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1 Introduction

This document will attempt to describe how simple credit derivatives can be
formally represented, shown to be replicable and ultimately priced, using rea-
sonable assumptions. It is a beginner’s guide on more than one count: its subject
matter is limited to the most simple types of claims (those involved in credit
default swaps, plus a few more) and its treatment so detailed that most begin-
ners should be able to follow it. Basic definitions of general option pricing are
also included to establish a common and consistent terminology, and to avoid
any possible misunderstanding. It is also a beginner’s guide in the sense that
I am myself a complete beginner on the subject of credit. I have no trading
experience of credit default swaps, and my modeling background is limited to
that of the default-free world.

When I became acquainted with the concept of credit default swap (CDS’s),
and was told about their rising importance and liquidity, I was struck by the
obvious parallel that could be drawn between interest rate swaps (IRS’s) with
their building blocks (the default-free zeros), and CDS’s with their own fun-
damental components (the risky zeros). In the early 1980’s, the emergence of
IRS’s and the realization that these could be replicated with almost static!
trading strategies in terms of default-free zeros, rendered the whole exercise
of bootstrapping meaningful. The ultimate simplicity of default-free zeros,
added to the fact that their prices could now be inferred from the market place,
made them the obvious choice as basic tradable instruments in the model-
ing of many interest rate derivatives. Having assumed default-free zeros to be
tradable, the whole question of contingent claim pricing was reduced to the
mathematical problem of establishing the existence of a replicating strategy:
a dynamic trading strategy involving those default-free zeros with an associated
wealth process having a terminal value at maturity, matching the payoff
of the given claim.

In a similar manner, the emergence of CDS’s offers the very promising
prospect of promoting risky zeros to the high status enjoyed by their coun-
terparts, the default-free zeros. Although the relationship between CDS’s and
risky zeros will be shown to be far more complex than generally assumed?, by
ignoring the risk on the recovery rate and discretising the default leg into a
finite set of possible payment dates, it is possible to show that a CDS can indeed
be replicated in terms of risky zeros®. This makes the whole process of boot-
strapping the default swap curve a legitimate one, which appears to be taken for
granted by most practitioners. My assertion that this process is non-trivial and
requires rigor may seem surprising, but in fact the process can only be made
trivial by assuming no correlation between survival probabilities and interest
rates, or indulging in the sort of naive pricing which ignores convexity adjust-
ments similar to those encountered in the pricing of Libor-in-Arrears swaps.

IThe replication of a standard Libor payment involves a borrowing/deposit trade at some
time in the future, and is arguably non-static.

2The default leg paying (1 — R) at time of default does not seem to be replicable.

3Provided survival probabilities have deterministic volatility and correlation with rates.



Although the assumption of zero correlation between survival probabilities and
interest rates may have little practical significance, I would personally prefer to
avoid such assumption, as the added generality incurs very little cost in terms
of tractability, and the ability to measure exposures to correlation inputs is a
valuable benefit. As for convexity adjustments, it is well-known that forward
default-free zeros, forward Libor rates or forward swap rates should
have no drift under the measure associated with their natural numeraire.
When considered under a different measure, everyone expects these quantities
to have drifts, and it should therefore not be a surprise to find similar drifts when
dealing with the highly unusual numeraire of a risky zero. In some cases, this
can be expressed as the following idea: a survival probability with maturity 7" is
a probability for a fixed payment occurring at time 7', and should the payment
be delayed or the amount being paid be random, the survival probability needs
to be convexity adjusted.

Assuming risky zeros to be tradable can always be viewed as a legitimate
assumption. However, such assumption is rarely fruitful, unless one has the
ability to infer the prices of these tradable instruments from the market. The
fact that CDS’s can be linked to risky zeros is therefore very significant, and
reveals similar opportunities to those encountered in the default-free world.
Several credit contingent claim can now be assessed from the point of view
of non-arbitrage pricing and replication. The question of pricing these credit
contingent claims is now reduced to that of the existence of replicating trading
strategies in terms of risky and default-free zeros.

Although most of the techniques used in a default-free environment can be
applied in the context of credit, some new difficulties do appear. The existence of
replicating trading strategies fundamentally relies on the so-called martingale
representation theorem? in the context of brownian motions. As soon as
new factors of risk which are not explicable in terms of brownian motions (like
a random time of default), are introduced into one’s model, the question of
replication may no longer be solved®. One way round the problem is to use risky
zeros solely as numeraire. However, this raises a new difficulty. A risky zero is
a collapsing numeraire, in the sense that its price can suddenly collapse to
zero, at the random time of default. This document will show how to deal with
such difficulties.

4See [1], Theorem 4.15 page 182.

5 Assuming your time of default to be a stopping w.r. to a brownian filtration does not seem
to help: there is no measure under which a non-continuous process will ever be a martingale,
w.r. to a brownian filtration.



2 Trading Strategies and Replication

2.1 Contingent Claims

A single claim or single contingent claim is defined as a single arbitrary
payment occurring at some date in the future. The date of such payment is
called the maturity of the single claim, whereas the payment itself is called the
payoff. By extension, a set of several random payments occurring at several
dates in the future , is called a claim or contingent claim. A contingent claim
can therefore be viewed as a portfolio of single contingent claims. The maturity
of such claim is sometimes defined as the longest maturity among those of the
underlying single claims. In some cases, the payoff of a single claim may depend
upon whether a certain reference entity has defaulted prior to the maturity of
the single claim. The time when such entity defaults is called the time of
default. A single credit contingent claim is defined as a single claim whose
payoff is linked to the time of default. A credit contingent claim is nothing
but a portfolio of single credit contingent claims. As very often a claim under
investigation is in fact a single claim, and/or clearly a credit claim, it is not
unusual to drop the words single and/or credit and refer to it simply as the
claim.

Examples of claims are numerous. The default-free zero with maturity 7'
is defined as the single claim paying one unit of currency at time 7. Its payoff
is 1, and maturity 7. The risky zero with maturity 7T is defined as the single
credit claim paying one unit of currency at time 7', provided the time of default
is greater than 7%, and zero otherwise. Its payoff is 1{p>7y and maturity 7T’
where D is the time of default.

Two contingent claims are said to be equivalent, if one can be replicated
from the other, at no cost. This notion cannot be made precise at this stage, but
a few examples will suffice to illustrate the idea. If T < T” are two dates in the
future, and V; denotes the price at time ¢ of the default-free zero with maturity
T', then this default-free zero is in fact equivalent to the single claim with
maturity 7" and payoff V. This is because receiving Vp at time T allows you to
buy the default-free zero with maturity 7", and therefore replicate such default-
free zero at no cost. More generally, a contingent claim is always equivalent
to the single claim with maturity 7" and payoff equal to the price at time T of
this claim, provided this claim is replicable (i.e. it is meaningful to speak of
its price) and no payment has occurred prior to time T'. A well-known but less
trivial example is that of a standard (default-free) Libor payment between T
and 7'7. This payment is equivalent to a claim, consisting of a long position of
the default-free zero with maturity 7', and a short position in the default-free
zero with maturity 7"8.

6Saying that the time of default is greater than T is equivalent to saying that default still
hasn’t occurred by time T'.

"Fixing at T and payment at T’ of the Libor rate between T and T”.

8This is assuming a zero spread between Libor fixings and cash. Relaxing this assumption
offers a consistent and elegant way of pricing cross-currency basis swaps.



2.2 Stochastic Processes

A stochastic process is defined as a quantity moving with time, in a potentially
random way. If X is a stochastic process, and w is a particular history of the
world, the realization of X in w at time ¢ is denoted X¢(w). It is very common
to omit the ’w’ and refer to such realization simply as X;. A stochastic process
X is very often denoted (X;) or X;.

When a stochastic process is non-random, i.e. its realizations are the same in
all histories of the world, it is said to be deterministic. A deterministic process
is only a function of time, there is no surprise about it. When a deterministic
process has the same realization at all times, it is called a constant. A constant
is the simplest case of stochastic process.

When a stochastic process is not a function of time, i.e. its realizations are
constant with time in all histories of the world, it is called a random variable
(rather than a process). A random variable is only a function of the history
of the world, and doesn’t change with time. The payoff of a single claim is
a good example of a random variable. If X is a stochastic process, and t a
particular point in time, the various realizations that X can have at time t is
also a random variable, denoted X;. Needless to say that the notation X; can
be very confusing, as it potentially refers to three different things: the random
variable X, the process X itself and the realization X;(w) of X at time ¢, in a
particular history of the world w.

A stochastic process is said to be continuous, when its trajectories or
paths in all histories of the world are continuous functions of time. A continuous
stochastic process has no jump.

Among stochastic processes, some play a very important role in financial
modeling. These are called semi-martingales. The general definition of a
semi-martingale is unimportant to us. In practice, most semi-martingales can
be expressed like this:

dXt = Mtdt + Utth (1)

where W is a Brownian motion. The stochastic process p is called the ab-
solute drift of the semi-martingale X. The stochastic process o is called the
absolute volatility (or normal volatility) of the semi-martingale X. Note
that p and o need not be deterministic processes. A semi-martingale of type (1)
is a continuous semi-martingale. This is the most common case, the only excep-
tion being the price process of a risky zero, and the wealth process associated
with a trading strategy involving risky zeros.

When X is a continuous semi-martingale, and @ is an arbitrary process®,
the stochastic integral of 6 with respect to X is also a continuous semi-
martingales, and is denoted f(f 0sdXs. The stochastic integral is a very impor-
tant concept. It allows us to construct a lot of new semi-martingales, from a
simpler semi-martingale X, and arbitrary processes 6. In fact, the proper way

9There are normally restrictions on 6 which are ignored here.



to write equation (1) should be:

t t
X =Xp —|—/ usds—i—/ osdWy (2)
0 0

and X is therefore constructed as the sum of its initial value Xy with two other
semi-martingales, themselves constructed as stochastic integrals.

To obtain an intuitive understanding of the stochastic integral fot 0sdXs,
one may think of the following: suppose X represents the price process of some
tradable asset, and 6, represents some quantity of tradable asset held at time s'°.
Each 05dX; can be viewed as the P/L arising from the change in price dX, of
the tradable asset over a small period of time. It is helpful to think of the
stochastic integral fot 0sdX as the sum of all these P/L contributions, between
0 and time ¢. Of course, the reality is such that various cashflows incurred at
various point in time, are normally re-invested as they come along, possibly in
other tradable assets. The total P/L arising from trading X between 0 and ¢
may therefore be more complicated than a simple stochastic integral fot 0sdXs.

A semi-martingale of type (1) is called a martingale if it has no drift!!,
ie. p=0. A well-known example of martingale is that of a brownian motion.
Martingales are important for two specific reasons. If X is a martingale, then
for all future time t, the expectation of the random variable X; is nothing but
the current value Xg of X, i.e.

