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Abstract

This paper investigates the nature of the credit risk premium adjust-
ments in the Jarrow-Lando-Turnbull model of credit risk spreads. The
adjustments relate the equivalent martingale measures to the empirical
measures of unconditional transition probabilities. We provide a modified
version of the risk adjustment that allows a linear partition of the credit
spread into an unconditional default component, a recovery component,
and the risk premium adjustment. The risk adjustments are related to
conditional default risk, illiquidity risk, and other factors not related to
recovery effects. The log-transform of these risk adjustments can be spec-
ified as linear regressions on a set of macroeconomic variables. Some new
insights are gained pertaining to these conditional risks such as a typical
upward sloping term structure and sensitivity to short-term Treasury rates
and increasing forward rates. The conditional risks appear to be insensitive
to market returns.
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1 Introduction

Credit spread is the additional yield required by the market in holding credit-risky

corporate bond relative to Treasury bond of the same maturity. The spread is

typically computed as the difference between the spot rates of the corporate and

the Treasury discount bonds. Understanding the economic factors that influence

credit spread dynamics is an important issue in finance as the spreads determine

relative corporate bond prices.

Duffee (1998) indicates that 3-month Treasury rate and also Treasury slope

(30-year Treasury bond rate less 3-month bill rate) have negative impact on credit

spread changes. Izvorski (1997) shows the importance of recovery ratios and

survival times in determining corporate bond prices. Similar variables were used

by Fons (1994) to explain credit spread term structures. Janosi, Jarrow and

Yildrim (2002) show components of expected losses and liquidity discounts in

debt prices and thus credit spreads. Bevan and Garzarelli (2000) relate credit

spread movements to business cycle variables. Collin-Dufresne, Goldstein and

Martin (2001) find credit-related economic variables such as leverage, liquidity

proxies, and volatility that help to explain a part of credit spread movement.

They also show S&P 500 market returns to be negatively correlated with credit

spreads. Elton, Gruber, Agrawal and Mann (2001) suggest that unexplained

spread movements are related to systematic risks in the economy. This idea was

also contained in Pedrosa and Roll (1998). Wu and Yu (1996) consider preference

factor such as risk aversion to also impact on debt yield dynamics. Yu (2002)

shows empirically that firms with higher accounting disclosures tend to have lower

credit spreads. Duffie and Lando (2001) provide the theory for the impact of

accounting information on credit spreads.

Huang and Huang (2002) find that default risk accounts for only a small

fraction of the credit spread. Other factors would include illiquidity, and call

and conversion features. Collin-Dufresne, Goldstein, and Martin (2001) find that

traditional model factors could explain only a small fraction of the variation

in credit spreads. Thus it is interesting to examine the credit spread and its

constitution.

The Jarrow, Lando, and Turnbull (1997) (JLT) model of credit risk spread is
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a no-arbitrage equilibrium pricing model, and is interesting because it explicitly

incorporates the empirical probability of default of a corporate bond into its equi-

librium pricing. Other studies such as Elton, Gruber, Agrawal, and Mann (2001)

employ additional risk-neutral assumptions in order to price corporate credit risk

premium, or else rely on regression models without explicitly characterizing the

equilibrium.

In this paper we investigate the nature of the credit risk premium adjustments

in the JLT model of credit risk spreads. The adjustments relate the equivalent

martingale measures to the empirical measures of unconditional transition proba-

bilities. We provide a modified version of the risk adjustment that allows a linear

partition of the credit risk spread into an unconditional default component, a re-

covery component, and the risk premium adjustments. The risk adjustments are

related to conditional default risk, illiquidity risk, and other factors not related

to recovery effects. A log-transform of these risk adjustments can be specified as

linear regressions on a set of macroeconomic variables.

This extension of the JLT model is interesting in at least two aspects. We show

how to motivate the intuition behind the risk premium adjustments and relate

it to credit spread studies where spreads are regression relations on macroeco-

nomic and other explanatory variables. These adjustments are not necessarily

deterministic functions.

Our modified risk adjustments also allow a parsimonious term structure of

conditional default, illiquidity and other conditional risks to be estimated and

tested. As we eliminate bonds that introduce convertibility complications, and

also employ the JLT procedure to remove the callability effect, the other condi-

tional risks in addition to the mostly illiquidity risk are likely to be risks related

to diversification aspects of the bond in a portfolio context.

In the next section, we show the theoretical construction of the credit risk

spread components in the context of the JLT model. We also show two propo-

sitions about the properties of the modified risk adjustments. These properties

will be reviewed in the empirical examination in section 3. In section 3, we dis-

cuss the data and method of setting up the regression analysis. The empirical

results of the regressions are then reported and discussed. Section 4 provides the
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conclusions.

2 Credit risk Premia

Jarrow, Lando, and Turnbull (1997) and Kijima and Komoribayashi (1997) em-

ploy a time-homogeneous finite state space Markov chain to represent the empir-

ical unconditional transition probabilities of bond credit ratings. This is the per

period transition matrix Q under the empirical probability, and is expressed as

Q =




q11 q12 . . . q1K

q21 q22 . . . q2K

...
... qij

...

qK−1,1 qK−1,2 . . . qK−1,K

0 0 . . . 1



.

