefore, measuring the uncertainty or

variability of loss and the related likelihood of the possible levels of unexpected losses in a portfolio of

exposures is fundamental to the effective management of credit risk. Sufficient earnings should be generated

through adequate pricing and provisioning to absorb any expected loss. The expected loss is one of the costs

of transacting business which gives rise to credit risk. However, economic capital is required as a cushion for

a firm’s risk of unexpected credit default losses, because the actual level of credit losses suffered in any one

period could be significantly higher than the expected level.

4.2 Economic Capital for Credit Risk

4.2.1 Credit Default Loss Distribution

Knowledge of the credit default loss distribution arising from a portfolio of exposures provides a firm with

management information on the amount of capital that the firm is putting at risk by holding the credit portfolio.

Given that economic capital is necessary as a cushion for a firm’s risk of unexpected credit default losses, a

percentile level provides a means of determining the level of economic capital for a required level of

confidence. In order to capture a significant proportion of the tail of the credit default loss distribution, the 99th

percentile unexpected loss level over a one-year time horizon is a suitable definition for credit risk economic

capital. This can be seen in the following figure.

Econo
Capita

Economic Capital for Credit Risk 4

Economic Capital

Credit Default
Loss Distribution

Scenario Analysis



4.2.2 Benefits and Features of Economic Capital

Economic capital as a measure of risk being taken by a firm has several features and benefits including the

following:

• It is a more appropriate measure of the economic risk than that specified under the current regulatory regime.

• It measures economic risk on a portfolio basis and hence takes account of the benefits of diversification.

• It is a measure that objectively differentiates between portfolios by taking account of credit quality and size

of exposure.

• It is a dynamic measure, which reflects the changing risk of a portfolio and hence can be used as a tool

for portfolio optimisation.

4.3 Scenario Analysis

4.3.1 The Role of Scenario Analysis

The purpose of scenario analysis is to identify the financial impact of low probability but nevertheless plausible

events that may not be captured by a statistically based model. Therefore, the use of a credit risk model should

be supplemented by a programme of stress testing of the assumptions used.

There are two types of stress tests that should be performed: (i) scenario analysis within the CREDITRISK+

Model, and (ii) scenario analysis outside the CREDITRISK+ Model.

4.3.2 Scenario Analysis within the CREDITRISK+ Model

The inputs into the CREDITRISK+ Model can be stressed individually or in combination. For example, it is

possible to simulate downturns in the economy by increasing default rates and default rate volatilities - sectors

of the portfolio can be stressed to varying degrees reflecting the fact that each sector could be affected to a

different extent. Similarly, the financial impact of rating downgrades can be assessed by increasing the default

rate assigned to an obligor. For a derivatives portfolio, this can be extended to include the effects of movements

in market rates on credit exposures.

Given the efficient manner in which the default loss distribution can be calculated, it is possible to calculate

the impact of changing parameter inputs used by the model across a wide range of values.
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4.3.3 Scenario Analysis outside the CREDITRISK+ Model

Certain stress tests can be difficult to perform within the CREDITRISK+ Model: for example, the impact of

political or financial uncertainty within a country. For these types of scenarios, analysis that is conducted

without reference to the outputs of the CREDITRISK+ Model, such as looking at the exposure at risk for a given

scenario, provides a realistic means of quantifying the financial impact.

A firm should control the risk of catastrophic losses through the use of obligor and concentration limits,

keeping any one of these limits within the loss for the percentile level used to determine the economic capital

given by the CREDITRISK+ Model.

The figure below illustrates the way in which the distribution of losses can be considered to be divided into

three parts. 

It is possible to control the risk of losses that fall within each of the three parts of the loss distribution in the

following ways:

Part of loss distribution Control mechanism

Up to Expected Loss Adequate pricing and provisioning

Expected Loss - 99th Percentile Loss Economic capital and/or provisioning

Greater than 99th Percentile Loss Quantified using scenario analysis and
controlled with concentration limits

Scenario analysis deals with quantifying and controlling the risk of extreme losses. Losses up to a certain

confidence level, such as the 99th percentile level, are controlled by the use of adequate pricing, provisioning

and economic capital. Provisioning for credit risk is discussed in detail in Section 5.2.
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5.1 Introduction

CREDITRISK+ includes several applications of the credit risk modelling technology in the areas of provisioning,

setting risk-based credit limits, and portfolio management.

5.2 Provisioning for Credit Risk

One application of CREDITRISK+ is in defining an appropriate credit risk provisioning methodology that reflects

the credit losses of the portfolio over several years and hence that more accurately presents the true earnings

of the business by matching income with losses.

5.2.1 The Need for Credit Provisions

Generally, current accounting and provisioning policies recognise credit income and credit losses at different

times, even though the two events are related. Usually, credit loss provisions are made only when exposures

have been identified as non-performing. These provisions are often supplemented with other specific and

general credit provisions.

In relation to any portfolio of credit exposures, there is a statistical likelihood that credit default losses will occur,

even though the obligors are currently performing and it is not possible to identify specifically which obligors

will default. The level of expected loss reflects the continuing credit risk associated with the firm’s existing

performing portfolio and is one of the costs of doing credit-related business. This level of expected loss should

be taken account of when executing any business that has a credit risk impact.

When default losses are modelled, it can be observed that the most frequent loss amount will be much lower

than the average, because, occasionally, extremely large losses are suffered, which have the effect of increasing

the average loss. Therefore, a credit provision is required as a means of protecting against distributing excess

profits earned during the below average loss years.
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5Applications
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5.2.2 Annual Credit Provision (ACP)

The starting point for provisioning is to separate the existing portfolio into a non-performing and a performing

portfolio. The non-performing portfolio should be fully provisioned to the expected recovery level available

through foreclosure, administration or liquidation. Once fully provisioned, the non-performing portfolio should

then be separated out and passed to a specialist team for ongoing management.

As for the performing portfolio, since no default has occurred, one needs a forward-looking provisioning

methodology. Under CREDITRISK+, the Annual Credit Provision (“ACP”) represents the future expected credit

loss on the performing portfolio, which is calculated as follows:

ACP = Exposure x Default Rate x (100% - Recover Rate)

The ACP should be calculated frequently in order to reflect the changing credit quality of the portfolio. The ACP

is the first element of the credit provisioning methodology.

5.2.3 Incremental Credit Reserve (ICR)

The ACP represents only the expected or average level of credit losses. As experience shows, actual losses

that occur in any one year may be higher or lower than this amount, depending on the economic environment,

interest rates, etc. In fact, a better way of viewing the annual credit loss of the portfolio is as a distribution of

possible losses (outcomes), whose average equals the ACP but has a small probability of much larger losses.

In order to absorb these variations in credit losses from year to year, a second element of the provisioning

methodology, the Incremental Credit Reserve (“ICR”), can be established.

The CREDITRISK+ Model provides information on the distribution of possible losses in the performing credit

portfolio. The ICR provides protection against unexpected credit losses (i.e. in excess of the ACP) and is

subject to a cap derived from the CREDITRISK+ Model (the “ICR Cap”). The ICR Cap represents an extreme

case of possible credit losses (e.g. the 99th percentile loss level) on the performing portfolio.

ACP=Average level of credit losses
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5.2.4 Provisioning for Different Business Lines

The credit risk provisioning methodology described above relates to credit risk arising from a loans business

where the income is accounted for on an accruals basis rather than by marking-to-market.

A credit risk provision can also be established for other credit business lines, such as traded bond portfolios

and derivatives portfolios. In each case, the CREDITRISK+ Model provides the information required in order to

establish the provision that ensures that the accounting principle of matching income with losses is maintained.

For example, for a portfolio of bonds, part of the expected loss is incorporated within the market price and

hence only the incremental credit reserve is required. This is described in the following table.