E[X,] = X, (3)

Another reason for the importance of martingales, is that the stochastic integral
fg 0sdXs is also a continuous martingale, whenever X is a continuous martin-
gale'?. The stochastic integral is therefore a very good way to construct new
continuous martingales, from a simpler martingale X, and arbitrary processes 6.
Furthermore, applying equation (3) to the stochastic integral fot 0sd X (which
is a martingale since X is a martingale), we obtain immediately:

E Uot QSdXS} =0 (4)

Equations (3) and (4) are pretty much all we need to know about martingales.
These equations are very powerful: expectations and/or stochastic integrals can
be very tedious to compute. Knowing that a process X is a martingale can
make your life a whole lot easier.

10A short position at time s corresponds to 65 < 0.
HNot quite true. It may be a local-martingale. The distinction is ignored here.
12True if we ignore the distinction between local-martingales and martingales.



2.3 Tradable Instruments and Trading Strategies

A tradable instrument is defined as something you can buy or sell. The price
process of a tradable instrument is normally represented by a positive continuous
semi-martingale. When X is such semi-martingale, it is customary to say that
X is a tradable process. A tradable process is not tradable by virtue of some
mathematical property: it is postulated as so, within the context of a financial
model. If X is a tradable process, it is understood that over a small period
of time, an investor holding an amount 6; of X at time ¢, will incur a P/L
contribution of #;dX; over that period. It is also understood that an amount
of cash equal to 0; X; was necessary for the purchase of the amount 6; of X at
time ¢'3. When no cash is required for the purchase of X, we say that X is a
futures-tradable process. The phrase cash-tradable process may be used
to emphasize the distinction from futures-tradable process. A futures-tradable
process normally represents the price process of a futures contract. In some
cases, the purchase of X provides the investor with some dividend yield, or other
re-investment benefit. When that happens, the P/L incurred by the investor
over a small period of time needs to be adjusted by an additional term, reflecting
this benefit. This is the case when X is the price process of a dividend-paying
stock, or that of a spot-FX rate. The phrase dividend-tradable process may
be used to emphasize the distinction from a mere cash-tradable process.

If X is a tradable process, we define a trading strategy in X, as any
stochastic process 6. In essence, a trading strategy is just a stochastic process
with a specific meaning attached to it. When 6 is said to be a trading strategy
in X, it is understood that 6; represents an amount of X held at time ¢'*. In
general, an investor will want to use available market information (like the price
X, of X at time t), before deciding which quantity 8, of X to buy. The strategy
0 is therefore rarely deterministic, as it is randomly influenced by the random
moves of the tradable process X. If a trading strategy 6 is constant, it is said
to be static. Otherwise, it is said to be dynamic. When several tradable
processes X, Y and Z are involved, the term trading strategy normally refers
to the full collection of individual trading strategies 8, ¥ and ¢ in X, Y and Z
respectively.

A numeraire is just another term for tradable instrument. If X and B are
two tradable processes, both are equally numeraires. A numeraire is a tradable
asset used by an investor to meet his funding requirement: if an investor engages
in a trading strategy 6 with respect to X, his cash requirement at time ¢ is 6; X;.
If 0, is positive, the investor needs to borrow some cash, which cannot be done
for free. One way for the investor to meet his funding requirement is to
contract a short position in another tradable asset B. Such tradable asset is
then called a numeraire. If 6, is negative, the investor has a short position in
X, and does not need to borrow any cash. He can use his numeraire to re-invest
the proceeds of the short-sale of X.

If r is a stochastic process representing the overnight money-market rate,

I31f 9; < 0, this indicates a positive cashflow to the investor of —6;X; at time ¢.
149, > 0is a long position. ¢ < 0 is a short position.



the numeraire defined by:

By = exp < /O t rSds) (5)

is called the money-market numeraire. Because dB; = r;Bdt and ry, B
are known at time ¢, the changes in the money-market numeraire over a small
period of time, are known. Hence, the money-market numeraire is said to be
risk-free. It is not a very useful numeraire, when an investor wishes to protect
himself against future re-investment risks, as the overnight rate r; is generally
not deterministic. From that point of view, the money-market numeraire is far
from being risk-free.

If F is a stochastic process representing a forward rate (or forward price),
there normally exists a numeraire B, for which BF is a tradable process. Such
numeraire B is called the natural numeraire of the forward rate F. For
example, the natural numeraire of a forward Libor rate is the default-free zero
with maturity equal to the end date of the forward Libor rate. It is indeed a
tradable process for which BF is itself tradable!®.

2.4 The Wealth Process

In the previous section, we saw that an investor engaging in a trading strategy
0 relative to a tradable process X, had a funding requirement of 6; X; at time ¢.
This is not quite true. In fact, at any point in time, the true funding requirement
needs to account for the total wealth 7, an investor may have. Such total
wealth is defined as the total amount of cash (possibly negative) an investor
would own, after liquidating all his positions in tradable instruments. A total
wealth 7; at time ¢, is to a large extent dependent upon the initial wealth
7o (possibly negative) the investor has, prior to trading. Each 7, is also the
product of the trading performance up to time ¢. The evolution of m; with time,
is therefore a stochastic process denoted 7. It is called the wealth process of
the investor. Assuming X is the only tradable instrument used by the investor
(excluding some numeraire), his total cash position after the purchase of 6; of X
at time ¢, is m; — 0; X;. If this is negative, the investor will need to take a short
position in some numeraire B, to meet his funding requirement. The price of
one unit of numeraire at time ¢ being By, the total amount of numeraire which
needs to be shorted is —(m; — 6;X:)/B;. If the cash position of the investor is
positive, the investor is not obligated to invest in the numeraire B. However,
it is generally agreed that it is highly sub-optimal not to invest a positive cash
position. An investor may not like the risk profile of a given numeraire. He
may choose another numeraire, but will not choose not to invest at all. Hence,
whatever the sign of the cash position m; — 6, X;, the investor will enter into a
position ¢, = (7 — 6;X¢)/B; of numeraire B at time ¢.

BBF = (V — B)/a, where V is the default-free zero with maturity equal to the start date
of the forward Libor rate, and « the money-market day count fraction. As a portfolio of two
tradable assets, BF' is tradable.



In this example, the investor having engaged in a strategy 6 relative to X
and v relative to B, will experience a change in wealth dm; over a small period
of time, equal to dmy = 0:dX; + :dB¢, or more specifically:

1
dﬂ't = gtht + E(ﬂ't - tht)dBt (6)
t

An equation such as (6) is called a stochastic differential equation. It is
the stochastic differential equation (SDE) governing the wealth process of an
investor, following a strategy 6 in a cash-tradable process X, having chosen a
cash-tradable process B as numeraire. More generally, an SDE is an equation
linking small changes in a stochastic process, for example 'd7;’ on the left-hand
side of (6), to the process itself, for example 'm;’ on the right-hand side of (6)*°.
The unknown to the SDE (6) is the wealth process m, which is only de-
termined implicitly, through the relationship between dm; and 7. The inputs
to the SDE (6) are the two tradable processes X and B, the strategy 6 and
initial wealth mp. A solution to the SDE (6) is an expression linking the wealth
process m explicitly in terms of the inputs X, B, 6 and my. In fact, using Ito’s
lemma as shown in appendix A.1, the solution to the SDE (6) is given by:

0 ¢ ~
— (B_O +/O astS> (7)

where the semi-martingale X is the discounted tradable process X=X /B,
i.e. the tradable process X divided by the price process of the numeraire B'7.
In equation (7), By is the initial value of the numeraire B, and g is the initial
wealth of the investor. So my/By is just a constant. The stochastic integral
fot 0,dX, of the process 6 with respect to the continuous semi-martingale X ,
defines a new continuous semi-martingale. The wealth process 7 as given by
equation (7), is the product of the continuous semi-martingale B, with the
continuous semi-martingale 7o/ By + fg HSdX s. The wealth process 7 is therefore
itself'® a continuous semi-martingale.

The SDE (6) and its solution (7) are just a particular example. Other SDE’s
can play an important role, when modeling a financial problem. For instance:

1
dmy = 0;d Xy + YPdY; + E(Wt —60; X — 1 Yy)dBy (8)

t
This is the SDFE governing the wealth process of an investor, following the strate-
gies 0 and v in two tradable processes X and Y respectively, having chosen a
tradable process B as numeraire. It is very similar to the SDE (6), the only differ-
ence being the presence of an additional tradable process Y. As a consequence,

161n fact, the proper way to write (6) is ¢ = mo + f(: 0:,dXs + fot B;l(ﬂ's —05Xs)dBs. So
an SDE is an equation linking a process, to a stochastic integral involving that same process.

17 As a ratio of a continuous semi-martingale, with a positive continuous semi-martingale,
X is a well-defined continuous semi-martingale, as shown by Ito’s lemma.

18 Also a consequence of Ito’s lemma.



the total cash position of the investor at any point in time, is m; — 0; Xy — ¥ Yy
which explains the particular form of the SDE (8). Similarly to equation (6),
the solution to the SDE (8) is given by:!?

t t
=B, (%‘; +/ 0,dX, +/ wsdz) (9)
0 0

where X , Y are the discounted processes defined by X=X /B and Y = Y/B.
Another interesting SDE is the following;:

dﬂ't = thXt + EClBt (10)
B,

This SDE looks even simpler than the SDE (6), the main difference being that
the total cash position in (10), appears to be equal to the total wealth 7, at any
point in time. In fact, equation (10) is the SDE governing the wealth process
of an investor, following a strategy 0 in a futures-tradable process X, having
chosen a cash-tradable process B as numeraire. The fact that the tradable
process X is futures-tradable and not cash-tradable, is not due to any particular
mathematical property. It is just an assumption. This assumption in turn leads
to a different SDE, modeling the wealth process of an investor.2? The solution
to the SDE (10) is given by:2!

t
=B, (%(; +/ 9st;> (11)
0

where the semi-martingale X is defined by X=X e %Bl the process 0 is
defined by 6 = (0el*-Bl)/B, and [X, B] is the bracket between X and B22.
Note that contrary to equation (7), X is not the discounted process X/B, and
the stochastic integral does not involve 6 itself, but the adjusted process 6.
Last but not least, the following SDE will prove to be the most important

of this document:
0: X,

Y:
This SDE is in fact a particular case of the SDE (8), where the trading strategy
¥ relative to the tradable asset Y, has been chosen to be v = —0X/Y. In

particular, we have 6, X, +¢,Y; = 0 at all times, and the cash position associated
with the strategies 6 and v, is therefore equal to the total wealth m; at all times.

dmy = 0,dX, — =LdY, + %dBt (12)
t

19See appendix A.1.

20SDE (10) is important when modeling the effect of convexity between futures and FRA’s.

21See appendix A.2.

22The bracket [X, B] between two positive continuous semi-martingales, is the process de-
fined by [X, B]; = fot Ufafpf’Bds, where 0X and oB are the volatility processes of X and
B respectively, and p*X'B is the correlation process between X and B. Given a positive semi-
martingale of type (1), the volatility process is defined as the absolute volatility divided by
the process itself. If X or B are not of type (1), the bracket [X, B] can be defined as the cross-

variation process between log X and log B, or equivalently [X, B]; = fot X;lB;1d<X, B),.