The element qij represents the transition probability of a corporate bond migrat-

ing from state or rating i at time t to state or rating j in the next period at time

t+1, for each t. The transition probabilities satisfy the following three conditions.

(i) 0 ≤ qij ≤ 1 ,∀i, j, (ii)
∑K

j=1 qij = 1 ,∀i, and (iii) qiK < 1 ,∀i 6= K. State K

is an absorbing state representing bond default. Condition (iii) is really a mild

assumption to ensure that ex-ante no bonds would default with probability 1 in

finite horizon.

For pricing of credit derivatives, including defaultable bonds, the fundamental

theorem of stochastic finance under complete market no-arbitrage equilibrium

states that there exists a unique equivalent martingale measure (EMM) on the

transition probabilities.

Let Q̃(t, t + 1) be a per period transition matrix at time t under the EMM,

that is generally not time-homogeneous, and equivalent to Q.

Q̃(t, t+ 1) =




q̃11(t, t+ 1) q̃12(t, t+ 1) . . . q̃1K(t, t+ 1)

q̃21(t, t+ 1) q̃22(t, t+ 1) . . . q̃2K(t, t+ 1)
...

... q̃ij(t, t+ 1)
...

q̃K−1,1(t, t+ 1) q̃K−1,2(t, t+ 1) . . . q̃K−1,K(t, t+ 1)

0 0 . . . 1



.
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The element q̃ij(t, t + 1) represents the EMM transition probability of a cor-

porate bond migrating from rating i at time t to rating j in the next period at

time t+ 1. The EMM transition probabilities satisfy the following conditions. (i)

0 ≤ q̃ij(t, t+ 1) ≤ 1 ,∀t, ∀i, j 6= K, and (ii)
∑K

j=1 q̃ij(t, t+ 1) = 1 ,∀t, i.
Let Q̃i(t, t+1) be the ith column of K×K matrix Q̃(t, t+1), and Q̃K(T−1, T )

be the Kth column of K ×K matrix Q̃(T − 1, T ). Then,

q̃iK(t, T ) = Q̃i(t, t+ 1)T × Q̃(t+ 1, t+ 2)× · · · × Q̃(T − 2, T − 1)× Q̃K(T − 1, T )

denotes the EMM probability of default of a bond by time T , starting from

rating i at time t. The superscript T in the expression denotes matrix transpose.

Thus q̃iK is well defined. It is important to note that the default probabilities

q̃iK(t, T ) and its empirical equivalent qiK(t, T ) are probabilities of default at any

time between t and T inclusive. They are not marginal default probabilities.

In the JLT Markov model, suppose v(t, T ) and p(t, T ) are respectively the

credit-risky or defaultable discount bond price and riskfree discount bond price

at time t with bond maturity at time T , and suppose δi ∈ (0, 1) is the recovery

rate at maturity T in the event of default for bond with rating i during [t, T ],

then

vi(t, T ) = p(t, T ) [(1− q̃iK(t, T )) + δiq̃iK(t, T )] (1)

where the par value of bond is normalized at 1. The stylized feature of the JLT

model is the assumption that recovery of fraction δi occurs at maturity T when

default occurs at any time within (t, T ]. This may differ from other models as in

Elton et.al. (2001) where marginal default probabilities are used instead.

The EMM probability of default by time T , of a bond at rating i starting at

time t, is therefore

q̃iK(t, T ) =
p(t, T )− vi(t, T )

p(t, T )(1− δi) . (2)

The subscript i to v(t, T ) indicates that the defaultable corporate bond is in rating

i at time t. Thus, the EMM probability of default q̃iK(t, T ) ∈ [0, 1) provided

δi <
vi(t,T )
p(t,T )

.

Both Jarrow, Lando, and Turnbull (1997) and Kijima and Komoribayashi

(1997) (KK) employ a credit risk premium adjustment to relate the empirical
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transition probability qij to the EMM transition probability q̃ij. Based on empir-

ical evidence supplied by the latter, the JLT adjustment has a drawback in that

estimated EMM probability may be larger than 1. Thus, we choose instead to

use the KK version of JLT risk premium adjustment.

The KK model fixes

q̃ij(t, t+ 1) = πi(t, t+ 1)qij ,∀i, j, , i, j 6= K. (3)

Using the condition that 0 ≤ q̃iK(t, t + 1) < 1, for i 6= K, the following

boundaries on risk adjustment πi(t, t+ 1) are easily shown.

0 < πi(t, t+ 1) ≤ 1

1− qiK .
In the literature on credit spread pricing, most studies have relied on re-

gression analysis without explicitly characterizing the equilibrium probabilities.

Others have employed risk-neutral assumptions to circumvent the need to grapple

with EMM probabilities that are generally different from the empirical probabil-

ities. JLT model is interesting in that it attempts to link EMM probabilities

with empirical probabilities in a stylized manner. The linkage works via the risk

adjustments.

Both JLT and KK posit that such risk premium adjustments are determin-

istic functions of time, and thus introduce non time-homogeneity into the EMM

transition matrix. This is, however, a very strong assumption as we reason below.

From (1), with one period to maturity, it can be shown that

vi(T − 1, T ) = p(T − 1, T ) [δi + πi(T − 1, T )(1− qiK)(1− δi)] .