Portfolio type Accounting treatment Provision

Loan Accrual • ACP (1 year) charge to P&L each year

(Counterparty risk) (credit neutral) • ICR (1 year)

Derivatives Mark-to-market • ACP (full maturity) held as mark-to-market adjustment

(Counterparty risk) (credit neutral) • ICR (1 year)

Bond Mark-to-market • ICR (1 year) to support business and protect against 

(Issuer risk) (credit inclusive) distribution of profits

5.2.5 Managing the Credit Risk Provision

As credit defaults occur, loans or exposures are moved from the performing to the non-performing portfolio

and hence provisioned to the expected recovery level. This increase in provision is then charged first against

the ACP and then, to the extent necessary, against the ICR. To the extent that actual credit losses are less than

the ACP within any given year, the balance is credited to the ICR up to the ICR Cap, beyond which the balance

is taken into P&L. This ensures that the ICR is replenished during low loss years following a large unexpected

loss, but that the ICR never exceeds the ICR Cap.

A worked example can be seen in the table below:

Year 1 2 3 4 5

Assumptions

Actual loan losses 500 600 300 300 650

ACP 500 525 550 610 625

ICR - Initial level 1,900 - - - -

ICR Cap 2,000 2,100 2,200 2,250 2,300

Income Statement

Operating profit 2,100 2,100 2,205 2,315 2,430

Less: ACP (500) (525) (550) (610) (625)

Add: excess unutilised provision over ICR Cap 0 0 0 135 0

Pre-tax profit 1,600 1,575 1,655 1,840 1,805

ICR (pre cap) 1,900 1,825 2,075 2,385 2,225

ICR Cap (as above) 2,000 2,100 2,200 2,250 2,300

Excess unutilised provision over ICR Cap 0 0 0 135 0

ICR (with cap applied) 1,900 1,825 2,075 2,250 2,225
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5.3 Risk-Based Credit Limits

A system of individual credit limits is a well-established means of managing credit risk. Monitoring exposures

against limits provides a trigger mechanism for identifying potentially unwanted exposures that require active

management.

5.3.1 Standard Credit Limits

The system of credit limits may be viewed from a different perspective, if applying the methodologies described

within this document.

In particular, in order to equalise a firm’s risk appetite between obligors as a means of diversifying its portfolio,

a credit limit system could aim to have a large number of exposures with equal expected losses. The expected

loss for each obligor can be calculated as the default rate multiplied by the exposure amount less the expected

recovery. This means that individual credit limits should be set at levels that are inversely proportional to the

default rate corresponding to the obligor rating.

As might be expected, this methodology gives larger limits for better ratings and shorter maturities, but has the

benefit of allowing a firm to relate the size and tenor of limits for different rating categories to each other.

This approach can be extended to base limits on equalising the portfolio risk contribution for each obligor. 

A discussion on risk contributions and their use in portfolio management is provided later in this section.

5.3.2 Concentration Limits

Any excess country or industry sector concentration can have a negative effect on portfolio diversification and

increase the riskiness of the portfolio. As a result, a comprehensive set of country and industry sector limits is

required to address concentration issues in the portfolio. Concentration limits have the effect of limiting the loss

from identified scenarios and is a powerful technique for managing “tail” risk and controlling catastrophic losses.

5.4 Portfolio Management

The CREDITRISK+ Model makes the process of controlling and managing credit risk more objective by

incorporating into a single measure all of the factors that determine the amount of risk.

5.4.1 Introduction

Currently, the primary technique for controlling credit risk is through the use of limit systems, including:

• Individual obligor limits to control the size of exposure

• Tenor limits to control the maximum maturity of transactions with obligors

• Rating exposure limits to control the amount of exposure to obligors of certain credit ratings and

• Concentration limits to control concentrations within countries and industry sectors.
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5.4.2 Identifying Risky Exposures

The risk of a particular exposure is determined by four factors: (i) the size of exposure, (ii) the maturity of the

exposure, (iii) the probability of default, and (iv) the systematic or concentration risk of the obligor. Credit limits

aim to control risk arising from each of these factors individually. However, for managing risks on a portfolio

basis, with the aim of creating a diversified portfolio, a different measurement, which incorporates size, maturity,

credit quality and systematic risk into a single measure, is required.

5.4.3 Measuring Diversification

The loss distribution and the level of economic capital required to support a portfolio are measures of portfolio

diversification that take account of the size, maturity, credit quality and systematic risk of each exposure.

If the portfolio were less diversified, the spread of the distribution curve would be wider and a higher level of

economic capital would be required. Conversely, if the portfolio were more diversified, a lower level of economic

capital would be required. These measures can be used in managing a portfolio of exposures.

5.4.4 Portfolio Management using Risk Contributions

The risk contribution of an exposure is defined as the incremental effect on a chosen percentile level of the

loss distribution when the exposure is removed from the existing portfolio. If the percentile level chosen is the

same as that used for calculating economic capital, the risk contribution is the incremental effect on the

amount of economic capital required to support the portfolio.

Risk contributions have several features including the following:

• The total of the risk contributions for the individual obligors is approximately equal to the risk of the entire

portfolio.

• Risk contributions allow the effect of a potential change in the portfolio (e.g. the removal of an exposure)

to be measured.

• In general, a portfolio can be effectively managed by focusing on a relatively few obligors that represent a

significant proportion of the risk but constitute a relatively small proportion of the absolute portfolio

exposures.

Therefore, risk contributions can be used in portfolio management. By ranking obligors in decreasing order of

risk contribution, the obligors that require the most economic capital can easily be identified.

This is illustrated in the following example. A portfolio was created from which a small number of exposures

with the highest risk contributions were removed. The effect on the loss distribution and the levels for the

expected loss and the economic capital can be seen in the figure opposite.
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The reduction in the 99th percentile loss level is larger than the reduction in the expected loss level, which

leads to an overall reduction in the economic capital required to support the portfolio.

5.4.5 Techniques for Distributing Credit Risk

Once obligors representing a significant proportion of the risk have been identified, there are several

techniques for distributing credit risk that can be applied. These include the following:

• Collateralisation: In the context of the CREDITRISK+ Model, taking collateral has the effect of reducing the

severity of the loss given that the obligor has defaulted.

• Asset securitisations: Asset securitisations involve the packaging of assets into a bond, which is then sold

to investors.

• Credit derivatives: Credit derivatives are a means of transferring credit risk from one obligor to another,

while allowing client relationships to be maintained.
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A1 Overview of this Appendix

This appendix presents an analytic technique for generating the full distribution of losses from a portfolio of

credit exposures. The technique is valid for any portfolio where the default rate for each obligor is small and

generates both one-year and multi-year loss distributions.

The appendix applies the concepts discussed in Sections 2 and 3 of this document. The key concepts are:

• Default rates are stochastic.

• The level of default rates affects the incidence of default events but there is no causal relationship between

the events.

In order to facilitate the explanation of the CREDITRISK+ Model, we first consider the case in which the mean

default rate for each obligor in the portfolio is fixed. We then generalise the technique to the case in which the

mean default rate is stochastic. The modelling stages of the CREDITRISK+ Model and the relationships between

the different sections of this appendix are shown in the figure opposite.
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A2 Default Events with Fixed Default Rates

In Sections A2 to A5 we develop the theory of the distribution of credit default losses under the assumption

that the default rate is fixed for each obligor. Given this assumption and the fact that there is no causal

relationship between default events, we interpret default events to be independent. In Sections A6 onwards,

the assumption of fixed default rates is relaxed, which introduces dependence between default events. 

In Section A13 this dependence is quantified by calculating the correlation between default events implied by

the CREDITRISK+ Model.
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A2.1 Default Events

Credit defaults occur as a sequence of events in such a way that it is not possible to forecast the exact time

of occurrence of any one default or the exact total number of defaults. In this section we derive the basic

statistical theory of such processes in the context of credit default risk.

Consider a portfolio consisting of N obligors. In line with the above assumptions, it is assumed that each

exposure has a definite known probability of defaulting over a one-year time horizon. Thus

(1)

To analyse the distribution of losses arising from the whole portfolio, we introduce the probability generating

function defined in terms of an auxiliary variable z by

(2)

An individual obligor either defaults or does not default. The probability generating function for a single obligor

is easy to compute explicitly as

(3)

As a consequence of independence between default events, the probability generating function for the whole

portfolio is the product of the individual probability generating functions. Therefore

(4)

It is convenient to write this in the form

(5)

Suppose next that the individual probabilities of default are uniformly small. This is characteristic of portfolios

of credit exposures. Given that the probabilities of default are small, powers of those probabilities can be

ignored. Thus, the logarithms can be replaced using the expression4

(6)

and, in the limit, equation (5) becomes 

(7)

where we write

(8)

for the expected number of default events in one year from the whole portfolio.

