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1 Introduction

Jump diffusion models (Merton, 1976) have two weaknesses: they don’t allow you to hedge
and the parameters are very hard to measure. Nobody likes a model that tells you that
hedging is impossible (even though that may correspond to common sense) and in the
classical jump-diffusion model of Merton the best that you can do is a kind of average
hedging. It may be quite easy to estimate the impact of a rare event such as a crash, but
estimating the probability of that rare event is another matter. In this paper we discuss a
model for pricing and hedging a portfolio of derivatives that takes into account the effect
of an extreme movement in the underlying but we will make no assumptions about the
timing of this ‘crash’ or the probability distribution of its size, except that we put an upper
bound on the latter. This effectively gets around the difficulty of estimating the likelihood
of the rare event. The pricing follows from the assumption that the worst scenario actually
happens i.e. the size and time of the crash are such as to give the option its worst value.
And hedging, delta and static hedging, will continue to play a key role. The optimal static
hedge follows from the desire to make the best of this worst value. This, latter, static
hedging follows from the desire to optimize a portfolio’s value. We also show how to use
the model to evaluate the value at risk for a portfolio of options.

More details of the model are contained in Hua (1997), Hua & Wilmott 91997) and the
text Wilmott (1998).

2 Value at risk

The true business of a financial institution is to manage risk. The trader manages ‘normal
event’ risk, where the world operates close to a Black—Scholes one of random walks and
dynamic hedging. The institution, however, views its portfolio on a ‘big picture’ scale and
focuses on ‘tail events’ where liquidity and large jumps are important.



Value at Risk (VaR) is a measure of the potential losses due to a movement in underlying
markets. It usually has associated with it a timeframe and an estimate of the maximum
sudden change thought likely in the markets. There is also a ‘confidence interval’; for
example, the daily VaR is $15 million with a degree of confidence of 99%.

A more general and more encompassing definition of VaR will give a useful tool to both
book runners and senior management. A true measure of the risk in a portfolio will answer
the question ‘What is the value of any realistic market movement to my portfolio?’

The approach taken here in finding the value at risk for a portfolio is to model the cost
to a portfolio of a crash in the underlying. We show how to value the cost of a crash in a
worst-case scenario, and also how to find an optimal static hedge to minimize this cost and
so reduce the value at risk.

3 A simple example: the hedged call

To motivate the problem and model, consider this simple example. You hold a long call
position, delta hedged in the Black—Scholes fashion. What is the worst that can happen, in
terms of crashes, for the value of your portfolio? One might naively say that a crash is bad
for the portfolio, after all, look at the Black—Scholes value for a call as a function of the
underlying, the lower the underlying the lower the call value. Wrong. Remember you hold a
hedged position; the position is currently delta neutral and the portfolio’s value is currently
at its minimum; a sudden fall (or, indeed, a rise) will result in a higher portfolio value,
a crash is beneficial. If we are assuming a worst-case scenario, then the worst that could
happen is that there is no crash. Changing all the signs to consider a short call position
we find that a crash is bad, but how do we find the worst case? If there is going to be one
crash of 10% when is the worst time for this to happen? This is the motivation for the
model below. Note first that, generally speaking, a positive gamma position benefits from
a crash, while a negative gamma position loses.

4 A mathematical model for a crash

The main idea in the following model is simple. We assume that the worst will happen. We
value all contracts assuming this, and then, unless we are very unlucky and the worst does
happen, we will be pleasantly surprised. In this context, ‘pleasantly surprised’ means that
we make more money than we expected. We can draw an important distinction between
this model and the jump diffusion models. In the latter we make bold statements about
the frequency and distribution of jumps and finally take expectations to arrive at a value
for a derivative. Here we make no statements about the distribution of either the jump size
or when it will happen. At most the number of jumps is limited. Finally, we examine the
worst-case scenario so that no expectations are taken.