Since δi is a constant, the JLT and KK assumption is tantamount to vi(T−1,T )
p(T−1,T )

being ex-ante a deterministic function of time. The natural logarithm of its

inverse is the credit spread which is also a deterministic function of time under

this assumption. This imposes an unnecessarily rigid condition on the credit

spread dynamics.

In this paper, we relax such a strong assumption, and generalize πi(t, t+ 1) to

be a stochastic process indexed by time t that is adapted to information available

at time t. Indeed, we generalize the risk adjustment to cover bonds across the
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entire term structure. Relaxation of this assumption also allows for meaningful

regression analysis to understand the economic dynamics of the adjustments. This

is explained as follows.

From (2), for each i 6= K, at any time t < T ,

1−
∑

j 6=K
q̃ij(t, T ) =

p(t, T )− vi(t, T )

p(t, T )(1− δi) . (4)

We introduce a modification of the risk premium adjustment in (3) to be

q̃ij(t, T ) = πi(t, T )qij(t, T ) ,∀i, j, , i, j 6= K, (5)

where qij(t, T ) denotes the empirical probability of a bond in rating i at time t

ending up in rating j by time T . Then, substituting for q̃ij(t, T ) from (5), (4)

becomes

πi(t, T ) =
vi(t, T )− δip(t, T )

(1− qiK(t, T ))p(t, T )(1− δi) . (6)

This can be viewed as a useful generalization of the JLT or KK risk adjust-

ments because the factors here, πi(t, T ) are similar in form across term, i.e. T

can take any value greater than, and is thus not restricted to t+ 1. It also avoids

the complicated computations of adjustments in JLT or KK that together made

up an adjustment of a term greater than t + 1. A salient and useful feature of

this generalization is that we can interpret a transform of the adjustments as a

component of a linear partition of the credit spread.

From (1) and (5), we obtain

vi(t, T ) = p(t, T ) [δi + πi(t, T )(1− qiK(t, T ))(1− δi)] .

Thus the credit spread for bond with rating i and time to maturity T − t is

(T − t)−1 ln

[
p(t, T )

vi(t, T )

]
= −(T − t)−1 ln [δi + πi(t, T )(1− qiK(t, T ))(1− δi)] . (7)

From (7), it is straightforward to show that the partial derivatives of the credit

spread with respect to δi, qiK , and πi(t, T ) are respectively < 0, > 0, and <

0. Thus, reduced recovery, increased unconditional probability of default, and

reduced value of πi(t, T ) all lead to increase in credit spread, and vice-versa.
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It is instructive to consider the special case when δi = 0. Then

(T − t)−1 ln

[
p(t, T )

vi(t, T )

]
= −(T − t)−1 ln [πi(t, T )(1− qiK(t, T ))] .

Thus

Yi(t, T ) = (T − t)−1 ln
1

πi(t, T )
+ (T − t)−1 ln

1

1− qiK(t, T )
, (8)

where Yi(t, T ) is the credit spread (T − t)−1 ln
[
p(t,T )
vi(t,T )

]
. The positivity of the

risk adjustment ensures that (T − t)−1 ln 1
πi(t,T )

exists. Thus, in the absence of a

recovery factor, the credit spread is a linear combination of unconditional default

component, (T − t)−1 ln 1
1−qiK(t,T )

, and a log-transform of the risk adjustments.

The interpretation of the risk adjustment or its transform ln 1
πi(t,T )

is an im-

portant aspect of the contribution of this paper. From (8), it is obvious that

given many existing credit spread studies where spreads are regression relations

on macroeconomic and other explanatory variables, these adjustments are not

necessarily deterministic functions, but are indeed similar regression relations on

macroeconomic and other explanatory variables.

Suppose the risk adjustment at time t is a function of random variables X(t).

Then via (3), the EMM transition probabilities are functions of X(t), or are con-

ditional probabilities. (3) is explicit in terms of a relation between the EMM tran-

sition probabilities and the unconditional empirical transition probabilities. The

conditional empirical transition probabilities are not modelled here or in JLT1,

but is certainly related to the conditional EMM transition probabilities. Thus the

risk adjustments are related to the conditional empirical transition probabilities.

The dynamics of the risk adjustments would also reflect conditional default risk,

illiquidity risk, and other conditional risks not related to recovery effects.

From (6), we obtain

1

πi(t, T )
= (1− qiK(t, T ))(1− δi) p(t, T )

vi(t, T )
(1− δi p(t, T )

vi(t, T )
)−1.

1If the empirical transition probabilities are constant over time, i.e. not conditionally a
function of X(t), then strong implications such as πi(t, T ) < 1 for aggregate market risk aver-
sion, and the interpretation of the risk adjustments being non-default related factors would be
necessary.
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Thus,

p(t, T )

vi(t, T )
=

1

πi(t, T )

1

(1− qiK(t, T ))

(1− δi p(t,T )
vi(t,T )

)

(1− δi) .

Taking natural logarithms, and dividing by the term-to-maturity,

(T − t)−1 ln

[
p(t, T )

vi(t, T )

]
= (T − t)−1 ln

1

πi(t, T )
+ (T − t)−1 ln

1

1− qiK(t, T )

+ (T − t)−1 ln θi(t, T ), (9)

where θi(t, T ) =
(1−δi p(t,T )

vi(t,T )
)

(1−δi) is a recovery factor that increases credit spread when

recovery is reduced and vice-versa. Credit spread increases with the unconditional

default component 1
1−qiK(t,T )

when the empirical unconditional default probability

qiK(t, T ) is increased. Credit spread also increases with the negative logarithms

of the risk adjustment, ln 1
πi(t,T )

. We shall term this a conditional risk component.