To identify the distribution corresponding to this probability generating function, we expand F(z) in its 

Taylor series:

(9)
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Thus if the probabilities of individual default are small, although not necessarily equal, then from equation (9)

we deduce that the probability of realising n default events in the portfolio in one year is given by

(10)

A2.2 Summary

In equation (10) we have obtained the well-known Poisson distribution for the distribution of the number of

defaults under our initial assumptions. The following should be noted:

• The distribution has only one parameter, the expected number of defaults µ. The distribution does not

depend on the number of exposures in the portfolio or the individual probabilities of default provided that

they are uniformly small. 

• There is no necessity for the exposures to have equal probabilities of default; indeed, the probability of

default can be individually specified for each exposure if sufficient information is available.

The Poisson distribution with mean µ can be shown to have standard deviation given by √µ. Historical evidence

of the standard deviation of default event frequencies exists in the form of year-on-year default rate tables.

Such data suggests that the actual standard deviation is invariably much larger than √µ. Thus, our initial

assumption of fixed default rates cannot account for observed data. Before addressing this in Section A6, we

first consider the derivation of the credit loss distribution from the results on default events above, retaining

our initial assumptions for now.

A3 Default Losses with Fixed Default Rates

A3.1 Introduction

Under our initial assumptions, the distribution of numbers of defaults in a portfolio of exposures in one year

has been obtained. However, our main objective is to understand the likelihood of suffering given levels of loss

from the portfolio, rather than given numbers of defaults. The distributions are different because the same level

of default loss could arise equally from a single large default or from a number of smaller defaults in the same

year. Unlike the variation of default probability between exposures, which does not influence the distribution of

the total number of defaults, differing exposure amounts result in a loss distribution that is not Poisson in

general. Moreover, information about the distribution of different exposures is essential to the overall

distribution. However, it is possible to describe the overall distribution because its probability generating

function has a simple closed form amenable to computation.

A3.2 Using Exposure Bands

The first step in obtaining the distribution of losses from the portfolio in an amenable form is to group the

exposures in the portfolio into bands. This has the effect of significantly reducing the amount of data that must

be incorporated into the calculation.

Banding introduces an approximation into the calculation. However, provided the number of exposures is large

and the width of the bands is small compared with the average exposure size characteristic of the portfolio, the

approximation is insignificant. Intuitively, this corresponds to the fact that the precise amounts of exposures in

a portfolio cannot be critical in determining the overall risk.
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Once the appropriate notation has been set up, an estimate of the effect of banding on the mean and standard

deviation of the portfolio is given below.

A3.3 Notation

In this section, the notation used for the exposure banding described above is detailed. 

Reference Symbol

Obligor A

Exposure LA

Probability of default PA

Expected Loss λA

In order to perform the calculations, a unit amount of exposure L, denominated in a base currency, is chosen.

For each obligor A, define numbers εA and νA by writing

and (11)

Thus, νA and εA are the exposure and expected loss, respectively, of the obligor, expressed as multiples of 

the unit. 

The key step is to round each exposure size νA to the nearest whole number. This step replaces each exposure

amount LA by the nearest integer multiple of L. If a suitable size for the unit L is chosen, then, after the rounding

has been performed for a large portfolio, there will be a relatively small number of possible values for νA each

shared by several obligors. 

The portfolio can then be divided into m exposure bands, indexed by j, where 1≤ j≤ m. With respect to the

exposure bands, we make the following definitions

Reference Symbol

Common exposure in Exposure Band j in units of L ν j

Expected loss in Exposure Band j in units of L ε j

Expected number of defaults in Exposure Band j µ j

The following relations hold, expressing the expected loss in terms of the probability of default events

;hence (12)

Note that, because we have rounded the νj to make them whole numbers, the expected loss εA will be affected,

by equation (12) unless a compensating rounding adjustment is made to the expected number of default

events µj. If no adjustment is made, the rounding process will result in a small rounding up of the expected loss.

Under the assumption stated above, that the unit size is small relative to the typical exposure size of the

portfolio, these approaches each have an immaterial effect on the loss distribution. In the rest of this Appendix

it is assumed that an adjustment to the default probabilities to preserve the expected losses is made. Provided

the exposure sizes are rounded up, then, as will be shown in Section A4.2, the rounding leads to a small

overstatement of the standard deviation.
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As in equation (8), let µ stand for the total expected number of default events in the portfolio in one year. Since

µ is the sum of the expected number of default events in each exposure band, we have

(13)

A3.4 The Distribution of Default Losses

We have analysed the distribution of default events under our initial assumptions. We now proceed to derive

the distribution of default losses.

Intuitively, the default loss analysis involves a second element of randomness, because some defaults lead to

larger losses than others through the variation in exposure amounts over the portfolio. As with default events,

the second random effect is best described mathematically through its probability generating function. Thus,

let G(z) be the probability generating function for losses expressed in multiples of the unit L of exposure:

(14)

The exposures in the portfolio are assumed to be independent. Therefore, the exposure bands are independent,

and the probability generating function can be written as a product over the exposure bands

(15)

However, by treating each exposure band as a portfolio and using equation (9), we obtain

(16)

Therefore

(17)

This is the desired formula for the probability generating function for losses from the portfolio as a whole. 

In the next section, we show how to use the probability generating function to derive the actual distribution 

of losses under our initial assumptions.

For later reference, equation (17) can be restated in a slightly different form. First, define a polynomial P(z) 

as follows

(18)

where we have used equations (12) and (13) for the total number µ of defaults in the portfolio. The probability

generating function in equation (17) can now be expressed as

(19)

This functional form for G(z) expresses mathematically the compounding of two sources of uncertainty arising,

respectively, from the Poisson randomness of the incidence of default events and the variability of exposure

amounts within the portfolio.
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Note that G(z) depends only on the data ν and ε. Therefore, to obtain the distribution of losses for a large

portfolio of credit risks, all that is needed is knowledge of the different sizes of exposures ν within the portfolio,

together with the share ε of expected loss arising from each exposure size. This is typically a very small amount

of data, even for a large portfolio.

A4 Loss Distribution with Fixed Default Rates

A4.1 Calculation Procedure

In this section, a computationally efficient means of deriving the actual distribution of credit losses is derived

from the probability generating function given by equation (17). In Section A10, this approach will be

generalised to compute the distribution for the CREDITRISK+ Model.

For n an integer let An be the probability of a loss of nxL, or n units from the portfolio. We wish to compute An

efficiently. Comparing the definition in equation (14) with the Taylor series expansion for G(z), we have

(20)

In our case G(z) is given in closed form by equation (17). Using Leibnitz’s formula we have

(21)

However

(22)

and by definition

(23)

Therefore

(24)

Using the relation εj =  νj x µj from equation (12), the following recurrence relationship is obtained

(25)

This recurrence relationship allows very quick computation of the distribution. In order to commence the

computation, we have the following formula for the first term, which expresses the probability of no loss arising

from the portfolio

(26)
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Again, it is worthwhile to note that the calculation depends only on knowledge of ε and ν. In practice, these

represent a very small amount of data even for a large portfolio consisting of many exposures.

A4.2 Precision Using Exposure Bands

The banding process described in Section A3 introduces a small degree of approximation into the data. In this

section, we show that the approximation error is normally not material by considering the effect on the portfolio

mean and standard deviation.

In terms of the notation above, the total portfolio expected loss ε and total portfolio standard deviation σ are

; (27)

where the expected loss and standard deviation are expressed in the chosen unit L.

In order to represent the banding, suppose that the above are expressions for the “true” mean and standard

deviation, but that now the ν are rounded to integer multiples of the unit as explained above. This process

introduces an error; however, write

where (28)

Each τ j is at most of absolute size one. It is assumed that the exposures are rounded up, so that each τ j

is positive.

The expected loss is unaffected by the method of rounding chosen, because its expression is independent of

the banded exposure amounts. This was noted above.

For the standard deviation, we have

(29)

where ε is the expected loss for the portfolio. Taking square roots and neglecting higher-order terms in the

Taylor series we obtain

(30)

For a real portfolio, the expected loss ε and the quantity 2σ are of the same order. We conclude that:

• The expected loss calculated by the model is unaffected by the banding process.