10



It is possible to describe equation (12), as the SDE governing the wealth process
of an investor, following a strategy 0 in a tradable process X , funding the strategy
0 in X with another tradable process Y, having chosen a tradable process B as
numeraire. Being a particular case of (8), this SDE has a valid solution in
equation (9). However, in view of the particular choice of ¢p = —0X/Y, this
solution can be simplified as:23

t
™ = B, (ﬂ +/ 9SdX'S> (13)
By Jo
where the semi-martingale X is defined as X = X’e_[X/’B/], the process 0 is
defined as 6 = (AelX"B'l)/B’  the two positive continuous semi-martingale X’
and B’ are given by X' = X/Y and B’ = B/Y, and [X’, B'] is the bracket
process between X’ and B’.

Anticipating on future events, it may be worth emphasizing now the cru-
cial importance of equation (13), in the pricing of credit derivatives. Strictly
speaking, equation (13) cannot be applied to the price process B of a risky zero,
which can be discontinuous with a sudden jump to zero. However, we shall see
that only minor adjustments are required, to account for such particular fea-
ture. The advantage of equation (13), is that all the jump risk is concentrated
in the numeraire B. In particular, the stochastic integral in (13) only involves?*
the continuous semi-martingale X’ = X /Y. This process can realistically be
modeled with a brownian diffusion. This is a crucial point, as it will allow a
smooth application of the martingale representation theorem, and ensure the
existence of replicating strategies, for a wide range of credit contingent claims.

2.5 Replication and Non-Arbitrage Pricing

In this section, we consider the issue of non-arbitrage pricing of a single
contingent claim, possibly a credit claim, with maturity 7" and payoff hy. To an
investor starting with initial wealth 7y and engaging into a strategy 6 relative to
some tradable assets?®, (having singled out one of them as numeraire), we can
associate a wealth process m. We call terminal wealth associated with 7wy and
the strategy 6, the value of the wealth process mp on the maturity date of the
claim. We say that a contingent claim is replicable, if there exists an initial
wealth 7y, together with a trading strategy 6, for which the associated terminal
wealth 77 is equal to the payoff hr of the claim. The condition 7y = hy is called
the replicating condition of the claim. A strategy 6, for which the replication
condition is met, is called a replicating strategy. The initial wealth my for
which?® the replicating condition is met, is called the non-arbitrage price or
price of the contingent claim. The question of contingent claim pricing is
defined as the question of determining the non-arbitrage price of a contingent

23See appendix A.3.

24Provided we assume the bracket [X’, B] to be deterministic.

25 A strategy refers to a full collection of individual strategies relative to various assets.
261t will be shown to be unique.
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claim. This question is only meaningful in the context of a replicable contingent
claim. When faced with a non-replicable contingent claim, one cannot speak of
its price?”.

For example, a European payer swaption with maturity 7" is a single claim
with payoff hy = By (Fr — K)T, where B and F are processes representing the
annuity?® and forward rate of the underlying swap, and K is the strike of the
swaption. B being the natural numeraire of the forward rate F', the process BF
is tradable?”. Starting with an initial wealth my, engaging in a strategy 6 with
respect to BF and choosing B as numeraire, the associated terminal wealth 7p
can be derived from equation (7)3°, and the replicating condition is:

T
To +/ 0,dF, = (Fr — K)* (14)
BO 0

Hence, the question of whether a European payer swaption is replicable, is
reduced to that of the existence of my and 6, satisfying equation (14).

In general, the question of whether a contingent claim is replicable, can
only be answered using the martingale representation theorem. Funda-
mentally,3! this theorem states that if a random variable H is a function of the
history>? of some continuous semi-martingale X, from time 0 to time T, and
provided that X has a brownian diffusion involving no more than one brownian
motion33, then H can be represented in terms of a constant, plus a stochastic
integral with respect to X. In other words, there exists a constant xo and a
stochastic process 6, such that:

T
20 +/ 0,dX, = H (15)
0

For example, in the case of the European swaption above, the random vari-
able H = (Fr — K)™ being a function of the terminal value Fy of F at time T,
is a fortiori a function of the history of the semi-martingale ' between 0 and T'.
It follows that if our model is such that the process F' is assumed to have a
brownian diffusion, there is a good chance that the martingale representation
theorem can be applied, and in light of equation (14), the swaption appears to
be replicable in the context of this model®*. The only case when the martingale
representation theorem may fail to apply, is if our model assumes a brownian
diffusion for F' involving more than one brownian motion. This would be the

27Unless price refers to a notion which is distinct from that of non-arbitrage price.

28 Annuity, delta, pvbp, pv0l are all possible terms.

29This is in fact an assumption. Since both B and BF can be viewed as linear combinations
of default-free zeros with positive values, assuming them tradable is very reasonable.

30 Applying (7) to X = BF gives a terminal wealth of 71 = Br (%;— + fOT GSdFS).

3lGee (1] th. 4.15 p. 182 for a possible precise mathematical statement.

32 A lot of care is being taken to avoid mentioning filtrations or measurability conditions.

33i.e. X is a semi-martingale of type (1), where u and o only depend on the history of W.
A convoluted way of saying that our filtration is brownian and one-dimensional.

34 Apply (15) to X = F and H = (Fr — K)*, and take mo = 20 Bo.
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case, for instance, if our model assumed stochastic volatility introduced as an
additional brownian source of risk. In such a model, where only B and BF ex-
ist as tradable processes, a Furopean swaption is arguably not replicable. Note
however, that stochastic volatility is not a problem by itself, provided it is driven
by the same brownian motion, as the one underlying the diffusion of F°. As
we can see from this example, being replicable is not an inherent property of a
contingent claim, but rather a consequence of our modeling assumptions.

Once a contingent claim is shown to be replicable, we are faced with the
task of computing its price. In general, this can be done using the replicating
condition, which is most likely to be of the form:

T
i +/ 0.dX, = B7'hy (16)
By o

where X is a certain continuous semi-martingale, representing the price process
of some tradable instrument, and which has been adjusted in some way.?¢ In
order to calculate 7g, all we have to do is use equation (4), taking the expectation
relative to a specific probability measure @, under which the semi-martingale
X is in fact a martingale.?” We obtain:

/OT 9Sdf(s] =0 (17)

This particular trick of considering a very convenient new measure is usually
referred to as a change of measure. The new measure @ is called the pricing
measure, or sometimes the risk-neutral measure.?® Taking Q-expectation
on both side of (16), using (17) we finally see that:

Eq

T — B()EQ [B;lhT] (18)
For example, provided the European swaption is replicable, we have:
o — BQEQ[(FT — K)+] (19)

where the pricing measure @ is such that F is a martingale under Q.

35Tt is however a lot harder to compute an expectation in that case.

36The nature of this adjustment may vary, see e.g. (7), (11) or (13).

37The existence of @ is normally derived from Girsanov theorem. See e.g. [1] Th.5.1 p. 191.
The uniqueness of Q) is not necessary in the coming argument, but if the claim is replicable,
such measure is very likely to be unique.

38Particularly if the numeraire B is the money-market numeraire.
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3 Credit Contingent Claims

3.1 Collapsing Numeraire

Recall that a risky zero with maturity T is defined as a single credit claim with
payoff 1¢p~ 7y and maturity 7', where D is the time of default. We would like
to assume risky zeros to be tradable, an assumption which will be vindicated
by the fact that CDS’s can be replicated in terms of risky zeros, allowing prices
of risky zeros to be inferred from the market place. Suppose B is the price
process of the risky zero with maturity 7. If the time of default occurs prior to
time T, the final payoff By of the claim is zero. It follows that the risky zero
must be worthless between time D and time T'. Its price process B must have
a value of zero, between time D and time T. Hence, it is impossible to model
the price process of a risky zero with a positive continuous semi-martingale, as
this would be completely unrealistic. Such price process must be allowed to be
discontinuous at time D with a sudden jump to zero, and it cannot be non-zero
after time D.

We say that a process B is a collapsing numeraire, or a collapsing trad-
able process, if it is a tradable process of the form B; = B;'1{;.py, where B*
is a positive continuous semi-martingale, called the continuous part of B. A
collapsing numeraire satisfies the requirements of having a jump to zero at time
D, and remaining zero-valued thereafter. It is an ideal candidate to represent
the price process of a risky zero. We shall therefore assume that all our risky
zeros have price processes which are collapsing numeraires. In short, we shall
say that a risky zero is a collapsing numeraire.

Suppose B is a collapsing numeraire, and X,Y are two tradable processes.
We assume that an investor engages into a strategy 6 (up to time D)3 relative
to X, using Y to fund his position in X, having chosen the collapsing process B
as numeraire. It is very tempting to write down the SDE governing the wealth
process 7 of the investor, as the exact copy of equation (12):

9tXt
Yy

dmy = 0,dX; — ~=LdY, + gdBt (20)
t

However, this SDE is not quite satisfactory: the process B having potentially a
jump at time D, the same may apply to the wealth process w. The ratio n/B,
which should represent the total amount of numeraire held at any point in time,
should therefore itself be discontinuous at time D. If follows that when ¢t = D,
there is potentially a big difference between 7, /B;_ (the amount of numeraire
held just prior to the jump), and 7/ B; (the amount of numeraire held after the
jump). When it comes to assessing the P/L contribution which arises from a
jump in the numeraire, one need to choose very carefully between (m;— /B;_)dB;
and (m;/B¢)dBy;. This can be done using the following argument: at any point

in time, the total wealth m; of the investor is split between three different assets.
In fact, because the position in X is always funded with the appropriate position

39 Up to time D is a way of expressing the fact that the investor stops trading after time D.
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in Y, the total wealth held in X and Y is always zero. The entire wealth of the
investor is continuously invested in the collapsing numeraire B. It follows that in
the event of default, the total wealth of the investor suddenly collapses to zero,
and therefore 7p = 0.2 We conclude that (m;/B;)dB;, is wholly inappropriate
to reflect the sudden jump in the wealth of the investor.*! Since dB; = 0 for
t > D, and B;_ = B for t < D, the P/L contribution arising from numeraire
re-investment can equivalently be expressed as (m—/B;)dBy, where B* is the
continuous (and positive) part of the collapsing process B.