Thus, our modified version of the risk adjustments in (5) allows a linear partition

of the credit spread into three components: an unconditional default component,

a recovery component, and a conditional risk component. This result in (9)

applies across different terms T .

For a particular bond rating i, by comparing across the maturity term, credit

spread slopes have implications on the term structure of the risk adjustments.

This is shown in Proposition 1.

Proposition 1: Given a downward sloping or flat credit spread term structure,

for time T ′ > T ,

πi(t, T
′) > πi(t, T ).

Proof: From (7), for time T ′ > T , a downward sloping or flat credit spread term

structure is represented by

ln [δi + πi(t, T
′)(1− qiK(t, T ′))(1− δi)]

≥ ln [δi + πi(t, T )(1− qiK(t, T ))(1− δi)]
T ′−t
T−t

> ln [δi + πi(t, T )(1− qiK(t, T ))(1− δi)] .
(10)

Thus, πi(t, T
′)(1 − qiK(t, T ′)) > πi(t, T )(1 − qiK(t, T )). As qiK(t, T ′) > qiK(t, T ),

we have πi(t, T
′) > πi(t, T ).
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Q.E.D.

The converse situation of an upward sloping credit spread slope, however,

can lead to the possibility of either cases of upward or downward sloping term

structures in the risk adjustments. However, if the credit spread rises at a suffi-

ciently fast rate, then there will be a downward sloping term structure in the risk

adjustments. This is shown in Proposition 2 below.

Proposition 2: If Yi(t, T
′) > Yi(t, T ) + (T ′ − t)−1 ln 1−qiK(t,T )

1−qiK(t,T ′) , for T ′ > T , then

πi(t, T
′) < πi(t, T ).

A necessary condition for the latter is Yi(t, T
′) > T−t

T ′−tYi(t, T ).

Proof: Suppose

(T ′ − t)−1 ln
p(t, T ′)
vi(t, T ′)

> (T − t)−1 ln
p(t, T )

vi(t, T )
+ (T ′ − t)−1 ln

1− qiK(t, T )

1− qiK(t, T ′)
.

This implies

ln
p(t, T ′)
vi(t, T ′)

> ln
p(t, T )

vi(t, T )
+ ln

1− qiK(t, T )

1− qiK(t, T ′)
.

Therefore,
vi(t, T

′)
p(t, T ′)

<
vi(t, T )

p(t, T )

(
1− qiK(t, T ′)
1− qiK(t, T )

)
.

Let β = 1−qiK(t,T ′)
1−qiK(t,T )

. Hence 0 < β < 1. This implies

vi(t, T
′)

p(t, T ′)
<
vi(t, T )

p(t, T )
β + δi(1− β).

Hence,

vi(t, T
′)− δip(t, T ′)

(1− qiK(t, T ′))p(t, T ′)(1− δi) <
vi(t, T )− δip(t, T )

(1− qiK(t, T ))p(t, T )(1− δi) .

From (6), it is readily seen that πi(t, T
′) < πi(t, T ).

The necessary condition is obtained from eliminating constants (1− δi) in the

following:

vi(t, T
′)− δip(t, T ′)

(1− qiK(t, T ′))p(t, T ′)(1− δi) <
vi(t, T )− δip(t, T )

(1− qiK(t, T ))p(t, T )(1− δi) .
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Then,

vi(t, T
′)

p(t, T ′)
− δi <

[
vi(t, T )

p(t, T )
− δi

]
β <

vi(t, T )

p(t, T )
− δi,

from which the result is readily obtained.

Q.E.D.

In the next section, the data and empirical methods are described, and then

the empirical results are reported. The time series properties of the risk adjust-

ments πi(t, T ) and the conditional risks will be examined.

3 Empirical Analysis

3.1 Data

The Lehman Brothers Fixed Income Database (LB)2 is employed in this study.

The LB database of US corporate bonds contains monthly information on their

CUSIP, company name, issue date, maturity date, trader-quoted prices, accrued

interest, annual coupon, amount outstanding, credit rating, callability, putability,

and industry code, amongst others. However, for the purpose of computing spot

rate curve, certain critical information are lacking in this database. It does not

appear to contain details such as coupon frequency, coupon dates, and coupon

change schedule. Although it indicates if a bond is callable, details of call dates

and call price schedule are not provided. There is also no information about

convertibility, which is a common bond feature. A sizeable number of floating

bonds also appear in this database.