• The standard deviation is overstated by an amount comparable with the chosen unit size.

A5 Application to Multi-Year Losses

A5.1 Introduction

The recurrence relation above was derived on the basis of a one-year loss distribution. In this section it is

shown how the initial model can be applied over a multi-year time horizon.

As in the discussion over a one-year horizon, consider a portfolio of obligors with small probabilities of default.

For simplicity it is assumed that the future of the portfolio is divided into years. The exposures are permitted to

vary from year to year. In particular, each exposure has an individual maturity corresponding to the normal

maturity of bonds, loans or other instruments.
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A5.2 Term Structure of Default

In order to address a multi-year horizon, marginal rates of default must be specified for each future year for

each obligor in the portfolio. Collectively, such marginal default rates give the term structure of default for 

the portfolio.

A5.3 Notation

Fix the following notation:

Reference Symbol

(t)
Probability of default of exposure j in year t p j

(t)        (t)
Amount of exposure j in year t Lj = Lν j

(t)        (t)
Expected loss in exposure j in year t λ j = Lε j

As for the one-year discussion, L is the unit of exposure and the ν j
(t) are dimensionless whole numbers. Under

the natural assumption that defaults by the same exposure in different years are mutually exclusive, the

probability generating function for multi-year losses from a single exposure is given by

(31)

For the generating function of total losses, we have

(32)

In the limit of small probabilities of default we argue as for equation (6) to obtain

(33)

and we obtain

(34)

and

(35)

The probability generating function for the loss distribution is therefore given by

(36)

This has the same form as the one year probability generating function (17). Therefore, the recurrence relation

given by equation (25) for the distribution of losses over one year is also applicable to the calculation of the

multi-year distribution of losses

(37)
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A6 Default Rate Uncertainty

The previous sections developed the theory of the loss distribution from a portfolio of obligors, each of which

has a fixed probability of default. In the following sections, the CREDITRISK+ Model will be developed from this

theory by incorporating default rate uncertainty and sector analysis. These concepts are introduced in this

section and Section A7 respectively.

Published statistics on the incidence of default events, for example among rated companies in a given country,

show that the number of default events, and therefore the average probability of default for such entities,

exhibits wide variation from year to year5.

Such year-on-year statistics may be thought of as samples from a random variable whose expected value

represents an average rate of default over many years. The appearance of randomness is due to the incidence

of factors, such as the state of the economy, that influence the fortunes of obligors. The standard deviation of

the variable measures our uncertainty as to the actual default rate that will be exhibited over a given year.

Owing to default rate uncertainty, there is a chance that default rates will turn out to be higher over, for example,

the next year than their average over many years suggests. This in turn leads to a higher chance of

experiencing extreme losses.

The situation may be summarised by the following three intuitive facts about default rate uncertainty:

• Observed default probabilities are volatile over time, even for obligors having comparable credit quality.

• The variability of default probabilities can be related to underlying variability in a relatively small number of

background factors, such as the state of the economy, which affect the fortunes of obligors. For example,

a downward trend in the state of the economy may make most obligors in a portfolio more likely to default.

• However, a change in the economy or another factor will not cause obligors to default with certainty.

Whatever the state of the economy, actual defaults should still be relatively rare events. Therefore the

analysis above which considered rare events is relevant in a suitably modified form.

The second point made above is that uncertainty arises from factors that may affect a large number of obligors

in the same way. In order to measure this effect and hence quantify the impact of individual default rate

volatilities at the portfolio level, the concept of sector analysis is necessary. This concept is introduced in the

next section.

A7 Sector Analysis

A7.1 Introduction

It was noted above that the variability of default rates can be related to the influence of a relatively small

number of background factors on the obligors within a portfolio. In order to measure the effect of these factors,

it is necessary to quantify the extent to which each factor has an influence on a given portfolio of obligors. 

A factor such as the economy of a particular country may be considered to have a uniform influence on obligors

whose domicile is within that country, but relatively little influence on other obligors in a multinational portfolio. 

In this section, the measurement of background factors is addressed by dividing the obligors among different

sectors, where each sector is a collection of obligors under the common influence of a major factor affecting

default rates. An initial example might be a division of the portfolio according to the country of domicile of each

obligor. In Section A12, a more general sector analysis, which allows for the fact that, in reality, obligors may

be under the simultaneous influence of a number of major factors, is presented.

AThe CREDITRISK+ Model

5 If the default rates of obligors
were fixed, default events
would still have a non-zero
standard deviation arising
from the randomness of the
default events themselves.
However, as remarked in
Section A2.2, comparison
with historic data shows 
that observed volatility is 
far higher than can be
accounted for in this way.



A7.2 Further Notation

New notation is needed to keep track of the division of the portfolio into sectors and to record the volatility of

the default rate for each sector. Write Sk: 1 ≤ k ≤ n for the sectors, each of which should be thought of for now

as a subset of the collection of obligors.

The CREDITRISK+ Model regards each sector as driven by a single underlying factor, which explains the

variability over time in the average total default rate measured for that sector. The underlying factor influences

the sector through the total expected rate of defaults in the sector, which is then modelled as a random variable

with mean µ
k

and standard deviation σk specified for each sector. The standard deviation will reflect the degree

to which the probabilities of default of the obligors in the portfolio are liable to all be more or less than their

average levels. For example, in a sector consisting of a large number of obligors of low credit quality, the mean

default rate might be 5% per annum and the standard deviation of the actual default rate might be a similar

quantity. Then there will be a substantial chance in any year of the actual average probability of default in the

sector being, say, 10% instead of 5%. In turn it is much more likely that, say, 12% of the obligors will actually

default in that year. Had the standard deviation been zero, reflecting that we were certain about the probability

of each obligor defaulting, then a year in which as many as 12% of the obligors default would have been a

much more remote possibility. 

The table below summarises the new notation to specify the sector decomposition of the portfolio. In particular,

for each sector we introduce a random variable xk representing the average default rate over the sector. 

The mean of xk is µk and the standard deviation is σk.

Sector Sk : 1≤ k ≤ n

Random variable representing the mean number of defaults xk

Long-term annual average number of defaults - mean of xk µk

Standard deviation of xk σk

For each sector, the data requirements are set out below. Our original notation set up in Section A3.3 is also

repeated for comparison

Exposure Data within Sector Previous New
Notation Notation

Base unit of exposure L L

(k)     (k)
Exposure sizes in units L j = Lν j L j  = Lν j

1≤ j ≤ m 1≤ k ≤ n ;1≤ j ≤ m(k)

(k)     (k)
Expected loss in each exposure band in units λ j = Lεj λ j  = Lεj

1≤ j ≤ m 1≤ k ≤ n ;1≤ j ≤ m(k)

The mean µ
k

is related to the expected loss data by the following relation which is the analogue of 

equation (13):

(38)
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A7.3 Estimating the Variability of the Default Rate

For each sector, in addition to the expected total rate of default µ
k

over the sector given by equation (38), 

we must specify a standard deviation σ
k

of the total expected rate of default. We discuss a convenient way 

to estimate the standard deviation by reference to equation (38) for the mean. Although equation (38) 

is expressed in terms of exposure bands, it can equivalently be expanded as a sum over all the obligors in 

the sector

(39)

where the summation extends over all obligors A belonging to sector k, and the relation

(40)

expresses the average probability of default of the obligor over the time period. To obtain an estimate of the

standard deviation of each sector, we assume that, together with a probability of default pA, a standard deviation

σ
A

has been assigned for the default rate for each obligor within the sector. A convenient way to do this is to

assume that the standard deviation depends on the credit quality of the obligor. This pragmatic method

assumes that the credit quality of the obligors within a sector is a more significant influence on the volatility of

the expected default frequency than the nature of the sector. 