Having suitably adjusted equation (20), to account for the collapsing nu-
meraire, one final touch needs to be made to formally express the fact that the
investor will no longer trade after time D. One possible way, is to replace 6; by
the strategy 0;1(;<p). Equivalently, X D and YP being the stopped processes??,
We have dXP = dY,” = 0 for t > D. Hence the same purpose may be achieved
by replacing dX; and dY;, with dX and dY,” respectively. This would ensure
that no P/L contribution would arise from 6, after time D. We are now in a
position to write down the SDE governing the wealth process of an investor,
engaging in a strateqy 0 in X (up to time D), using Y to fund his position in
X, having chosen the collapsing process B as numeraire:

0: X4
Y:

dry = 0,dXP — dY,” + ——dB, (21)
where B* is the continuous part of the collapsing numeraire B. As shown in

appendix A.4, the solution to this SDE is:

t
Ty = By (%(; +/ éngG) (22)
0

where the semi-martingale X is defined as X = X’e*[X"B/], the process 6 is
defined as 6 = (AelX"B'l)/B’, the two positive continuous semi-martingale X’
and B’ are given by X’ = X/Y and B’ = B*/Y, and [X’, B'] is the bracket
process between X’ and B’.43 Tt is remarkable that equation (22) is formally
identical to equation (13). The only difference is that the positive continuous
semi-martingale B’ is defined in terms B*, and not B itself. It is also remarkable
that the time of default D, does not appear anywhere in equation (22). The
only dependence in D, is contained via the collapsing numeraire B. In fact, the
wealth process 7 is the product of the collapsing numeraire B with a continuous
semi-martingale,** which can realistically be modeled with a brownian diffusion.
This will allow us to apply the martingale representation theorem, and show that
several credit contingent claims are replicable, and can therefore be submitted
to non-arbitrage pricing.

40Tn fact, m; = 0 for all t > D as the investor stops trading altogether.
4 (rp/Bp)dBp would be zero.
42XDP = Xynp is defined as X, for t < D and Xp for t > D.

BIX, B = [} X B (X B

ta oo . . .
44The process %(3’)— + fo 0sdX s is a continuous semi-martingale.
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3.2 Delayed Risky Zero

Given T < T", we call delayed risky zero with maturity 7/ and observation
date T', the single credit contingent claim with payoff 1;p<7y and maturity 7".
A delayed risky zero with observation date T, has the same payoff as that of a
risky zero with maturity 7. However, the payment date of a delayed risky zero,
is delayed, relative to that of a risky zero. Delayed risky zeros will be seen to
play an important role in the pricing of the default leg of a CDS.

Given a delayed risky zero with maturity 7’ and observation date T', we de-
note B the collapsing numeraire, representing the price process of the risky zero
with maturity 7. We denote W the price process of the default-free zero with
maturity 774°, and V' the price process of the default-free zero with maturity 7.
All three processes B, W,V are assumed to be tradable. It is clear that the
delayed risky zero is equivalent to the single claim with maturity 7" and payoff
BrWr. An investor entering into a strategy 6 relative to W (up to time D),
using V' to fund his position in W, having chosen the collapsing process B as
numeraire, has a wealth process 7 following the SDE:

Gt Wt
Vi

T—

By

dry = 0,dWP — VP + = —dB, (23)
where B* is the continuous part of the collapsing numeraire B. The terminal

wealth 77 of the investor is given by:

T
mr = Brp (g—(; +/ éde9> (24)
0

where the semi-martingale W is defined as W = W’e_[W/’Bl], the process 6 is
defined as 6 = (#elW"-B'1) /B’ the two positive continuous semi-martingale W’
and B’ are given by W/ = W/V and B’ = B*/V, and [W’, B] is the bracket
process between W’ and B’. Note that the process W’ represents the forward
price process (with expiry T') of the default-free zero with maturity 7”. As for
B', it is the continuous part of the collapsing process B/V .*¢ The process B/V
is called the survival probability process, denoted P, with maturity 7'. Alter-
natively, at any point in time ¢, the ratio B;/V; is called the survival probability
at time t, denoted P, with maturity 7. A survival probability is therefore the
ratio between the price process of a risky zero, and the price process of the
default-free zero with same maturity. Having defined the survival probability,
B’ appears as the continuous part of the survival probability process P. For a
wide range of distributional assumptions, the bracket [W’, B] is given by:

¢
(W' B, = / ow: op pds (25)
0

where ow is the volatility process of W', op is the volatility process of B,
and p is the correlation process between W’ and B’. Contrary to what the

451} is not a brownian motion, it is a positive continuous semi-martingale.
16(B/V)t = (B*/V)t1{1<p}- Hence it is a collapsing process (but not assumed tradable).
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notation suggests, op is not the volatility process of the survival probability P.
We call op the no-default volatility of the survival probability P. It is the
volatility of the continuous part of P, i.e. the volatility of P prior to default,
or equivalently the volatility of P, if no default were to occur. Likewise, we
call p the no-default correlation process, between the forward default-free
zero W', and survival probability P. The distinction between volatility and
no-default volatility is essential. As the survival probability P is a collapsing
process, its volatility beyond the time of default D is not a very well-defined
quantity. Assuming we were to adopt the convention that a zero-valued process
has zero-volatility, then the volatility process of the survival probability has a
sudden jump to zero, on the time of default. Such volatility process cannot ever
be modeled as a deterministic process.*” In contrast, the no-default volatility
process op, can realistically be modeled as a deterministic process, as no jump is
to occur on the time of default. Likewise, the no-default correlation process can
freely be modeled as a deterministic process. In what follows, we shall therefore
assume that the bracket [W’, B’] is a deterministic process.

Having established the terminal wealth 77 in the form of equation (24),
the replicating condition 7wy = BpWrp will be satisfied, whenever the following
sufficient condition holds:

T
To 4 / bud WV, = W (26)
By 0

The question of whether a delayed risky zero is replicable, can therefore be
positively answered, provided an initial wealth my and trading strategy 6 satis-
fying (26), can be shown to exist. Since Vp = 1, it is possible to write Wr as
Wy = Wrel' BT Having assumed the bracket process [W', B'] to be deter-
ministic, its terminal value [W’, B]r is therefore non-random. It follows that
Wr is just WT, multiplied by the constant W' Blr In particular, Wr is a
function of the history of of the process W. This shows that provided rea-
sonable distributional assumptions are made,*® the martingale representation
theorem will be successfully applied, and the delayed risky zero will be shown
to be replicable.*?

When this is the case, denoting @) a probability measure relative to which
the continuous semi-martingale W is in fact a martingale, taking @Q-expectation
on both side of (26), we see that the non-arbitrage price 7y of the delayed risky
zero is given by:

~ / ’ W / ’
70 = BoEq[Wr| = BoEg[Wy)eV 7 — Bov(?e[w B (27)

where we have used the fact® that Eq[Wr] = Wy = Wo/Vp. Re-expressing (27)

471t would require the time of default D to be assumed non-random ...
481}/ should have a simple one-dimensional brownian diffusion.

49Having x¢ and ¢ with xo + fOT sdWs = Wi, take mg = Bozg and 6 = e~ W B'1B/,
501 being a Q-martingale. See equation (3).
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in terms of the survival probability Py = By/Vp, we conclude that:

T
mo = PyWy exp (/ oW Uppdt> (28)
0

A naive valuation would have yielded g = PyWjy. Assuming a positive correla-
tion p between survival probabilities and bonds,®! equation (28) indicates that
a delayed risky zero, should be more valuable than what the naive valuation
suggests, i.e. my > PyWy. This can be explained by the following argument:
when dynamically replicating a delayed risky zero, an investor is essentially long
an amount W/V of risky zero B. As soon as the bond market rallies, W/V goes
up and the investor finds himself under-invested in B. With positive correlation,
the risky zero will be more expensive to buy. It follows that the investor will
have to buy at the high, (and similarly sell at the low), finding himself is a short
gamma position. This short gamma position being a cost to the investor, a
higher amount of cash is required to achieve the replication of the delayed risky
zero. In other words, the non-arbitrage price of a delayed risky zero should be
higher. The opposite conclusion would obviously hold, in the context of negative
correlation between survival probabilities and bond prices.

3.3 Credit Default Swap

Let tg < t1 < ... < t,, be a date schedule. We call CDS fixed leg (associated
with the schedule to,...,%,), the contingent claim paying a;K1{psy,y at time
t; for all i = 1,...,n,°2 where K is a constant and each «; is the day-count
fraction between t;_1 and ¢;.>® The constant K is called the fixed rate of the
CDS fixed leg. A CDS fixed leg is therefore a portfolio of n > 1 risky zeros with
maturity t1,...,t,, held in amounts oy K, ..., a, K respectively.®® Assuming
risky zeros are tradable, a CDS fixed leg is replicable, and its non-arbitrage
price is given by:

n
mo=» aKPV; (29)

i=1
where each P} is the current survival probability with maturity ¢;, and V{ is the

current default-free zero with maturity ¢;.

We call CDS default leg (associated with the schedule to,...,t,), the
contingent claim comprised of n > 1 single claims C;, i = 1,...,n, where each
single claim C; has a maturity ¢; and payoff (1 — R)1y, |, <p<y,}, where R is

511t is not obvious this should be the case. One one hand, a bullish bond market may be
viewed as cheaper funding cost for companies, and therefore higher survival probabilities. On
the other hand, a bullish bond market can be the sign of an economic contraction, higher rate
of bankruptcies, flight to quality and credit collapse.

52There is no payment on date t.

53Relative to a given accruing basis.

54In real life, if the time of default D occurs prior to t,, a CDS fixed leg would normally
pay a last coupon, accruing from the last payment date to the time of default. The present
definition ignores this potential last fractional coupon.
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a constant. The constant R is called the recovery rate of the CDS default
leg. Essentially, a CDS default leg pays (1 — R) at time ¢;, provided default
occurs in the interval ]t;_1,t;].5% Each single claim C; is clearly equivalent
to a long position of (1 — R) in the delayed risky zero with maturity ¢; and
observation date t;_1, and a short position of (1 — R) in the risky zero with
maturity ¢;. Provided similar assumptions to those of section 3.2 hold, delayed
risky zeros are replicable and a CDS default leg is therefore itself replicable.
Using equation (28), the non-arbitrage price of the CDS default leg is:

n
mo=01-R)> (P = P)Vy (30)
i=1
where V{},...,VJ" are the current values of the default-free zeros with matu-
rity tl, U P0 ,-.., Py are the current survival probabilities with maturity
t1,...,tn, and P0 et ,155’71 are the current converxity adjusted survival proba-
bilitles with maturity to,...,t,—1. Specifically, for all ¢ = 1,...,n, we have:

B = Bitexp < / m(s)vil(s)p(s)ds) (31)

where ngl is the current survival probability with maturity ¢;_1, u; is the
local volatility structure of the forward default-free zero with expiry t;—; and
maturity ¢;, v;—1 is the no-default local volatility of the survival probability with
maturity ¢;—1, and p some sort of (no-default) correlation structure between
survival probabilities and bonds.

We call a credit default swap or CDS, any claim comprised of a long
position in a CDS default leg, and a short position in a CDS fixed leg,’ (not
necessarily relative to the same date schedule).

3.4 Risky Floating Payment and Related Claim

Given T < T’, we call risky floating payment with maturity 77 and expiry
T, the single credit contingent claim with maturity 7" and payoff Frlips1y,
where D is the time of default, and F' is the forward Libor process between T
and T’. More generally, we call floating related claim (with maturity 7" and
expiry T'), any single credit contingent claim with maturity 7" and payoff of the
form g(Fr)l;ps7ry, for some payoff function g.