Although the database contains both trader-quoted prices and matrix-computed

(model) prices, only trader-quoted prices are used in this study. Convertible,

putable, and floating-rate bonds are eliminated. Many of the remaining bonds

contain the call feature. Not all such bonds can be eliminated in order to keep a

2The LB database was available from the University of Houston prior to 1999, and contains
corporate bond data in the period 1973 till March 1998.
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sizeable sample. Bonds that are callable within one year from the price date are

eliminated. This is to reduce the complicity of the call premium.3

In order to perform bootstrapping to find the spot rate curve, the bonds

are tracked via their CUSIP in a separate Fixed Income Securities Database

(FISD)4, and their coupon frequency, coupon dates, and coupon change schedules

are recorded. LB bonds that do not match those in FISD or whose detailed

coupon information were not found in FISD were removed. These coupon details

provide for a far more accurate bootstrapping than usual assumptions of semi-

annual coupons, mid- and end-of tax year coupon dates, and zero coupon change,

that were used in some earlier studies. For any remaining callable bonds, their

call dates and call price schedules are recorded. Only bond data that contain

complete records of such coupon and call information are included. Bonds in the

LB database that have characteristics, e.g. ratings or maturity dates, that are

not consistent with the records in FISD for the same CUSIP are removed to avoid

data entry errors in the database.

The dataset is further restricted to bonds that are not obviously illiquid.

Those with amount outstanding of less than $10,000 are eliminated. Corporate

bonds with maturity longer than 10 years are not as regularly quoted, so the

sample contains bonds with maturities of 10 years or less. This study also per-

forms a pricing check such as in Elton, Gruber, Agrawal, and Mann (2001), and

a small number of bonds or less than 1% of the bonds, whose quoted prices fall

outside a 5% boundary of the theoretical price according to the spot rate curve,

are treated as data entry errors and are eliminated. Since rating change records

for speculative bonds are available in the database only after 1991, in order to

perform the empirical study of investment as well as speculative grade bonds, the

data sampling period from January 1992 to March 1998 is used.

The selected set of bond data is partitioned by months and for each month, it

3Crabble and Helwege (1994) show that such call options increased spreads by less than 10
basis points. Sarig and Warga (1989), Fons (1994), and Helwege and Turner (1999) all apply
some arbitrary criteria to reduce, but not eliminate, the number of callable bonds since they
form a substantial part of all corporate tradeable bonds.

4The FISD is provided by the LJS Global Information Services Inc. and covers the period
1987 till February 2002. Unlike the LB database, the data here are not arranged in monthly
fixed intervals.
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is sub-partitioned by the different corporate bond ratings according to Moody’s

ratings: Aaa, Aa, A, Baa, Ba, B, and Caa. The choice of Moody’s follows those of

the many earlier studies including JLT (1997) and KK (1998), and would enable

some degree of comparison. Moody’s also provides default probability data, rating

transition information and recovery rate that we can use for comparison purposes.

A priori there is no other reason to believe one particular agency’s rating system

is more appropriate than the other.

After all the various detailed checks and eliminations discussed above, of which

a sizeable number of bonds that were recorded as floating and putable were dis-

carded, we have a final sample size of 8804 bond prices, including Treasury bonds,

for the bootstrapping in the sample period we are studying. Of these, the num-

bers for the Aaa-rating, Aa-rating, A-rating, Baa-rating, Ba-rating, B-rating,

and Caa-rating are respectively 727, 1995, 2055, 1356, 890, 593, and 147. Since

the numbers of B-rating and Caa-rating speculative bonds are relatively scarce,

bootstrapping will not be performed for these two lower ratings.

The bootstrap method in Jarrow, Lando, and Turnbull (1997) is applied to

the bond data for each month and for each rating within the month. The algo-

rithm computes the yield-to-worst if a bond is callable. Then the bond price is

adjusted before the incremental spot rate is determined. The method assumes

linear interpolation in the discount function. The no-arbitrage condition of de-

creasing discount function is also imposed in the algorithm. By utilizing the

yield-to-worst adjustment as in JLT, the pricing bias introduced by residual call

premia is minimized, if not removed. The bootstrapped spot rate curve for each

month and each rating is also compared with spot rate curve derived using the

Litzenberger and Rolfo (1984) method. The differences are negligible.

Previous research such as the JLT and KK models, and also Moody’s yearly

corporate bond default reports apply the same recovery rate to corporate bonds

of the same seniority but of different ratings. Their reason is that a bond issue is

almost always below investment grade just prior to default, so its original rating

should play no role in determining its recovery rate. However, a company with

high rating could also be forced into bankruptcy if its capital structure is not

healthy and is thus short of cash to pay interest at a certain time. Altman
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and Kishore (1998) show that the recovery rates are different for the different

original ratings. This finding is in agreement with extant financial theory. Elton

et al.(2001) use the same set of recovery rates as in Altman and Kishore’s study.

In this paper, we utilize the same set of rates as in the above two studies. These

recovery rates are different for different ratings. They are as follows.

Recovery Rates

Original Rating Aaa Aa A Baa Ba B Caa

Recovery Rate% 68.34 59.59 60.63 49.42 39.05 37.54 38.02

Actual empirical default occurrences are noted based on records obtained from

the LB and the FISD databases. Credit migration occurrences are also noted.

For each month, the databases provide the numbers of occurrences of defaults

and of credit rating status of bonds originating with rating i, for each i, at the

beginning of the month.

Several macroeconomic variables are also employed in our analysis. Monthly

data of S&P500 stock index, U.S. 3-month Treasury yields, and U.S. 30-year Trea-

sury bond yields in the sample period January 1992 to March 1998 are collected

from Datastream. The Treasury slope or the term structure of riskfree rate is

calculated as the difference between the 30-year yield and the 3-month yield.