We obtain an estimate of σ
k

from the set σ
A

of obligor standard deviations by an averaging process. Recall

that only one random variable, xk is held to account for the uniform variability of each of the probabilities 

of default. That is, the actual default probability for each obligor in the sector will be modelled as a random

variable proportional to xk, whose mean is equal to the specified mean default rate for that obligor. To express

this dependence write xA for the random default probability of the single obligor A. Our assumption can then

be written

(41)

Note that the mean of xA is correctly specified as pA by this equation. Assuming equation (41), in particular,

we have

(42)

where we have used equation (39). The sum runs over all obligors in the sector. We estimate the standard

deviation of this sector so as to ensure that this condition holds. Thus the standard deviation of the mean

default rate for a sector is estimated as the sum of the estimated standard deviations for each obligor in the

sector. An alternative and more intuitive description of the standard deviation σ
k

determined in this way is that

the ratio of σ
k

to the mean µ
k

is an average of the ratio of standard deviation to mean for each obligor,

weighted by their contribution to the default rate. This is easily seen as follows. By equation (42)

(43)
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According to historical experience, the ratio σA/pA is typically of the order of one, so that the standard deviation

of the number of defaults observed year on year among obligors of similar credit quality is typically of the 

same order as the average annual number of defaults. Equation (43) shows that the same is true for 

each sector, as one would expect. In the absence of detailed data, the obligor specific estimates of the ratio

σ
A
/p

A
can be replaced by a single flat ratio. Then, writing ωk for this uniform ratio, equation (43) reduces to

the simple form

(44)

If the nature of the sector made it more appropriate to estimate the standard deviation σk directly, this would

be equivalent to estimating the flat ratio ωk directly. 

A8 Default Events with Variable Default Rates

A8.1 Conditional Default Rate

In this section, the distribution of default events for the CREDITRISK+ Model is obtained. This is achieved by

calculation of the probability generating function. Most of the work has been done already in the calculation of

the probability generating function in equation (7) when the default rate is fixed. As in equation (2), the

probability generating function for default events is written

(45)

Because the sectors are independent, F(z) can be written as a product over the sectors

(46)

We therefore focus on the determination of F(z) for a single sector. In the notation of Section A7, the average

default rate in sector k is a random variable, written xk, with mean µk and standard deviation σk. Conditional 

on the value of xk, we can write down the probability generating function for the distribution of default events

as follows

(47)

where equation (7) has been used. Suppose that xk has probability density function ƒk(x), so that

(48)

Then, the probability generating function for default events in one sector is the average of the conditional

probability generating function given by equation (47) over all possible values of the mean default rate, as the

following computation shows:

(49)

In order to obtain an explicit formula for the probability generating function, an appropriate distribution for Xk

must be chosen. We make the key assumption that xk has the Gamma distribution with mean µk and standard

deviation σk.

The Gamma distribution is chosen as an analytically tractable two-parameter distribution. Before proceeding to

evaluate equation (49) explicitly, the basic properties of the Gamma distribution are stated.
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A8.2 Properties of the Gamma Distribution

The Gamma distribution, written Γ(α , β), is a skew distribution, which approximates to the Normal distribution

when its mean is large. The probability density function for a Γ(α , β) - distributed random variable X is 

given by

(50)

∞
where Γ(α) = ∫ e-x x α -1dx is the Gamma function.

x = 0

The Gamma distribution Γ(α , β) is a two parameter distribution, fully described by its mean and standard

deviation. These are related to the defining parameters as follows

and (51)

Hence, for sector k, the parameters of the related Gamma distribution are given by

and (52)

A8.3 Distribution of Default Events in a Single Sector

With the choice of Gamma distribution for the function ƒ(x), the expression for the probability generating

function

(53)

given by equation (49), can be directly evaluated. By substitution, change of variable and definition of the

Gamma integral

(54)

Upon rearrangement this becomes, for sector k

(55)

This is the probability generating function of the distribution of default events arising from sector k.

It is possible to identify the distribution of default events underlying this probability generating function. 

By expanding Fk(z) in its Taylor series

(56)

the following explicit formula is obtained

(57)

This can be identified as the probability density of the Negative Binomial distribution.
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A8.4 Summary

The portfolio has been divided into n sectors with annual default rates distributed according to

(58)

The probability generating function for default events from the whole portfolio is given by

(59)

where the parameters αk, βk and pk are given by

;                         and                          ; (60)

The default event distribution for each sector is Negative Binomial. The default event distribution for the whole

portfolio is not Negative Binomial in general but is an independent sum of the Negative Binomial sector

distributions. The corresponding product decomposition of the probability generating function is given by

equation (59).

A9 Default Losses with Variable Default Rates

A9.1 Introduction

The probability generating function in equation (59) gives full information about the occurrence of default

events in the portfolio. In order to pass from default events to default losses, this distribution must be

compounded with the information about the distribution of exposures. In Section A3.4, we performed this

process conditional on a fixed mean default rate. We now generalise this process to incorporate the volatility

of default rates.

A9.2 The Distribution of Default Losses

By analogy with equation (14), we introduce a second probability generating function G(z), the probability

generating function for losses from the portfolio. Thus let

(61)

be the probability generating function of the distribution of loss amounts. We seek a closed form expression

for G(z) and a means of efficiently computing G(z).

As for the distribution of default events, sector independence gives a product decomposition of the probability

generating function

(62)

where Gk(z) is the loss probability generating function for sector k, 1≤ k ≤ n.

By analogy with equation (18), we define polynomials Pk(z), 1≤ k ≤ n, by

(63)
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where the expression for µk in equation (38) has been used. The Pk(z) provide the link between default events

and losses, because the following relation holds

(64)

This is directly analogous to the formula G(z)=F(P(z)) obtained in equation (19) for a fixed mean default rate,

except that there is now one such relation for each sector. In order to see that the relation continues to hold

in the present case, we expand equation (63) as a sum over individual obligors belonging to sector k. Thus

(65)

By equation (41) we have

(66)

The left hand side of equation (66) is the probability generating function of the distribution of losses where

each obligor A has default rate xA. This can be seen by comparing equation (17) - the expressions are the

same, except that in equation (17) terms with the same exposure amount have been collected.

Just as in equation (53), which expresses Fk(z) as an integral of the Poisson probability generating function

over the space of possible values of the random variable xk, a conditional probability argument shows that Gk(z)

is the integral of the left hand side of equation (66) over the same space. Thus

(67)

Where the last step follows from equation (66). By substitution into equation (55) and taking the product over

each sector, we obtain

(68)

This is a closed form expression for the probability generating function. In the next section a recurrence relation

for computing the distribution of losses from this expression is derived.

A10 Loss Distribution with Variable Default Rates

In this section, a recurrence relation, suitable for explicitly calculating the distribution of losses from equation

(68), is presented. The relation is a form of the recurrence relation in Section A4, derived for a wider class of

distributions. 
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A10.1 General Recurrence Relation

Suppose, in general, a power series expansion

(69)

defines a function G(z) which satisfies the differential equation

(70)

where A and B are polynomials given respectively by

(71)

In other words, we require that the logarithmic derivative of G(z) be a rational function. Then, the terms

of the power series expansion in equation (69) satisfy the following recurrence relation

(72)

To see this, rearrange the differential equation (70) as follows

(73)

By differentiating G term by term, this leads to

(74)

For n ≥ 0 the terms in zn on the left hand and right hand side respectively are

and (75)

Equating these expressions and rearranging we obtain

(76)

or equivalently

(77)

as required.

A10.2 Application

In equation (68), the probability generating function of losses was derived in the form

(78)
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Taking logarithmic derivatives with respect to z, it follows that

(79)

This expresses G’(z)/G(z) as a rational function. Accordingly, after calculation of polynomials A(z) and B(z) 

such that

(80)

the calculation in Section A10.1 is applicable and leads to a recurrence relation for the loss amount distribution.

Note that the summation described in equation (80) must be performed directly by adding the rational

summands. Provided the unit size is chosen so that the exposures νj and therefore the degrees of numerators

and denominators of the rational summands are not too large, this computation can be performed quickly.

A11 Convergence of Variable Default Rate Case to Fixed Default Rate Case

Although the CREDITRISK+ Model is designed to incorporate the effects of variability in the average rates of

default, there are two circumstances in which the CREDITRISK+ Model behaves as if default rates were fixed.

These are where:

• The standard deviation of the mean default rate for each sector tends to zero.

• The number of sectors tends to infinity.

In particular, the effect of either a large number of sectors or a low standard deviation of default rates on the

portfolio is the same; the behaviour in either case is as if default rates were fixed. In the section on generalised

sector analysis, this fact will be used to facilitate the analysis of specific risk within a portfolio. In this section,

a proof is given of the first convergence fact. The proof of the second convergence fact is similar.