Given a floating related claim with maturity 77 and expiry date T, we denote
B the collapsing numeraire, representing the price process of the risky zero

55In real life, a CDS default leg would not pay on a discrete schedule of payment dates, but
rather on the time of default itself (or a few days later). furthermore the payoff would not
be (1 — R): the long of the CDS default leg (the buyer of protection) would receive 1, and
deliver a bond (deliverable obligation) to the short. It follows that the net payoff to the long
can indeed be viewed as (1 — R) (where R is the market price of the delivered bond), but R is
not a constant specified by the CDS transaction. This makes our definition highly simplistic,
but in line with current practice.

56 A long CDS position correspond to being long protection and short credit.
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with maturity 7/. We denote W the price process of the default-free zero with
maturity 7”, and V the price process of the default-free zero with maturity 7.
All three processes B, W,V are assumed to be tradable. In fact, it shall be
convenient to define F = (V/W — 1)/a (where « is the money market day-
count fraction between T' and T”) and assume that B, W and FW are tradable.
It is clear that the floating related claim is equivalent to the single claim with
maturity T and payoff g(Fr)Br. An investor entering into a strategy 6 relative
to FW (up to time D), using W to fund his position in FW, having chosen the
collapsing process B as numeraire, has a wealth process 7 following the SDE:

T—

By

dm; = 0,d(FW)P — 0, F,dWP + ——dB, (32)
where B* is the continuous part of the collapsing numeraire B. The terminal
wealth of the investor is given by:®”

T
T = BT (;_(z) +/ ésdps> (33)
0

where the semi-martingale Fis defined as F = Fe~[F°P I, the process 0 is defined
as 0 = (6el>P1y /P, P is the continuous part of the survival probability process
B/W, with maturity T, and [F, P] is the bracket process between F and P. A
sufficient condition for replication is:

T

— + ésdﬁs = g(FT) (34)
BO 0

Since Fp = Frelf"P I7  the martingale representation theorem can successfully
be applied for a wide range of distributional assumptions on F', provided the
bracket [F, P] is deterministic. When this is the case, the floating related claim
is replicable, and its non-arbitrage price is given by:

mo = BoLEg[g(F'r)] (35)

where the pricing measure () is such that the semi-martingale F is in fact a
martingale under (). In particular, when g(x) = x, we obtain the non-arbitrage
price of a risky floating payment, as:*®

™ = P()W()Foe[F’P]T (36)

where Py is the current survival probability with maturity 77, Wy is the cur-
rent default-free zero with maturity 7’, and Fy the current forward Libor rate
between T and T”. Note that the convexity adjustment elf>F17 indicates that
a positive correlation between rates and survival probabilities would make the
risky floating payment more valuable than suggested by a naive valuation.

57See equation (22).

T
58[F, Plr = fo opoppds. Note that op and p are no-default volatility and correlation.
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3.5 Foreign Credit Default Swap

Suppose we are given two currencies, one being called foreign and the other
domestic. We call foreign credit default swap or foreign CDS any credit
default swap denominated in foreign currency. A foreign CDS is therefore noth-
ing but a normal CDS. Similarly, a domestic CDS is nothing but a normal
CDS, denominated in domestic currency. The purpose of this section is to inves-
tigate whether a non-arbitrage relationship exists between domestic and foreign
CDS’s. Specifically, having assumed that domestic risky zeros are tradable, we
shall see that foreign CDS’s can be replicated through dynamic strategies in-
volving domestic risky zeros. The conclusion is quite interesting: given the two
yield curves in domestic and foreign currencies, given the default swap curve
in domestic currency, foreign CDS’s are fully determined through some sort of
quanto adjustment, and cannot be specified independently.>”

A CDS being a linear combination of risky zeros and delayed risky zeros,
It is sufficient for us to show that foreign (delayed) risky zeros can be replicated
in terms of domestic risky zeros. Given a foreign risky zero with maturity
T, we denote B the collapsing numeraire representing the price process of the
domestic risky zero with maturity 7. We denote V the price process of the
domestic default-free zero with maturity 7', and W the price process of the
foreign default-free zero with maturity 7. We also denote X the spot FX rate
process, quoted with the foreign currency as the base currency.®’ We assume
that W is tradable in foreign currency, whereas B and V are tradable in domestic
currency. In fact, we assume that all three processes W, V/X and B/X are
tradable in foreign currency. An investor entering into a strategy 6 relative
to W (up to time D), using V/X to fund his position in W, having chosen
the collapsing process B/X5% as numeraire, has a wealth process 7 (in foreign
currency) following the SDE:

60

QtWtXt Xt’/th
v, B;
where B* is the continuous part of the collapsing process B. The terminal

wealth of the investor (in foreign currency) is given by:%3

BT X()?T() r. .
= 3 s Y,
T XT ( Bo + /0 9 d P ) (38)

where the semi-martingale Y is defined as Y = Ye[V°P I, the process 0 is defined
as O = (8el¥"P1)/P, P = B*/V is the continuous part of the survival probability
(in domestic currency) with maturity 7', Y = WX/V is the forward FX rate
with maturity 7,5 and [Y, P] is the bracket process between Y and P. The

dry = 0, dWP — d(V/X)P +

d(B/X): (37)

59Note however that this section only applies to the case where both domestic and foreign
currencies are G7+ currencies. The reason for this restriction will become clear below.

60Gee section 3.3.

61X, is the price in domestic currency at time ¢, of one unit of foreign currency.

62(B/X): = (B*/X)tl{1<py is indeed a collapsing process, also assumed to be tradable.

63See equation (22).

64y is also quoted with the foreign currency as the base currency.
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payoff (in foreign currency) of the foreign risky zero with maturity 7' being
1{p>1) = Br, a sufficient condition for replication is:

X()?T()
By

T
+ / 0,dY, = X (39)
0

Since W = Vp = 1, it is possible to write X = YTe[Y’P]T, and provided the
bracket [Y, P] can be assumed to be deterministic, the martingale representation
theorem will be successfully applied for a wide range of distributional assump-
tions on Y. However, assuming the bracket [Y, P] to be deterministic may not
be possible in cases where the reference entity underlying the time of default D,
is a sovereign entity controlling either the foreign or domestic currency.® To
avoid dealing with such problem, we shall restrict this analysis to the case when
both domestic and foreign currency are G7+ currencies.

( being a measure under which the semi-martingale Y isin fact a martingale,
taking Q-expectation on both side of (39), we obtain the non-arbitrage price of
the foreign risky zero as:

By

N By ~
Ty = YEQ[YT]G[YJD]T _ YOYOG[KP]T _ POWOe[Y,P]T (40)
0 0

where Py is the current (domestic) survival probability with maturity 7" and W
is the current foreign default-free zero with maturity 7. Recall that the forward
FX rate Y, appearing in the quanto adjustment e!¥>"F17 must be quoted with
the foreign currency as the base currency. A positive correlation between Y and
P, would therefore indicate a strengthening foreign currency, in line with higher
(domestic) survival probabilities. When this is the case, equation (40) indicates
a higher price than what a naive valuation would suggest. This can be explained
by the following heuristic argument:%¢ an investor dynamically replicating a
foreign risky zero, is essentially long a certain amount of domestic risky zero. If
the foreign currency strengthens, the investor will find himself under-invested in
the domestic risky zeros. However, a positive correlation implies that domestic
risky zeros will be more expensive to buy. The investor will therefore buy at
the high and sell at the low, facing the equivalent of a short gamma position.
This short gamma position being a cost to the investor, a higher initial wealth
is required to achieve the replication of a foreign risky zero. In other words, the
non-arbitrage price of a foreign risky zero should be higher.

When T < T”, the case of a foreign delayed risky zero with observation date
T and maturity 7”, is handled in a similar manner, trading W’ (the foreign
default-free zero with maturity 7”) instead of W. We obtain:

T = PQW(;e[Y/’P]T (41)

65Default may be accompanied by a substantial devaluation, which would amount to a
sudden jump in FX volatility and breakdown in correlations. In fact, if the domestic or
foreign currency is not an G74 currency, the collapse of any major corporation in the country
of that currency, may be accompanied by sharp FX moves.

66This sort of casual explanation is useful to check that we got the sign right.
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where Py is the current (domestic) survival probability with maturity 7" and W}
is the current foreign default-free zero with maturity 7”. However, contrary to
equation (40), the convexity adjustment elY""PI7 does not involve the forward
FX rate Y, but Y/ = XW'/V. Writing Y/ = YW'/W, we have:%”

Y', Plp = [Y, Py + [W'/W, Plr (42)

and we conclude that the convexity adjustment in (41) is in fact the same quanto
adjustment as in (40), compounded by a delay adjustment eV /W-FI7 formally
identical to that encountered in the pricing of a domestic delayed risky zero.8

3.6 Equity Option with Possible Bankruptcy

In this section, we assume that the reference entity which underlies the time of
default D, is a corporation with a non-dividend paying stock X. Furthermore,
contrary to market practice, we would like to assume that X is no longer a
positive continuous semi-martingale, but rather a collapsing tradable process,%
i.e. a process of the form X; = X{1.py where X* is a positive continuous
semi-martingale (the continuous part of X). Such assumption allows the price
process X to display a sudden jump to zero in the event of default, and can
therefore legitimately be viewed as more realistic than the standard log-normal
assumption. The purpose of this section is to investigate the impact of such
assumption, on the pricing of various equity claims, which are contingent on the
terminal value of X.

Specifically, given a date T', we consider the claim with maturity 7" and payoff
f(X7), where f is an arbitrary payoff function. We denote B the collapsing
process representing the price process of the risky zero with maturity 7. We
assume that both X and B are tradable processes. Since the payoff f(Xr) can
be expressed as:

f(Xr) = Br[f(Xr) = f(0)] + f(0) (43)

by considering g(z) = f(z) — f(0), we can reduce our attention to the claim
with maturity 7', and payoff Brg(X7).™

An investor entering into a strategy 6 relative to X (up to time D), having
chosen the collapsing process B as numeraire, has a wealth process w following
the SDE:

dﬂ't = thXt + %(m_ — HtXt_)dBt (44)

t
This is the first time in this document, that an attempt is made to model the
wealth process associated with tradable assets which are both collapsing pro-
cesses. Up till now, the use of collapsing processes was limited to the numeraire.
The SDE (44) is therefore unknown to us, and some explanation is probably
welcome: it should be noted that (44) looks pretty natural in light of similar

67Recall that the bracket [Y”, P] is the cross-variation process (log Y, log P).
68See equation (28), where W’ = W/V is also a forward default-free zero.
69Gee section 3.1.