3.2 Method

For each month from January 1992 to March 1998 in the sampling period, and for

each rating i ∈ {Aaa,Aa,A,Baa,Ba}, the zero coupon discount bond prices of

various terms of 1-year, 2-year, 3-year, and so on till 10-year are computed based

on the spot rates ri(t, T ). The corresponding term riskfree spot rate, or spot

rate on the zero coupon Treasury, is r(t, T ). These spot rates are obtained from

the bootstrapped spot rate curves employing the JLT methodology mentioned in

the last sub-section. Thus the credit risky discount bond prices and the riskfree

discount bond prices are

vi(t, T ) = exp(−ri(t, T )(T − t))
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and

p(t, T ) = exp(−r(t, T )(T − t)).
These credit risky bond prices vi(t, T ) as well as riskfree bond prices p(t, T )

are generic to the rating class in JLT model. Some explanations are called for.

The JLT model contains no bond-specific or issuer related variables. Any bond

with the same rating, coupon structure, and maturity must follow the same spot

rate curve, regardless of the issuing firm and other specifics of the firm. Obvi-

ously there will be some variations in spot rates even amongst bonds of the same

rating and maturity if they belong to different firms with different specifics. One

treatment is to price bonds from each rating class by adding an error term to the

spot yield for the rating class.5 The JLT approach, however, is to assume such

within-rating-class variations are negligible, and to perform the bootstrapping al-

gorithm (which includes smoothing) that converts all such yields within the class

into a common spot rate curve that applies to all bonds in that rating class for

that point in time. We adopt the JLT approach in this paper.

The focus of this paper is on the risk adjustments expressed in (6). From

(6), for each month t and each credit rating i ∈ {Aaa,Aa,A,Baa,Ba}, the risk

adjustments πi(t, T ) of various terms of 1-year, 2-year, 3-year, and so on till 10-

year are computed. Apart from the inputs of prices vi(t, T ) and p(t, T ), and of

recovery rate δi, the input of default probability qiK(t, T ) is also required.

Actual numbers of defaults and of rating changes from the sample over the

months from January 1992 to March 1998 are used to compute estimates of

the empirical unconditional transition probabilities.6 The JLT model assumes a

constant per period empirical transition matrix or Markov Chain.

Q(0, 1) =




q11(0, 1) q12(0, 1) . . . q1K(0, 1)

q21(0, 1) q22(0, 1) . . . q2K(0, 1)
...

... qij(0, 1)
...

qK−1,1(0, 1) qK−1,2(0, 1) . . . qK−1,K(0, 1)

0 0 . . . 1



.

5This distinction is pointed out by a referee.
6We wish to thank the referee for pointing out the desirability of estimating the transition

probabilities instead of relying on published data by agencies such as RiskMetrics.
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where qij(0, 1) represents the unconditional transition probability of a corporate

bond migrating from rating i to j over a month. Therefore, we can estimate the

empirical transition probabilities using Anderson and Goodman (1957)’s maxi-

mum likelihood estimator

q̂ij =
nij
ni
,

where nij is the total number of i to j monthly transitions in the sample (including

remaining in state i), and ni is the total number of visits to state i at the beginning

of each month.

Application of the Chapman-Kolmogorov equation allows for estimation of

the 1-year unconditional transition probability matrix Q̂(1) = Q̂(0, 1)12. The n-

year unconditional transition probability matrix is estimated as Q̂(n) = Q̂(1)n.

The estimates are consistent and asymptotically efficient. Thus the empirical

probability of default qiK(t, T ) for a bond with rating i starting at month t, and

entering default by time T = t + 12n or within n years, is estimated by the

iK-element of Q̂(n).

The positivity of πi(t, T ) allows for a suitable specification of the risk adjust-

ment as

πi(t, T ) = exp (−f(X(t))) , (11)

where f : X(t) −→ < is a regression function. Specifically, we specify a linear

regression for the log-transform of the risk adjustment or the condition risk as

(T − t)−1 ln
1

πi(t, T )
= C0 + C1X1(t) + C2X2(t) + C3X3(t) + ε̃(t) (12)

where Cp’s are regression constants, Xp(t)’s are exogenous explanatory variables

at time t, and ε̃(t) is a disturbance term that has zero mean, is normally dis-

tributed, and is uncorrelated with the explanatory variables. The distributional

assumption is not critical when asymptotics are considered. We allow for un-

known forms of heteroskedasticity in the disturbances.

From the decomposition of the credit spread given by (9) and the discussion

in section 2, the conditional risk component above reflects conditional default

risk, illiquidity risk, and other risks not related to recovery effects. These condi-

tional risks may depend on the macroeconomic variables employed as exogenous

explanatory variables in the regression in (12).
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The regression in (12) allows for empirical estimation and forecasting of con-

ditional risks that are related to standard macroeconomic variables. Since the

conditional risks form a linear component of the credit spread, its correlation

with macroeconomic variables is consistent with existing results of correlations of

such variables with credit spread itself. Regression specification (12) also allows

a parsimonious term structure of conditional risks to be estimated and tested.

A note about the appropriateness of conditioning the risk adjustment, or its

log-transform, on exogenous variables is in order. From (6), the dependence of

πi(t, T ) on exogenous variables is equivalent to the dependence of πi(t, T )(1 −
qiK(t, T )) or

∑
j 6=K q̃ij on the exogenous variables. The latter is essentially a

situation where transition matrices (EMM in this case) can be dependent on

exogenous variables. Concerning this, many examples are found in the economics

literature. See, for examples, some of the earlier works, Boskin and Nold (1975)

and Toikka (1976), as discussed in Amemiya (1985, Chapter 11).