The proof proceeds by showing that the probability generating function for the CREDITRISK+ Model converges

to the form

(81)

which is the probability generating function in equations (17) for losses conditional on a fixed mean default

rate. The CREDITRISK+ Model has the following probability generating function for default losses, given at

equation (68)

(82)

where                      ,                      ,                             and
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We consider the limit where σk tends to zero. Then

βk → 0; pk = βk /(1+βk ) → 0 and αk = µk /βk → µk /pk

Therefore

(83)

In the limit

(84)

On collecting terms in the exponent having common values n across different values of k, the summation over

k is eliminated

(85)

as required.

A12 General Sector Analysis

A12.1 Introduction

In the derivation of the CREDITRISK+ Model probability generating function for the distribution of losses in

Section A9, it was assumed throughout that the portfolio is divided into sectors, each of which is a subset of

the set of obligors. This corresponds to a situation in which obligors fall into classes, each of which is driven

by one factor but all of which are mutually independent.

We now consider a more generalised situation in which, as before, a relatively small number of factors explain

the systematic volatility of default rates in the portfolio, but it is not necessarily the case that the default rate

of an individual obligor depends on only one of the factors. In these more general circumstances, it is not

possible to describe the portfolio with sectors consisting of groupings of the obligors, but the CREDITRISK+

Model incorporates this situation in the same way as before, replacing the concept of a sector with that of 

a systematic factor. 

To understand how to generalise the sector analysis already presented, we re-examine the derivation of the

probability generating function for the CREDITRISK+ Model. In equation (68), the probability generating function

was derived by expressing it as a product over the sectors and then integrating with respect to the distribution

of default rates for each sector:

(86)

However, this expression can also be viewed as a multiple integral

(87)

We regard the integrand as the probability density function of a compound Poisson distribution for any 

given set of values of the means xk, 1≤ k ≤ n. However, we are simultaneously uncertain about all these values.

Therefore, the probability density function is then integrated over the space of all possible states represented

by the values of the xk and weighted by their associated probability density functions.
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Using equation (66), we can examine the exponent in the integrand in its equivalent form

(88)

where we have used the delta notation

(89)

To generalise the concept of a sector in these circumstances, allowing each obligor to be influenced by more

than one factor xk, we replace the delta function with an allocation of the obligors among sectors by choosing,

for each obligor A, numbers

(90)

The allocation θAk represents the extent to which the default probability of obligor A is affected by the factor

underlying sector k. The sector analysis discussed in Section A7 corresponds to the special case

(91)

In the general case the expression in equation (88) is replaced by

(92)

where each obligor contributes a term

where (93)

Equation (65) is replaced by

where (94)

A12.2 Performing the Sector Decomposition 

In this section, we show how to assimilate the data for the CREDITRISK+ Model for generalised sector analysis.

We assume that for each obligor in the portfolio an estimate has been made of the extent to which the volatility

of the obligor’s default rate is explained by the factor k. As explained in Section A12.1, this is expressed by a

choice of number 

(95)

for each sector k and obligor A in the portfolio. The number θAk represents our judgement of the extent to

which the state of sector k influences the fortunes of obligor A.

As in the special case discussed in Section A7, we must also provide estimates of the mean and standard

deviation for each sector. We indicate a method of estimating these parameters, assuming again that estimates

have been obtained of both quantities for each obligor by reference to obligor credit quality. 
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The mean for each sector is the sum of contributions from each obligor, but now weighted by the allocations

θAk. Thus

(96)

Then, by analogy with equation (43), we express the ratio σk/µk as a weighted average of contributions from

each obligor

;hence (97)

This estimates the standard deviation for each factor. The discussion in Section A7 is recaptured when 

θAk = δAk as discussed above. 

A12.3 Incorporating Specific Factors

So far we have assumed all variability in default rates in the portfolio to be systematic. Potentially, we require

an additional sector to model factors specific to each obligor.

However, specific factors can be modelled without recourse to a large number of sectors. It was remarked in

Section A11 that assigning a zero variance to a sector is equivalent to assuming that the sector is itself a

portfolio composed of a large number of sub-sectors. Hence, for a portfolio containing a large number of

obligors, only one sector is necessary in order to incorporate specific factors. Let the specific factor sector be

sector 1. Then, for each obligor A, the proportion of the variance of the expected default frequency for that

obligor that is explained by specific risk is θA1. Sector 1 would be assigned a total standard deviation given by

equation (97). However, for the specific factor sector only, this standard deviation can be set to zero. 

The specific factor sector then behaves as the limit of a large number of sectors, one for each obligor in the

portfolio, with independent variability of their default rate. The lost standard deviation represented by σ1 is a

measure of the benefit of the presence of specific factors in the portfolio.

A13 Risk Contributions and Pairwise Correlation

A13.1 Introduction

In this section, we derive formulae for two useful measures connected with the default loss distribution, as

follows:

• Risk contributions are defined as the contributions made by each obligor to the unexpected loss of the

portfolio, measured either by a chosen percentile level or the standard deviation.

• Pairwise correlations between default events give a measure of the extent to which concentration risk is

present in the portfolio.

A13.2 Risk Contributions

In this section, we derive a formula for the contribution of an individual obligor to the standard deviation of the

loss distribution in the CREDITRISK+ Model. 

For a portfolio of obligors A having exposure EA, the risk contribution for obligor A can be defined as the

marginal effect of the presence of EA on the standard deviation of the distribution of credit losses. Alternatively,

the risk contribution can be defined as the marginal effect of the presence of EA on some other measure of

portfolio aggregate risk, such as a given loss percentile.
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In the first case, an analytic formula for the risk contribution is possible. The risk contribution can be written

, or equivalently (98)

Moreover, for most models including the CREDITRISK+ Model, the risk contributions defined by equation (98)

add up to the standard deviation. This is because of the variance-covariance formula

(99)

where σA and σB are the standard deviations of the default event indicator for each obligor. Provided the model

is such that the correlation coefficients are independent of the exposures, equation (99) expresses the

variance as a homogeneous quadratic polynomial in the exposures. Hence, by a general property of

homogeneous polynomials we have

(100)

If the marginal effect on a given percentile is chosen as the definition of risk contributions, then an analytic

formula will not be possible. Instead, one can use the approximation described next.

Let ε, σ and X be the expected loss, the standard deviation of losses and the loss at a given percentile level

from the distribution. Define the multiplier to the given percentile as ξ where 

(101)

Then, we can define risk contributions to the percentile in terms of the contributions to the standard deviation

by writing

(102)

Then, in view of equations (100) and (101), we have

(103)

In the analysis below, we will concentrate on the determination of the contributions to the standard deviation.

In order to evaluate the right hand side of equation (98), we derive analytic formulae for mean and variance of

the distributions of default events and default losses in the CREDITRISK+ Model. We use the following

definitions, referring to a sector k, which are consistent with the notation used previously. Since the mean and

variance of the distribution of losses in the CREDITRISK+ Model are both additive across sectors, we can work

with one sector for most of the analysis. For ease of notation, we have therefore suppressed the reference to

sector k where it is not necessary.

Reference Symbol Mean Variance

Loss severity polynomial (equation 94) P(z)

2
Default event probability generating function conditional E(z,x) µE σE
on mean x

2
Probability density function for mean x f(x) µf σ f

2
Default event probability generating function F(z) µF  = µk σF

2
CREDITRISK+ Model probability generating function G(z) µG  = εk σG
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Here µk and εk are the mean number of default events in sector k and the expected loss from sector k

respectively. We have

(104)

This is merely a restatement of equation (64). Also, by equation (53)

(105)

For the probability generating functions E, F and G, we have, by general properties of probability generating

functions

,                         and (106)

,                                               and 

(107)

By definition of x, we have

(108)

Because E(z, x) is the probability generating function of a Poisson distribution, we also have

(109)

By equations (105) and (106), bringing the differentiation by the auxiliary variable z under the integration sign,

we obtain

(110)

Similarly, using equations (105) and (107) 

(111)

Hence

(112)

Equations (110) and (112) are the mean and variance of the distribution of default events. To provide the link

to the moments of the loss distribution, we use equation (104), which yields, by the chain rule

; (113)

Hence

(114)
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Successive differentiation of equation (94) yields

;                                                and (115)

On substituting equations (112) and (115) into equation (114), we obtain

(116)

Substituting for εk , we obtain

(117)

Finally, summing over sectors gives the standard deviation of the CREDITRISK+ Model Loss Distribution for the

whole portfolio

(118)

Note that this is the standard deviation of the actual distribution of losses. As in the earlier sections, the 

σk denote the standard deviations of the factors driving the default rates in each sector.