"0Since g(0) = 0, we have Brg(X%) = g(Xr).
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SDE’s, and the SDE (6) in particular. However, since both X and B are po-
tentially discontinuous, and trading is assumed to be interrupted after the time
of default, one has to be very careful that the P/L contributions expected from
collapsing prices, are properly reflected in (44), and furthermore that no P/L
contribution arises after time D.”' This last point is actually guaranteed by
the fact that dX; = dB; = 0 for t > D.™ As for a proper accounting of P/L
jumps, the following argument will probably convince us that (44) is doing the
right thing: since at any point in time the total wealth 7; of the investor, is split
between the two collapsing processes X and B, the investor would lose every-
thing in the event of default. It follows that the total wealth after default is
7p = 0, and the jump drp on the time of default is drp = —wp_."® This jump
is properly reflected by the SDE (44), as shown by the following derivation:

1
(ﬂ'D, — QDXD,)dBD

d = 0OpdX —
TD DGXDp + B
1
= —QDXD,—B—(’]TD,—QDXD,)BD,
D—
= —Tp— (45)

As shown in appendix A.5, the solution to the SDE (44) is given by:

t
Ty = By (% +/ eng‘;) (46)
0

0

where the continuous semi-martingale X is defined as X = X* /B*. This so-
lution is formally identical to (7), except that X is defined in terms of the
continuous parts X*, B*, and not X, B themselves.”™

Since By = 1 implies Bj. = 1, the replication condition mp = Brg(X7) is
equivalent to mp = BTg(XT), and a sufficient condition for replication is:

T
% +/ 0:dX; = g(XT) (47)
0 0

and because g(XT) is obviously a function of the history of X between 0 and T,
(and X is a continuous semi-martingale), the martingale representation theorem
will be successfully applied for a wide range of distributional assumptions on
X. When that is the case, the equity claim is replicable, and its non-arbitrage
price is given by: .

m0 = BoEglg(Xr) (48)

where (@ is a measure under which the semi-martingale X isin fact a martingale.
Going back to (43), we obtain the price of the equity claim with payoff f(Xr):

7o = Vo [PoEqlf ()] + (1= F) £(0)] (49)

71See section 3.1 on the collapsing numeraire, for a similar discussion.
721t is therefore unnecessary to introduce dXtD as in the SDE (21).
37 p_ is the total wealth just prior to default.

" The process X/B would not be defined beyond time D.
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where Py is the current survival probability with maturity 7', and Vj is the
current default-free zero with maturity 7. Note that contrary to standard equity
option pricing, the pricing measure @ is such that, the process X = x* /B*
(and not the equity forward process X/V) should be a martingale. We call
this process X the no-default credit equity forward process. It is a credit
forward, as the stock price X is effectively compounded up at the credit yield
implied by B (as opposed to the Libor yield implied by V'), and it is a no-
default forward, as it is defined in terms of the continuous parts X* and B*,
which coincide with X and B, in the event of no default.

The term volatility [X, X]z of the no-default credit equity forward, which is
crucial for any implementation of (49), can be derived from the term volatility
of the equity forward™ [V, Y]r as follows: from Y = X*/V, we have X = Y/P
where P = B*/V is the continuous part of the survival probability with maturity
T, and therefore:

(X, X]|r =[Y,Y]r - 2[Y, Plr + [P, P]r (50)

As we can see from equation (50), the no-default volatility and correlation (with
equity) of the survival probability, will also be required.

3.7 Risky Swaption and Delayed Risky Swaption

Given a date T', we define the risky payer swaption with expiry T" as the single
claim with maturity 7" and payoff 1;p~rCr(Fr — K)*, where F is a forward
swap rate and C' its natural numeraire™, K is a constant (called the strike) and
D is the time of default. Note that the effective date of the underlying swap
(F,C) must be greater than the expiry date T, but need not be equal to it.
A risky payer swaption is equivalent to the right to enter into a forward payer
swap, provided no default has occurred by the time of the expiry. Given T' < T”,
we call delayed risky payer swaption with observation date T' and expiry T,
the single claim with maturity 7" and payoff 1;p~rCr (Fr — K)*. A delayed
risky swaption is equivalent to the right to enter into a forward payer swap on the
expiry date T”, provided no default has occurred by the time of the observation
date T'. Note that a long position in a delayed risky swaption with observation
date T and expiry T”, together with a short position in a risky swaption with
expiry T’, is equivalent to the right to enter into a forward payer swap on the
expiry date T’ provided default has occurred, in the time interval |7, T"]. Risky
swaptions and delayed risky swaptions will be seen to play an important role in
the next section, where we study the impact of possible default, on the pricing
of an interest rate swap transaction.

In this section, we concentrate on the question of non-arbitrage pricing of
risky swaptions and delayed risky swaptions. More generally, we consider the
single claim with maturity T and payoff ByCrg(Fr), where g is an arbitrary
payoff function, and B is the collapsing process representing the price process of

75Strictly speaking, its continuous part Y = X*/V.
76i.e. the underlying annuity, delta, pvOl , pvbp. ..
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the risky zero with maturity 7. The case of a risky payer swaption corresponds
to g(z) = (x— K)*, whereas a delayed risky payer swaption is clearly equivalent
to g(z) being the undiscounted price at time T of a payer swaption with strike
K and expiry T', given an underlying forward swap rate of .77

We denote V' the price process of the default-free zero with maturity 7. The
four processes C, CF, V and B are assumed to be tradable. An investor entering
into a strategy 6 and ¢ (up to time D) relative to C'F and C respectively, funding
his position in CF and C' with V', having chosen the collapsing process B as
numeraire, has a wealth process 7 satisfying the SDE:

0,CeFy + ¢ Cy d
Vi

T —

By

dry = 0:d(CF)P + 4pdCP — VP + ——dB, (51)

where B* is the continuous part of B. The associated terminal wealth is:"®

T T
wr = Br (%00 + / 0rdX, + / wm) (52)
0 0

where the continuous semi-martingales X, Y are defined as X = C'F e [C'F.F]
and Y = C"e~[¢"F] the processes § and 1) are defined as § = (fel® F>F1) /P and
P = (z/Je[C"P])/P, the process C' = C/V is the forward annuity of the under-
lying swap, and P = B*/V is the continuous part of the survival probability
process B/V. A sufficient condition for replication is:

T T
T, / 6udX, + / udY, = Crg(Fr) (53)
By Jo 0

Since Vi = 1 we have Cp = Ypel© P17 and from [C'F, P]p = [C', Plr+|F, P)r
we see that Fp = (XT/YT)e[F’P]T. Hence, provided both brackets [C’, P] and
[F, P] are assumed deterministic, the quantity Crg(Fr) can be viewed as a
function of the history of X and Y between time 0 and T, and the martin-
gale representation theorem”™ will be successfully applied, for a wide range of
distributional assumptions on ¢’ and F. When this is the case, our claim is
replicable, and we have:

mo = BoEq [Crg(Fr)] (54)

e.g. g(x) = N (d)—KN(d—u) where d = (In(z/K)4u?/2)/u, and u is the non-annualized
total volatility of F, between T and T’. More generally, g(z) = Eq[(Fr — K)*|Fr = z] where
F' is a martingale under Q.

78This is yet another SDE! However, the fact that equation (52) is indeed the terminal
wealth associated with (51) can be seen by applying (22) separately to:

xl
VP + Bj—t*dBt

0+CF
dr} = 0:d(CF)P — %d
t

and: )
™
t—
VP + ——dBy
By
where 7 = 7! + 72, and arbitrary 77(1) and TI'g such that mop = TI'é + TI'g.
7 Strictly speaking, a two-dimensional version of it.

c
dn2 = dCP — vy
Vi
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where Q' is a measure under which the semi-martingales C'F e [C'EP] and
C’e~C"P] are in fact martingales.

It may appear from (54) that our objective of pricing the claim with payoff
BrCrg(Fr) has been achieved. However, although it is probably fair to say that
a lot of work has been done (in particular, showing that the claim is replicable
under reasonable assumptions), equation (54) is not very satisfactory: Cp being
inside the expectation, the relationship between (54) and the standard price of
a European swaption or related claim (of the form CoEg[g(Fr)]), is not very
clear. Equation (54) is also misleading, as it indicates that the distributional
assumption made on C' (or C’) could play an important role, when in fact,
the following will show that the distribution of C’ only matters in as much as
the terminal bracket [C”, Pz is concerned: defining Zr = (Voe [Pl /Cy)Crp,
using Vi = 1, and the fact that C’e~[" ) is a Q’-martingale, we have :

Yo

B (2r] = (2B [Cpe™ @ Fir) = Ly =1 (55)
C() C(O
So Zr is a probability density under @’, and if dQ = Z7dQ’, from (54):
C ’ ’
Ty = BOVSG[C ’P]TEQ/ [ZTg(FT)] = P()Coe[c ’P]TEQ [g(FT)] (56)

where Py = By/V} is the current survival probability with maturity 7', and Cy
the current annuity of the underlying forward swap rate. The attractiveness
of (56) is obvious: the non-arbitrage price my of a risky swaption (or related
claim), appears to be the standard price CoEg[g(Fr)] multiplied by a survival
probability Py (not a big surprise, the payoff being conditional on no default),
with an additional (and by now fairly common), convexity adjustment el0"-Plr,
The problem with equation (56), is that despite its remarkable appeal to intu-
ition it is pretty useless, unless the distribution of F under Q is known.®® When
we said that CoEqlg(Fr)] was the standard price, we were being economical
with the truth: it is indeed the standard price, provided F' is a martingale un-
der Q. As far equation (56) is concerned, there is no reason why this should be
the case. In fact, as shown in appendix A.6, the process Fe [F:F] (and not F
itself) is a martingale under Q.

So it seems that equation (56), with the knowledge that the pricing measure
Q is such that Fe ""Fl is a martingale, is a far better answer to our pricing
problem than equation (54). And so it is. However, the road to (56) was long and
tedious, making the whole argument somewhat unconvincing, with the belief
that a more elegant and direct route should exist. The reason we obtained (54)
instead of (56), was our choice of numeraire B: if the process BC' had been
a tradable process, we could have chosen BC' as collapsing numeraire instead
of B, giving us a terminal wealth 7y with BrCr as a common factor (instead
of just Br). The replicating condition would have involved g(Fr) (instead of
Crg(Fr)) and it is believable that (56) would have been derived without much
more effort... The problem is that BC is not a tradable process.’!