3.3 Results

In this section, empirical results obtained by employing the methods described in

the previous section are reported and discussed. The output tables and figures

are shown at the end of the paper.

Table 1 about here

In Table 1, we show the estimated empirical unconditional 1-year, 5-year, and

10-year transition probability matrices. The estimates are based on the maximum

likelihood method, and are thus consistent and asymptotically efficient given that

the standing assumption in JLT model is a constant per period transition proba-

bility matrix. The probability of default at any time within the interval increases

as interval time lengthens, and as rating becomes lower. This feature is impor-

tant for the proofs in the earlier section. Over a longer horizon or time interval,

the downgrade migration probabilities increase. However for lower grade specu-

lative bonds, there is actually increase in upgrade migration probabilities as well.
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These increases in downward and upward migrations are at the expense of the

probability of no change in rating transition.

Our transition probability estimates obtained in Table 1 may be compared

with some estimates in the literature. For example, the default rate for Caa

bonds over 1 year is 11.75% in our sample, but larger, 24.06% in Kijima and

Komoribayashi (1997, Exhibit 1). The default rate for Caa bonds over 5 year

is 43.29% in our sample, but slightly smaller, 39.5% in Barnhill, Maxwell, and

Shenkman (1999, p.149, Exhibit 7-18). The latter also sorted ratings by Moody’s

classification. Some differences will be unavoidable as different estimates are

based on different sample periods and different ratings classifications. However,

what is important in our case is that the empirical estimates of the transition

probabilities, including the default probabilities, are based on the same set of

bonds from which the prices and rates are derived for the empirical study. This

will reduce bias resulting from the use of a different sample of bonds in a different

time period whose migration characteristics may not fit the ones that give rise to

the pricing of the bonds.

In our sample during January 1992 till March 1998, there was not a single

case of default or credit migration while a bond is under Aaa rating. Therefore

the estimates of empirical unconditional transition probabilities for Aaa-rated

bonds in our sample are (1, 0, 0, 0, 0, 0, 0, 0). This implies, via (1), that the risk

adjustment is less than 1 if vi(t, T ) < p(t, T ). This implication can be seen in

Table 2.

In Table 2, we report summary statistics of the estimates of the risk adjust-

ments based on (6) and of its negative log-transform or the conditional risks.

They were computed using the consistent estimates of empirical default rates

that were computed earlier. Based on the monthly time series of the computed

risk adjustments and the conditional risks from January 1992 till March 1998,

their means, standard deviations, minimums, and maximums are shown.

Table 2 about here
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According to the risk adjustment constraint in (3), πi(t, T ) > 0. This is

evident in Table 2. For the Aaa-rated bonds, we observe that all estimated risk

adjustments are less than 1, which is a rationality implication discussed earlier

for bonds in this rating. For the high grade investment bonds, for some months,

the estimated risk adjustments are close to 1.

The means of the risk adjustments summarize the overall tendencies for the

risk adjustments to decrease as the term increases. This result is observed across

all credit ratings. There is also a tendency for the risk adjustments to decrease

when the rating is lower given a fixed term. The difference in the means of the

risk adjustments for speculative grade bond, such as the Ba-rated bonds, and the

investment grade bonds is distinctive. For example, the Ba-rated bonds carry

a range of adjustments from 0.9714 down to 0.4384, while the A-rated bonds

have a range of 0.9838 down to 0.6687. Obviously, the conditional risks of the

speculative bonds are distinctively higher than those of the investment grade

bonds. The term structure of adjustment curves of the investment grade bonds

exceeds that of the adjustment curve of the speculative bond.

The standard deviation of the risk adjustments also increases with term. How-

ever, the volatility for the conditional risk is more stable given that the measure

is normalized by the term-to-maturity.

According to Proposition 1, the results do not reflect any downward sloping

credit spread term structures, and instead provide evidence of increasing credit

spreads at a fast enough rate according to Proposition 2. This will be confirmed

with Figure 2 later.

The conditional risks, on the other hand, rise across the term structure. They

are fairly stable across ratings for a given term. Supposing illiquidity risk pre-

mium is a considerable part of this conditional risk, this increasing liquidity term

premium is consistent with Koziol and Sauerbier (2002) who employ an option-

theoretic approach in defining liquidity.

Figures 1 & 2 about here
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Figure 1 shows that the term structure of average spot rate curve is upward

rising for Treasury, investment grade (Aaa, Aa, A, Baa) as well as speculative

grade bonds (Ba) during this sample period. There appears to be a small hump

coming at about the 9- or 10-year term for bonds with ratings Aa or lower.

Figure 2 shows the term structure of average credit spreads during the sample

period. The spreads were increasing in term for all the grades down to Ba-bonds.

There is a small hump at about the 9-year term for A-rated, Baa-rated, and

Ba-rated bonds. The results are consistent with recent empirical research such

as Helwege and Turner (1999) and theoretical research such as Collin-Dufresne

and Goldstein (2001) and Duffee (1999, figure 1) that indicated upward sloping

credit spreads even for speculative grade bonds. The characteristic of upward

or downward sloping credit term structure has been an interesting issue, and

earlier studies by Sarig and Warga (1989) and Fons (1994) indicated upward

sloping credit term structures for investment grade bonds and downward sloping

structures for speculative grade bonds.