We will model the underlying asset price behaviour as the classical binomial tree, but
with the addition of a third state, corresponding to a large movement in the asset. So,
really, we have a trinomial walk but with the lowest branch being to a significantly more
distant asset value. The up and down diffusive branches are modeled in the usual binomial
fashion. For simplicity, assume that the crash, when it happens, is from S to (1 — k)S with
k given; this assumption can easily be dropped to allow k to cover a range of values, or even
to allow a dramatic rise in the value of the underlying. Introduce the subscript 1 to denote
values of the option before the crash i.e. with one crash allowed, and 0 to denote values



after. Thus Vp is the value of the option position after the crash. This is a function of S
and t and, since we are only permitting one crash, ¥y must be exactly the Black—Scholes
option value.

If the underlying asset starts at value S it can go to one of three values: uS, if the asset
rises, call this state A; vS, if the asset falls, state B; (1 — k)5S, if there is a crash, state
C. The values for «.S and vS are chosen in the usual manner for the traditional binomial
model.

Before the asset price moves, we set up a ‘hedged’ portfolio, consisting of our option
position and —A of the underlying asset. At this time our option has value V;. We must
find both an optimal A and then V7.

A time 6t later the asset value has moved to one of the three states, A, B or C and at
the same time the option value becomes either Vi (for state A), Vi~ (for state B) or the
Black-Scholes value Vj (for state C).

The change in the value of the portfolio, between times ¢ and ¢ + 6¢ (denoted by ¢II) is
given by the following expressions for the three possible states:

§My = VT — AuS + AS — v;  (diffusive rise)
Sllp=Vy — AvS + AS —V; (diffusive fall)
6llc = Vo + AkS — Vi (crash).
Our aim in what follows is to choose the hedge ratio A so as to minimize the pessimistic,
worst outcome among the three possible.
There are two cases to consider. The first, Case I, is when the worst-case scenario is not

the crash but the simple diffusive movement of S. In this case Vg is sufficiently large for a

crash to be beneficial:
Vit

uS —vS
If Vpy is smaller than this, then the worst scenario is a crash; this is Case II.

Vo> Vim+ (S —uS — kS)

(1)

4.1 Case I: Black—Scholes hedging

The maximal-lowest value for §II occurs at the point where

61 4 = 611 B,
that is N
Vit —Vi
A=t 1 (2)
uS —vS

This will be recognised as the expression for the hedge ratio in a Black—Scholes world.
Having chosen A, we now determine V; by setting the return on the portfolio equal to
the risk-free interest rate. Thus we set

6114 = r1I 6t
to get

1 Vit v
Vi= —— (VT + (S —uS +r86t)—2L . 3

=7 + r ot < ! ( ! ' ) uS —vS (3)
This is the equation to solve if we are in Case I. Note that it corresponds exactly to the
usual binomial version of the Black—Scholes equation, there is no mention of the value of
the portfolio at the point C. As §t goes to zero, (2) becomes the 9V /S and Equation (3)
becomes the Black—Scholes partial differential equation.



4.2 Case II: Crash hedging

In this case the value for Vj is low enough for a crash to give the lowest value for the jump
in the portfolio. We therefore choose A to maximise this worst case. Thus we choose

61l 4 = 61,
that is,
Vo — Vit
A = # (4)
S —uS — kS
Now set
6114 = rl1I 6t
to get
Vi = Vo + S(k + 1 61)— 2 n (5)
YT s\ TS T uSs — kS |

This is the equation to solve when we are in Case II. Note that this is different from the
usual binomial equation, and does not give the Black—Scholes partial differential equation
as &t goes to zero. Also (4) is not the Black—Scholes delta.

5 An example

All that remains to be done is to solve equations (3) and (5) (which one is valid at any asset
value and at any point in time depends on whether or not (1) is satisfied). This is easily
done by working backwards down the tree from expiry in the usual binomial fashion.

As an example, examine the cost of a 15% crash on a portfolio consisting of the call
options in Table 1.