80Very often, knowing the distribution of F' under Q, amounts to knowing its drift under Q.
81'We can always assume anything to be tradable, but it would not make sense to do so.
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One solution to the problem is to consider the SDE:

B D D
dr; = 0,d(CF)P — 6,F,dCP + (d e 3G dv, ) o

B + 3 v (57)
The financial interpretation of (57) could be phrased as the SDE governing the
wealth process of an investor entering into a strategy 6 (up to time D) relative
to CF, using C to fund his position in CF, investing his total wealth once in
the collapsing numeraire B, and once in the numeraire C, using V' to fund his
position in B and C. In appendix A.6, we show that the solution to (57) is

given by:
BCy [ moWo /t Foap ) —[CP
= 0sdF, ) e ¢ Pl 58
Tt ‘/t (BOCO + o s s | € ( )

where the continuous semi-martingale Fis defined as F' = Fe~[F°F I, the process
0 is defined as = (PelF-PIHIC"Fl) /P, the process ¢’ = C/V is the forward annu-
ity of the underlying swap, and P = B*/V is the continuous part of the survival
probability process B/V. Since Vp = 1, a sufficient condition for replication is:

7TOV0
BoCo

T
+/ 0,dF, = g(Fr)el® i (59)
0

and we see that the non-arbitrage price mo is indeed given by (56), where @ is
a measure under which, the semi-martingale F' is indeed a martingale. In the
case of a risky swaption, we finally have:

70 = PyCoel® P17 Eg[(Pr — K) T (60)

where Py is the current survival probability with maturity T', and C the current
annuity of the underlying swap. This price is exactly the naive price, except for
the adjustments elCPlr and el Flr required on Cy and Fp respectively. The
case of the delayed risky swaption is handled by applying (56) to the function
g(z) = Eq[(FPr — K)*|Fr = x]. We obtain:5?

70 = PyCoel® P17 Eg[(Fr — K)*] (61)
where @ is such that F' is a Q-martingale, with adjusted initial value FyelF»Flr 83
This is also very close to the naive valuation, i.e. the standard price of the
European swaption with expiry 7”, multiplied by the survival probability with
maturity 7. The only difference is the presence of the convexity adjustments
el@ PlT and elF"PIr | required on Cy and Fy respectively.

82Having adjusted the initial value Fy to FoelF>P1T | we can assume that the pricing measure
Q in (56) is such that F' is a Q-martingale. We have:
EqQly(Pr)] = EQIEqQ((Fr — K)¥|Fr]]l = Eql(Fr — K)7]

83Strictly speaking, Fye™ [F>"FPItAT is a Q-martingale.
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3.8 OTC Transaction with Possible Default

Let (T, hr) denote a single claim with maturity T and payoff hr. If we assume
this claim to be replicable, it is meaningful to speak of its price at any point in
time. In fact, such a price coincides with the value 7; at time ¢ of the wealth
process associated with the replicating strategy of the claim.®* In general, an
investor holding a long position in the claim (T, hy) will mark his book at its
current value m;. This seems highly reasonable.

However, a long position in the claim (T, hr) is most likely to be associated
with an external counterparty, by whom the payoff A is meant to be paid.
The fact that the external counterparty is potentially subject to default means
that the payoff hr may not be paid at all: what was thought to be a long
position in the claim (T, hr), is in fact a long position in a claim (T, h%.) where
the payoff h/. may differ greatly from what the trade confirmation suggests. An
investor marking his book at the price 7, is not so much using the wrong price:
he is rather pricing the wrong claim.

In the event of default, the payment of At at time T will not occur. If D
denotes the time of default associated with the counterparty, the true payment
occurring at time 7' is therefore hr1{p~ 7y, as opposed to hr itself. Furthermore,
if 1p < 0, the claim after default is in fact an asset to the counterparty. The
investor will have to settle his liability with a payment —mp on the time of
default.®

As we can see, a trade confirmation which indicates a long position in the
claim (T, hr) to the investor, is in fact economically equivalent to a long po-
sition in the claim (7', hrl{ps7y), together with a short position in the claim
paying (7p)~ on the time of default.’¢ We call OTC claim associated with the
claim (T, hr), such economically equivalent claim. More generally, we call OTC
claim associated with a portfolio of replicable claims (T4, h1), ..., (Th, hy), the
claim constituted by long positions in the single claims (71, h1l{p>7y}), - -5
(T, hnl{p>1,}) together with a short position in the claim paying the negative
part of the portfolio’s value, on the time of default.

Since mp = (mp)* — (7p)~, a short position in the claim paying (7p)~ at
time D, is equivalent to a long position in the claim paying mp, together with
a short position in the claim paying (7p)*. However, receiving mp at time D
is equivalent to receiving hp at time T, provided D < T. In other words, it
is equivalent to the claim paying hrlip<py at time T'. It follows that a short
position in the claim paying (7p)~ at time D, is equivalent to a short position
in the claim paying (7p)* at time D, together with a long position in the claim

841f 7, is of the form 7 = Bi¢(mo/Bo + f(: ésts), then 7 = Bp(m¢/B: + ftT ésts). If
the replicating condition 7 = hp is met, an initial investment of 7; at time ¢ together with
the replicating strategy 6 (from ¢ to T'), will also replicate the claim (T, hp). So m¢ is the
non-arbitrage price of the claim at time ¢t.

85We are implicitly assuming no other claim is being held with this counterparty. Further-
more, if 7p > 0 the investor should receive a payment of R x (7TD)Jr where R is the recovery
rate associated with the counterparty. The present discussion assumes R = 0 but can easily
be extended to account for a non-zero recovery rate.

86i e. a claim paying the negative part of 7p on default. Note that m = 0 for t > T.
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paying hrlip<ry at time T. Since hy = hrlip>r}y + hrl{p<r}, We conclude
that the OTC claim associated with the claim (T, hr), is equivalent to the
default-free claim itself, together with a short position in the claim paying (7p)™
at time D. We call the claim paying (7p)* at time D the insurance claim
associated with the claim h7.8” (More generally, we can define an insurance
claim associated with a portfolio of single claims as the claim paying the positive
part (mp)™T of the value of the portfolio on the time of default.) As shown in the
preceding argument, the OTC claim associated with a single claim is nothing but
the claim itself, together with a short position in the associated insurance claim.
This can easily be shown to be true, in the general case of multiple claims. It
follows that upon entering into a first OTC transaction, an investor is not only
buying the claim specified by the confirmation agreement, but is also selling the
insurance claim associated with it. When viewing the whole portfolio facing a
counterparty as one (multiple) claim, the investor is not only long the claim
legally agreed, he is also short the insurance claim associated with his portfolio.

It should now be clear that when marking his book at the price m; of the
claims legally specified, an investor is being overly optimistic by ignoring his
potential liability stemming from a short position in the insurance claim asso-
ciated with his position. The extent of his error is precisely the price of the
insurance claim® which has been ignored. The question of non-arbitrage pric-
ing of the insurance claim is therefore of crucial importance, for the purpose of
properly assessing the credit cost associated with a given claim. Unfortunately,
it is not clear that the insurance claim should be replicable,® (and hence have
a price). Furthermore, the general question of option pricing on a whole port-
folio,”% can soon become intractable.

To alleviate this last problem, the following remarks can be made: if a
portfolio with value 7; is split into two separate sub-portfolios with values }
and 77, then (7p)* < (75)* + (7%)T. It follows that the insurance claim
associated with the original portfolio, should be worth less than the sum of
the two insurance claims associated with the sub-portfolios. More generally,
an insurance claim should be cheaper than the sum of the insurance claims
associated with any partition of the original portfolio. Hence, although the
insurance claim associated with a portfolio may be nearly impossible to price,
by breaking down this portfolio into smaller parts it may be possible to arrive
at a valuable upper-bound for the price of the insurance claim, leading to a
conservative (and therefore acceptable) estimate of the value of the portfolio
as a whole. The ability to price the insurance claims associated with the most
simple claims, can therefore turn out to be very useful. In any case, this ability
would be required in the case of first time transaction with a new counterparty.

87With a non-zero recovery rate, the insurance claim pays (1 — R)(rp)*t at time D.

88We are implicitly assuming the insurance claim is replicable. Maybe not so true. ..

89The issue is similar to that of the floating leg of a CDS: a claim paying at the time of
default D, does not seem to be replicable in terms of a finite number of tradable instruments.
It would seem that only within the framework of a term structure model (with a continuum
of tradable zeros, for a finite number of risk factors), could such a claim be replicable.

90Paying the positive part (mp)t looks like an option.
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Furthermore, it may be argued that a counterparty of lesser credit, (one for
which the insurance claim should not be ignored), is more likely not only to
have fewer trades, but also to have trades with cumulative (rather than netting)
effects on the risk. When this is the case, approximating the insurance claim of
a portfolio by those of its constituents, will lead to a lesser discrepancy.

In order to deal with the issue of a non-replicable insurance claim, we may re-
sort to the same approximation as that of section (3.3): by discretising the time
interval ]0, 7] between now and the maturity of a claim, into smaller intervals
Jtic1,ti] for 0 =tg < ... < t, =T, it seems reasonable view the insurance claim,
as paying (m, )" at time ¢;, provided default occurs in the interval Jt;_1,¢;]. In
other words, we may approximate the insurance claim, as a portfolio of single
claims C1, ..., Cy, where each C; has maturity t;, and payoff (7, )" 14, < p<t,y-
In fact, since 1y, <p<t,} = 1{p>t,_,} — 1{p>t,}, each single claim C; can be
exactly expressed as a long position in the claim with payoff (ﬂti)+1{D>ti71})
together with a short position in the claim with payoff (m, )" 1psy,3-

For example, when the underlying claim is just an ordinary interest rate
swap, the two claims (7¢,)*1{psy,_,} and (7)Y 1{psy,) are respectively a de-
layed risky swaption and risky swaption, as defined in section 3.7. The insur-
ance claim associated with an interest rate swap, can therefore be reasonably
approximated and priced. However, the problem is slightly more complicated
than suggested here. Strictly speaking, the swap underlying each risky swap-
tion is not a forward starting swap, but a swap with slightly more complex
features: Assuming the dates tg,...,t, have been chosen to match the floating
schedule of the original swap, each floating payment (maybe associated with a
fixed payment) occurring at time ¢; has to be incorporated as part of the un-
derlying swap of the two risky swaptions with expiry ¢;. Obviously, if default
was to occur in the interval |¢;,_1,¢;], the coupon payments due at time ¢; would
have a big impact on the mark-to-market of the original swap and cannot be
ignored. It follows that the two risky swaptions are strictly speaking swaptions
with penalty,” rather than normal swaptions. Furthermore, in the very com-
mon case when the frequency of the floating leg is higher than that of the fixed
leg, the swap underlying each risky swaption pays a full first coupon on the
fixed leg. This is equivalent to a normal swap (i.e. with a short first coupon),
with an additional penalty paid in the near future.”> This new difficulty cannot
be ignored: the mismatch in frequency between a floating and fixed leg of a
swap, is one of the major factors on its market-to-market. One can easily be-
lieve that the insurance claim associated with receiving annual vs 3s, should be
significantly more expensive than that associated with paying annual vs 3s...

Despite these difficulties, the risky swaptions can easily be approximated by
translating the penalties into an adjustment to the strike. Formula (60) and (61)
can then be used to derive the price of each single claim C;, and finally obtain
the price of the insurance claim associated with an interest rate swap.