Risk contributions can now be derived directly by differentiating equation (118). Thus, by equation (98) 

(119)

Hence

(120)

where we have interchanged EA and νA for notational convenience. Hence

(121)

This is the required formula for risk contributions to the standard deviation. As remarked above, it can be shown

explicitly that the risk contributions add up to the standard deviation of the portfolio loss distribution. Thus, from

equation (121),

(122)

Hence, using equation (118)

(123)

as required.
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A13.3 Pairwise Correlation

In this section, we derive a formula for the pairwise correlation between default events in the CREDITRISK+ Model.

To define carefully the pairwise correlation over a time period ∆t, we associate to each obligor its indicator

function IA, which is the random variable having the values

(124)

Then, the correlation ρ between default of two obligors A and B in the time period ∆t is defined by

(125)

That is, the statistical correlation between the indicator functions of A and B in the time period. If the expected

values of IA, IB and the product IAB are µA, µB and µAB , respectively, then µA, µB and µAB are, respectively, the

expected number of defaults of A, B and of both obligors in the time period. Then, because the indicator functions

can only take on the values 0 or 1, the standard expression for correlation reduces to the following form:

(126)

We seek an expression for the right hand side of equation (126) in the context of the CREDITRISK+ Model. 

We take two distinct obligors A and B and make the following definitions, where the general sector decomposition

is used with n sectors.

Reference Obligor A Obligor B

Time period ∆ t

Instantaneous default probability PA PB

Expected number of defaults µA = 1- e-pA∆ t ≈ pA∆ t µB = 1- e-pB∆ t ≈ pB∆ t

Sector decomposition θAK ;1≤ k ≤ n θBK ;1≤ k ≤ n

The unknown term in equation (126) is the expected joint default expectation µAB . Since A and B are distinct,

for any realised values of the sector means xk, 1≤ k ≤ n the events of default are independent, we have, writing

xA and xB as in equation (93)

(127)

where, as shown in the table, we have approximated the integrand, ignoring higher powers of the default

expectations and using the following approximation6

(128)

In view of the sector decomposition, we have, by equation (93)

and (129)

For convenience, define coefficients ωkk’ by writing

(130)
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Then

(131)

and we deduce that 

(132)

Hence

(133)

or

(134)

However

(135)

Thus

(136)

Substituting for ωkk , we obtain 

(137)

This simplifies to

(138)

Equation (138) is the formula for default event correlation between distinct obligors A and B in the

CREDITRISK+ Model. Equation (138) is valid wherever the likely probabilities of default over the time period in

question are small, taking into account their standard deviation. It is not universally valid. Note, in particular, that

the value of ρAB given by the formula can be more than one if too large values of the means and standard

deviations are chosen. This corresponds to the approximation used at equation (128) - the left-hand side is

clearly always less than unity while the approximating function is unbounded.

We note two salient features of equation (138):

• If the obligors A and B have no sector in common then the correlation between them will be zero. This is

because no systematic factor affects them both.

• If it is accepted that, as suggested by historical data, the ratios σk/µk are of the order of unity, then

depending on the sector decomposition the correlation has the same order as the term √(µAµB) in the

equation. This is the geometric mean of the two default probabilities. Therefore, in general one would

expect default correlations to typically be of the same order of magnitude as default probabilities

themselves.
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B1 Example Spreadsheet-Based Implementation

The purpose of this appendix is to illustrate the application of the CREDITRISK+ Model to an example portfolio

of exposures with the use of a spreadsheet-based implementation of the model.

The implementation, consisting of a single spreadsheet together with an addin, can be downloaded from the

Internet (http://www.csfb.com) to reproduce the results shown in this appendix. The spreadsheet contains

three examples of the use of the CREDITRISK+ Model. In addition, the spreadsheet can be used on a user-

defined portfolio.

For illustrative purposes, we have limited the example portfolio size to only 25 obligors. However, the

spreadsheet implementation has been designed to allow analysis of portfolios of realistic size. Up to 4,000

individual obligors and up to 8 sectors can be handled by the spreadsheet implementation. However, there is

no limit, in principle, to the number of obligors that can be handled by the CREDITRISK+ Model. Increasing the

number of obligors has only a limited impact on the processing time.

B2 Example Portfolio and Static Data

The three examples are based on a portfolio consisting of 25 obligors of varying credit quality and size of

exposure. The exposure amounts are net of recovery. Details of this portfolio are given in Table 8 opposite.
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BIllustrative Examplea
p

Table 8:

Example portfolio

Table 9:

Example mapping table of

default rate information

Credit
Name Exposure Rating

1 358,475 H

2 1,089,819 H

3 1,799,710 F

4 1,933,116 G

5 2,317,327 G

6 2,410,929 G

7 2,652,184 H

8 2,957,685 G

9 3,137,989 D

10 3,204,044 D

11 4,727,724 A

12 4,830,517 D

13 4,912,097 D

14 4,928,989 H

15 5,042,312 F

16 5,320,364 E

17 5,435,457 D

18 5,517,586 C

19 5,764,596 E

20 5,847,845 C

21 6,466,533 H

22 6,480,322 H

23 7,727,651 B

24 15,410,906 F

25 20,238,895 E

The example uses a credit rating scale to assign default rates and default rate volatilities to each obligor. 

A table giving an example mapping from credit ratings to a set of default rates and default rate volatilities is

given. The table is shown as Table 9 below. The credit rating scale and other data in the table are designed for

the purposes of the example only.

Credit Mean Standard
Rating Default rate Deviation

A 1.50% 0.75%

B 1.60% 0.80%

C 3.00% 1.50%

D 5.00% 2.50%

E 7.50% 3.75%

F 10.00% 5.00%

G 15.00% 7.50%

H 30.00% 15.00%



B3 Example use of the Spreadsheet Implementation

Three examples are given, each based on the same portfolio, as follows:

• All obligors are allocated to a single sector.

• Each obligor is allocated to only one sector. In this example, countries are the sectors. This assumes that

each obligor is subject to only one systematic factor, which is responsible for all of the uncertainty of the

obligor’s default rate.

• Each obligor is apportioned to a number of sectors. Again, countries are the sectors. This reflects the

situation in which the fortunes of an obligor are affected by a number of systematic factors.

The examples are installed on the spreadsheet implementation, together with the results generated by the

model. For each example, the inputs to the model have been set to generate the following:

• Percentiles of loss.

• Full loss distribution.

• Credit risk provision.

• Risk contributions.

In this section, the steps to reproducing these results using the model implementation are described. 

B3.1 Activating the CREDITRISK+ Model

Choose one of the three example worksheets to reproduce the results. Each worksheet is equipped with 

a macro button. Press the button to activate the model implementation.

B3.2 Data Input Screen

On activation, the model will show the Data Input Screen. This screen is used to set the worksheet ranges of

data to be read in to the model and to specify the form of output data required. The Data Input Screen has

been preset to the correct ranges corresponding to the layout of each example worksheet.
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Press the Proceed button on the Data Entry Screen to proceed to the next step. 

B3.3 Input Data Check

The model implementation has been preset to identify errors in the data read in before the calculation

commences. The user is given the option of switching off this facility via the Data Input Screen. The model

implementation ensures that the data satisfies the following three criteria:

• The sector allocation table contains only numeric data.

• The decomposition of each obligor to the various sectors adds up to 100%.

• A sector must contain at least one allocation entry.

The Input Data Check screen indicates the location of an error in the sector allocation table.

BIllustrative Example

Data Entry Screen

Press the Proceed button

on the Data Entry Screen 

to proceed to the next step. 