Strike | Expiry | Bid | Ask | Quantity
100 75 days -3
80 75 days 2
90 75 days | 11.2 | 12 0

Table 1: Available contracts.

At the moment the portfolio only contains the first two options. Later we will add some
of the third option for static hedging, that is when the bid-ask prices will concern us. The
volatility of the underlying is 17.5% and the risk-free interest rate is 6%.

The value of the portfolio assuming the worst is 21.2 when the spot is 100. This is
significantly lower than the Black—Scholes value of 30.5. This large difference is due to the
portfolio’s gamma being highly negative. When the gamma is positive, a crash is beneficial
to the portfolio’s value. When the gamma is close to zero, the delta hedge is very accurate
and the option is insensitive to a crash. If the asset price is currently 100, the difference
between the before and after portfolio values is 30.5 — 21.2 = 9.3. This is the ‘Value at
Risk’ under the worst-case scenario.



6 Optimal static hedging: VaR reduction

The 9.3 value at risk is due to the negative gamma around the asset price of 100. An obvious
hedging strategy that will offset some of this risk is to buy some positive gamma as a ‘static’
hedge. In other words, we should buy an option or options having a counterbalancing effect
on the value at risk. We are willing to pay a premium for such an option. We may even
pay more than the Black—Scholes fair value for such a static hedge because of the extra
benefit that it gives us in reducing our exposure to a crash. Moreover, if we have a choice
of contracts with which to statically hedge we should buy the most ‘efficient’ one. To see
what this means consider the above example in more detail.

Recall that the value of the initial portfolio under the worst-case scenario is 21.2. How
many of the 90 calls should we buy (for 12) or sell (for 11.2) to make the best of this
scenario? Suppose that we buy A of these calls. We will now find the optimal value for A.

The cost of this hedge is

AC(X)

where C'()) is 12 if X is positive and 11.2 otherwise. Now solve Equations (3) and (5) with
the final total payoffs

Vo(S,T) = Vi(S,T) = 2max(S — 80,0) — 3max(S — 100, 0) + A max(S — 90, 0).

This is the payoff at time T for the statically hedged portfolio. The marginal value of the
original portfolio (that is, the portfolio of the 80 and 100 calls) is therefore

V1(100,0) — AC(A,) (6)

i.e. the worst-case value for the new portfolio less the cost of the static hedge. The arguments
of the before-crash option value are 100 and 0 because they are today’s asset value and date.
The optimality in this hedge arises when we choose the quantity A to maximize the value,
expression (6). With the bid-ask spread in the 90 calls being 11.2-12, we find that buying
3.5 of the calls maximizes expression (6). The value of the new portfolio is 70.7 in a Black-
Scholes world and 65.0 under our worst-case scenario. The value at risk has been reduced
from 9.3 to 70.7 — 65 = 5.7. The optimal static hedge is known as the ‘Platinum Hedge.’

7 Continuous-time limit

If we let 6t — 0 in Equations (1), (2), 3), (4) and (5) we find that the Black—Scholes equation
is still satisfied by V1(S,¢) but we also have the constraint

A%

0 Q

Vi(S.t) — kS

(S.1) < Vo(S(1 = k), 1), (7)

Such a problem is similar in principal to the American option valuation problem, where
we also have a constraint on the derivative’s value. Here the constraint is more complicated.
To this we must add the condition that the first derivative of V7 must be continuous for
t<T.

8 Conclusion

We have presented a model for the effect of an extreme market movement on the value of
portfolios of derivative products. This is an alternative way of looking at value at risk. We



have shown how to employ static hedging to minimise this VaR. In conclusion, note that the
above is not a jump-diffusion model since we have deliberately not specified any probability
distribution for the size or the timing of the jump: we model the worst-case scenario.

One further thought is that we have not allowed for the rise in volatility that accompanies
crashes. This can be done with ease. There is no reason why the after-crash model (Vg in
the simplest case above) cannot have a different volatility from the before-crash model. See
Derman & Zou (1997) for relevant data.
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