91The penalty is strictly speaking path-dependent, linked to the last floating fixing.
92This penalty bears a small discounting risk.
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A Appendix
A.1 SDE for Cash-Tradable Asset and one Numeraire

In this appendix, we show how Ito’s lemma can be used, to check that equa-
tion (9) is indeed a solution of the SDE (8). Taking ¢ = 0, this will also prove
that equation (7) is a solution of the SDE (6). Equation (9) can be written as
m = ByC}, where C is the semi-martingale defined by:

t t
C =20 / 0.dX, + / bydy, (62)
By Jo 0

(From Ito’s lemma, we have:
dmy = CydBy + BydCy + d(B, C), (63)
where (B, C) is the cross-variation between B and C. From (62), we obtain:
d(B,C); = 0,d(B, X); + 1 d(B,Y ), (64)

and furthermore: R .
BtdCt = HtBtht + ’LptBtdY;g (65)

Applying Ito’s lemma once more to X = BX and Y = BY', we have:
0, B,dX; + 0,d(B, X); = 6,dX; — 0, X,dB; (66)

and:
Y BydY; + Y d(B,Y), = pdY; — 4 Y1d B, (67)

Adding (64) together with (65), using (66) and (67), we obtain:
BydC; 4 d(B,C); = 6;dX; — 0, XdB; 4 1,dY; — 1, Y;dB; (68)
and finally from (63):

dmy = %dBt + 0,dX; + Y dY; — 0, X,dB; — 1, Y,dB, (69)
t

which in light of X = X/B and Y = Y/B, shows that SDE (8) is satisfied by 7.
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A.2 SDE for Futures-Tradable Asset and one Numeraire

In this appendix, we show how Ito’s lemma can be used, to check that equa-
tion (11) is indeed a solution of the SDE (10). Equation (11) can be written as
m = ByC}, where C is the semi-martingale defined by:

t
Cp =20 4 / f,dX, (70)
By Jo
(From Ito’s lemma, we have:
d7Tt = CtdBt + BtdC’t + d<B, C>t (71)

where (B, C) is the cross-variation between B and C. From (70), we obtain:

d(B,C); = 0,d(B, X )¢ (72)
and furthermore: ) .
BtdCt = QtBtht (73)
Applying Ito’s lemma to X = XelX:Bl,
dX; = X;d[X, B, + e PldX, (74)
and in particular: .
d(B,X), = e Bleq(B, X)), (75)

From (72), (75) and the fact that 6 = (#el*B])/B, we obtain:%3

0
d(B,C); = z-d(B,X): = 0, X,d|X, B, (76)
t

Furthermore from (73): .
BtdC’t = GtG[X’B]tht (77)

Finally, from (77), (76) and (74):
BdC + d(B,C); = 0:dX, (78)
We conclude from (78) and (71) that:

dry = —LdB, + 0,dX, (79)
B,

which is exactly the SDE (10).

93Recall that the bracket [X, B] is defined as [X, B]; = fot X7'ByYd(X, B)s.
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A.3 SDE for Funded Asset and one Numeraire

In this appendix, we show that equation (9) reduces to equation (13) in the case
when ¢ = —0X/Y. Equation (9) can be written as:

— (;_‘; +/Ot 0,d(X/B), - /Ot %d(Y/B)S) (80)

S

Using the fact that X/B = (X/Y) x (Y/B) = X’/B’ and X = X'e~ X5

X 1
d(X/B); — Ytd(Y/B)t ngt/ +d(X",1/B)
t

t

1 1
= E{ (dXt, - Eéd<X,’B/>t>
1
= L - X p,)
t
]_ ’ ’ A~
- EG[X ,B]tht

t

and from 6 = (0elX"B'1) /B’ we conclude from (80) that:

t
Ty = By (%(; +/ éngG) (81)
0

which is the same as equation (13).

A.4 SDE for Funded Asset and one Collapsing Numeraire

In this appendix, we outline the proof that equation (22) is a solution of the
SDE (21). A major difficulty in doing so, is the use of stochastic calculus within
the framework of potentially discontinuous semi-martingales. Equation (22) can
be written as m; = BC}, where C' is the continuous semi-martingale defined by:

™0 t s
c =0y / b.dx, (82)
BO 0

Applying Ito’s lemma, we have:**

dﬂ't = Ct,dBt + Bt,dCt + 1{t§D}d<B*7 C>t + ABtACt (83)

Since C' is continuous, AB;AC; = 0. Moreover, since dB; = 0 for t > D% and
Cy— =m— /B for t < D, we can replace Cy_ by m;—/Bj in (83). Furthermore,

948ee [2], Th. (38.3) p.392. See also Def. (37.6) p. 389. Do note confuse the notation
[X,Y] in this reference, with our bracket. Note that the continuous part of B, as understood

by this reference, is the stopped process B}, ,, which explains the 1< pj} in equation (83).

95A casual way of saying that [ 1sdBs = [ 1sdBs for all t > D and all 1.
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since B;— = 0 for t > D, and B;_ = Bj for ¢ < D, we can replace B;_ by

Bi1<py in (83). We obtain:

Tt

t
From (82), we have dC; = 6,dX, and consequently:
Bily<pydCy = Bifly<pydX,
= Ef)te[x/’Bl]"l{th}dXt (85)
Furthermore: . .
;From X = X’e~X"B'l we obtain:
dX; = —Xyd[ X', B'), + e X" Blgx! (87)
It follows that: R o
d(B*,X), = e X"Blq(B* X', (88)
Combining (88) with (86), we obtain:
ly<pyd(B*,C)y = bW Bl pyd(B*, X'), (89)
Furthermore, combining (87) with (85), we obtain:
BilpepydCy = =X Yi0ie™ Pl pyd(X', Bl + 0Vl < pydX]
0.Y;
= _;?jl{tSD}CKX/? Bl>t + etY;tl{th}dXé (90)
Applying Ito’s lemma to B* = B'Y, we have:
dB; = BdY; + Y:dB; + d{B',Y ), (91)
and in particular:
d(B*, X"}y = Bid(Y, X"} + Y:d(X', B, (92)
Combining (92) and (89), we obtain:
* 0.Y;
Li<pyd(B*,C)y = 01 1< pyd(Y, X'); + %1{tSD}d<X’, B, (93)
t
Adding (90) with (93), we obtain:
B:l{tSD}dCt + 1{t§D}d<B*, C>t = gthl{th}dth + gtl{th}d<Y7 X’>t
= Olp<py (VidX;+d(Y, X))
X
= Olpu<py (dXt — %di@)
t
0. X,
= Odx) - tY Lay,” (94)
t
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Comparing (94) with (84), we conclude that:

0.X,
dY,

dmy = 2= dB, + 0,dXP —
Bt
which is exactly the SDE (21).

A.5 SDE for Collapsing Asset and Numeraire

In this appendix, we outline the proof that equation (46) is a solution of the
SDE (44). Equation (46) can be written as m; = B;C}, where C is the continuous
semi-martingale defined by:

™0 ¢ 5
=Ty / 0,d%, (96)
BO 0

Applying Ito’s lemma, we have:
dﬂ't = Ct_dBt + Bt_dCt + 1{t§D}d<B*7 C>t + ABtACt (97)

Since C' is continuous, AB;AC; = 0. Moreover, since dB; = 0 for t > D and
Cy— =m_ /By for t < D, we can replace C;_ by m— /Bf in (97). Furthermore,
since B,_ = 0 for t > D and B,— = B} for t < D, we can replace B;,_ by
Bi1<py in (97). We obtain:

Tt

t

;From (96), we have dC; = 6,dX,, and consequently:
B} 1y<pydCy = B} 0y1(;< pydX; (99)

Furthermore: .
Applying Ito’s lemma to X* = XB*, we obtain:

X . .
dX; — Bi dBf = BfdX; +d(B*, X), (101)
t

Adding (99) and (100), and comparing with (101):
Bt 1{t§D}dCt + 1{t§D}d<B ,C>t = gtl{th} dXt — _B* dBt (102)
¢
(From (102) and (98), we obtain:

_ X7
d7Tt = Trt—*dBt + Htl{t<D} (d)(;< — —idB:) (103)
B; B B;
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Defining I; = 1< py and applying Ito’s lemma to X = X*I:
dX; = I dX] + X[ dly = 1y<pyd X + X[ dI; (104)
and similarly, since B = B*I:
dB; = ly<pydBf + Bfdl, (105)

JFrom (104) and (105), we obtain:

X; X;
li<py (dXt* - B—idBt*> =dX; — Bi dB; (106)
t t

and comparing (106) and (103):
T— X7
dmy = Bj—t*dBt + 6, <dXt - B—tidBt) (107)

Since dB; = 0 for t > D and X; = X;_ for t < D, we can replace X; by X;_
in equation (107), obtaining the SDE (44).

A.6 Change of Measure and New SDE for Risky Swaption

We assume that C'Fe~lCFF] and e~ [C"F] are martingales under Q' and
define dQ = Z7dQ’', where Zp = (Voe_[c/’P]T/CO)C’T. We claim that Fe~[F°F]
is a martingale under Q. Let (F;):>0 be our filtration, let s < ¢t and A € F;.
Since Vp = 1, we have:

V !

Eg[laF] = FZEQ/HAEC’T@*[C Pl (108)
— ?EQ/[lAFtCée’[C/’P]‘] (109)

0
- %e[EPhE@, [14C)Fye~[C"F Pl (110)
_ Ee[F,P]tEQI [1A0;F86—[C/F,P]s] (111)

Co
_ g(;e([F,P]tf[F,P]s)EQ,[]_AFSCTC*[C/xP]T] (112)
— e([va]t_[va]s)EQ[lAF's] (113)

where §109) was obtained from the fact that 14 F} is measurable w.r. to F; and
C'e~[CP] is a martingale under @Q’, (111) was obtained from the fact that 14
is measurable w.r. to F, and C'Fe~[€'F-Fl is a martingale under @', and (112)
was obtained from the fact that 14 F is measurable w.r. to Fs and Ce~[C P is
a martingale under @Q’. We conclude that Eg[Fe~""Flt|F] = Fye PPl and
Fe~[F'P] is indeed a martingale under Q.

37



The fact that equation (58) is a solution of the SDE (57), can be seen from

the following equation:%°

dB, dcP avP  V, (BC c B
S/ Y G Y i 114
B TC, v, BG\V ), =ty (114)

which allows (57) to be re-expressed as:

dmy + 1< pym—d[C’, Py = 0,d(CF)P — 0, F,dCP + ‘gfg d(BC/V); (115)
t vt
or equivalently:
~ * D * D Vvt’frt*
divy = 0;d(CF) = 0; FdCP + o ==d(BC/V), (116)
t it

where we have put #; = melC Flian and 0y = 0,elC"-Pliap - Equation (116)
being formally identical to (21), we see from (22) that:

A B.Cy ( moWo /tA r
_ 0,dE, 117
7= 0 (o [ duar: (1)

—[F,P] 97
e IF P

where the semi-martingale F' is defined as F' = F and the process 6 is

defined as 6 = (6*el"F1)/P. Finally, we obtain:

BtCt 7T()V() /t A ~ _[C’. P
= 0,dE, | e~ [C"Pliap 118
m= S (o [ dar) e (1)

and since By =0 for ¢ > D, we can drop the t A D in [C’, P|iap, yielding (58).
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