Credit Suisse First Boston

Example 1A
Data Input Ranges

Obligor Name $B$11:$B$35

Exposure $C$11:$C$35

Mean Default Rate $E$11:$E$35

Standard Deviation $F$11:$F$35

Range of Sectors $G$11:$G$35

Confirm Number of Sectors 1

Optional Settings

Use Sector 1 for Specific Risk

X Check Input Data

Display Options

X Preliminary Statistical Data

X Percentile Losses

Data Output Ranges

Percentiles Output Range $M$11:$N$11

Distribution Output Range $P$11:$Q$11

Risk Contributions Output Range $I$11:$K$11

Percentile for Risk Contributions 99

X Print Percentiles to Worksheet

X Print Distribution to Worksheet

X Print Risk Contributions to Worksheet

Proceed Alter Percentiles

Cancel



Press the Proceed button on the Input Data Check Screen to proceed with the calculation.

B3.4 Portfolio Loss Distribution Summary Statistics

The model implementation has been preset to display summary statistics of the portfolio loss distribution. 

The user is given the option to switch off this facility via the Data Input Screen.

Press the Proceed button to proceed to the next step. The model implementation now calculates the full

distribution of losses.

B3.5 Percentile Losses, Loss Distribution and Credit Risk Provision

The model implementation has been preset to display summary statistics of the portfolio loss distribution. 

The user can switch off this facility via the Data Input Screen.
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Input Data Check Screen

Press the Proceed button 

on the Input Data Check

Screen to proceed with 

the calculation.

Input Data Check Screen

Press the Proceed button 

to proceed to the next step.

The model implementation

now calculates the full

distribution of losses.

Credit Suisse First Boston

No Errors Were Detected In The Input Data

Data Input Error Trapping

Error Type

Sector allocation cells with non-numeric entries

None

Obligors whose sector decomposition does not sum to 100%

None

Sectors having zero expected loss

None

Proceed

Return to Input Screen

Credit Suisse First Boston

Portfolio Loss Distribution Summary Statistics

Portfolio Aggregate Exposure 130,513,072

Portfolio Expected Loss 14,221,863

Portfolio Standard Deviation 12,668,742

Amounts are stated in the input units of currency

Proceed

Return to Input Screen
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Press the Proceed button to output the loss percentiles, the loss distribution, and the risk contributions to 

the worksheet.

Loss Distribution

A graph of the loss distribution has been set up on each worksheet using the results generated from the 

step above.

Credit Risk Provision

From the summary statistic data above, the Annual Credit Provision (ACP) is given by the Expected Loss, i.e.

14,221,863. If the 99th percentile level is chosen as the determining level for the Incremental Credit Reserve

Cap (ICR Cap), then the ICR Cap is 55,311,503.

B3.6 Risk Contributions

In each example, the model implementation has been preset to output risk contributions for each obligor in the

example portfolio. The risk contribution calculated by the model is defined as the marginal impact of the obligor

on a chosen percentile of the loss distribution. The model implementation has been preset to calculate risk

contributions by reference to the 99th percentile loss. This setting can be altered to a different percentile via

the Data Entry Screen.

BIllustrative Example

Input Data Check Screen

Press the Proceed button 

to output the loss percentiles,

the loss distribution, and 

the risk contributions to the

worksheet.

Credit Loss Distribution

0.00%

0.50%

1.00%
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Credit Suisse First Boston

Summary Statistical Data

Aggregate Exposure 130,513,072

Expected Loss 14,221,863

Standard Deviation 12,668,742

Loss Percentiles

50.00 11,089,455

75.00 20,498,062

95.00 38,908,486

97.50 46,152,128

99.00 55,311,503

99.50 62,033,181

99.75 68,612,540

99.90 77,133,478

Proceed

Return to Input Screen



B3.7 Using Risk Contributions For Portfolio Management

Example 1 has been split into two examples, 1A and 1B, to illustrate the use of risk contributions in portfolio

management as follows:

• In example 1A, all 25 obligors are included in the portfolio. Table 10 shows that obligors 24 and 25 have

the largest risk contributions.

• In example 1B, obligors 24 and 25 have been removed from the portfolio. The other portfolio data is

unchanged. 

The risk contribution output from example 1A is repeated in the table below.

Expected Risk
Name Loss Contribution

1 107,543 228,711

2 326,946 764,758

3 179,971 426,743

4 289,967 716,735

5 347,599 896,874

6 361,639 910,914

7 795,655 2,163,988

8 443,653 1,199,910

9 156,899 434,047

10 160,202 437,350

11 70,916 225,356

12 241,526 756,325

13 245,605 794,754

14 1,478,697 4,773,594

15 504,231 1,602,530

16 399,027 1,330,448

17 271,773 892,720

18 165,528 560,564

19 432,345 1,477,654

20 175,435 593,559

21 1,939,960 6,850,969

22 1,944,097 7,110,748

23 123,642 487,938

24 1,541,091 9,056,197

25 1,517,917 10,618,120

The effect on the test portfolio of removing obligors 24 and 25 is shown in table 12 below. Removing these
obligors in example 1B has two effects on the portfolio:

• The expected loss of the portfolio has been reduced by 3,059,008 from 14,221,863 to 11,162,856. The

amount of expected loss removed is exactly equal to the expected losses from the two removed obligors

because expected loss is additive across the portfolio. Thus the ACP provision in respect of the portfolio

can be reduced by 3,059,008.

• The 99th percentile loss from the portfolio has declined by 15,364,646 from 55,311,503 to 39,946,857.

This is approximately predicted by the total risk contributions of 19,674,317 from the two obligors removed.

The risk contributions give an estimate of the effect of removing the obligors. Thus, if the 99th percentile

loss is used as the ICR Cap for the portfolio, then the ICR Cap can be reduced by 15,364,646. Furthermore,

if the same percentile is used as the benchmark confidence level for determining economic capital, then the

amount of economic capital required to support the portfolio is reduced by the same amount.
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The tables below summarise the portfolio movement and the risk details of the removed obligors. 

Expected Risk
Name Exposure Loss Contribution

24 15,410,906 1,541,091 9,056,197

25 20,238,895 1,517,917 10,618,120

Total 35,649,801 3,059,008 19,674,317

Absolute %
Example 1A Example 1B Movement Movement

Exposure 130,513,072 94,863,271 (35,649,801) 27.3%

Mean 14,221,863 11,162,856 (3,059,007) 21.5%

99th Percentile 55,311,503 39,946,857 (15,364,646) 27.8%

Although the example incorporates unrealistic levels of default rates, the percentage movements in Table 12

illustrate a general feature of portfolio risk management. The removal of the obligors with the largest risk

contributions from a portfolio has a greater impact on the portfolio risk, as measured by the 99th or percentile

loss, than on the expected loss of the portfolio. Therefore, a significant reduction in the economic capital

required to support a portfolio of credit exposures can be achieved by focusing on the management of a small

number of obligors with large risk contributions.

Thus in this case, removal of two obligors, representing 21.5% of the expected loss of the portfolio, has

eliminated 27.8% of the total risk as measured by the 99th percentile loss.

B3.8 Setting the Percentile Levels

The model implementation provides a facility to change the percentile loss levels calculated and output by the

model. This facility is accessed from the Data Entry Screen.

BIllustrative Example

Table 11:

Example 1B - Risk

analysis of removed

obligors

Table 12:

Example 1B - Portfolio

movement analysis

Data Entry Screen
Credit Suisse First Boston

Percentiles must be
chosen as numbers
between 0 and 99.9

OK

Cancel

➡

Percentile Levels Setting

50.0

75.0

95.0

97.5

99.0

99.5

99.75

99.9

Number of points required 8



For more information about CREDITRISK+, please contact any of the following:

Portfolio Management and Credit Derivatives

London John Chrystal 44-171-888-3235
john.crystal@csfb.com

Mark Venn 44-171-888-4279
mark.venn@csfb.com

New York Jean-Francois Dreyfus 1-212-325-5919
jean-francois.dreyfus@csfb.com

Stephen Lazarus 1-212-325-5911
stephen.lazarus@csfb.com
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Risk Management

London Mark Holmes 44-171-888-2426
mark.holmes@csfb.com

Andrew Cross 44-171-888-3839
andrew.cross@csfb.com

Tom Wilde 44-171-888-2235
tom.wilde@csfb.com
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