We now turn to the regression results involving (12). The exogenous variables

used are the S&P500 market index returns, the U.S. 3-month Treasury rate, and

the Treasury slope. The computed conditional risk variable, (T − t)−1 ln 1
πi(t,T )

,

are the dependent variables in the linear regression on the exogenous variables.

Since we allow for unspecified heteroskedasticity in the disturbances, we apply

the White’s heteroskedasticity-consistent covariance matrix estimator for the in-

ference. The method employed is least squares regression. Augmented Dickey-

Fuller statistics are also reported for the dependent variable as well as for the

residuals to check for stationarity or to reject the null of unit roots. The regres-

sion results are reported in Table 3.

Table 3 about here

Table 3 shows that the short-term Treasury rate (T-Rate) is significantly

negatively correlated with the conditional risk variable, except for the very high

grade Aaa-rated bonds. For example, in the case of the A-rated bonds, the T-rate
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coefficient is significantly negative (taken to be at least at the 10% level) 6 times

out of 10 across the different terms, and negative 3 other times. Of the times

when the coefficient is significantly negative, 5 of them occurs at 1% significance

level. Very similar results occur for the cases of Aa-rated, Baa-rated, and Ba-

rated bonds. Our results are consistent with past works such as Duffee (1998)

and Longstaff and Schwartz (1995), and with current research such as Yamauchi

(2003). They find that an increase in short-term Treasury rate reduces credit

spreads.

However, since we have decomposed the credit spread into the conditional risk

component for our dependent variable, the interpretation here is more interesting.

The conditional risks include conditional default risk and illiquidity risk. The

results indicate that higher short-term Treasury rates signal improved economic

situations, lower default probabilities, more optimistic markets, and generally

reduced illiquidity risks.

Some of the T-rate coefficients on the Aaa-rated bonds are positive and signif-

icant. In this case, higher short-term Treasury rates spell higher conditional risks.

We suggest that the conditional risks are also related to diversifcation aspects of

the bond in a portfolio context. When the market is optimistic, the diversifica-

tion benefits of very high grade bonds in stock market portfolio diminishes. The

reduced diversification benefit leads to lower demand. This translates into higher

conditional risk premium. It should be noted from (9) that while the conditional

risk component increases with T-rate for Aaa-rated bonds, the other components

could decrease with T-rate. Thus the overall credit spread could still decrease

with an increase in T-rate. The latter would be consistent with existing results

in the literature concerning Aaa-rated bonds.

The importance of short-term Treasury rate in explaining the credit spread

could be seen as a potential contradiction to the JLT model. In the JLT model, it

is assumed that the riskfree rate process is statistically independent of the default

process. Nevertheless, this may not be a serious problem with the JLT model for

the purpose of pricing.

The Treasury slope or equivalently forward rate shows similar impact as the

short rate on the conditional risks except for some speculative Ba-rated bonds
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with short maturities of less or equal to 3 years. For the A-rated, and Baa-rated

bonds, all the estimated Slope coefficients are negative. More than half the num-

ber of coefficient estimates in the A-rated bonds are significantly negative. The

results indicate that higher Treasury slopes or increasing riskfree forward rates

signal improved economic situations, lower default probabilities, more optimistic

markets, and generally reduced illiquidity risks. Thus this component of credit

spread is reduced.

For the short term Ba-rated speculative bonds, higher Treasury slopes signify-

ing a more buoyant stock market could possibly introduce higher illiquidity in the

speculative bonds market as funds are transferred out to the stock market. Longer

term investments in these bonds may be less affected since they offer greater di-

versification benefits relative to shorter term bonds and other investment grade

bonds.

It is interesting to note that the coefficients for market returns are generally

mixed and not significant. In view of existing empirical results by Duffee (1998),

Collin-Dufresne, Goldstein and Martin (2001), and others, who find market re-

turns to be negatively correlated with credit spreads, our results could indicate

that the market return impact lands itself on the other components of credit

spread premium in (9), and not on conditional risks. Thus, market return could

possibly impact on recovery related factors.

The constant coefficients reflect increased conditional risk premium as term in-

creases, for all ratings, and independent of the explanatory variables. Interpreting

conditional risk premium as made up of conditional default risk and illiquidity and

other risks, this increasing liquidity term premium is consistent with increasing

conditional default probabilities over time, and with an increasing term structure

of liquidity premium. They are consistent with results in Koziol and Sauerbier

(2002).

The ADF statistics show that the dependent risk variables are stationary. In

the ADF test, we employ zero deterministic time trend and two lagged changes

of the dependent variable. The unit root hypothesis is significantly rejected in all

the cases. In 80% of these cases, rejection of unit root for a stationary alternative

occurs at the 5% or 1% significance level. Similar results are obtained for the
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residuals in the linear regression.

The regression adjusted R2’s are low in some cases. However, this is consistent

with past work on credit spreads such as Collin-Dufresne, Goldstein, and Martin

(2001) who found that traditional model factors could explain only a small frac-

tion of the variation in credit spreads. The order of magnitudes of the adjusted

R2’s is also compatible with regression results in Elton, Gruber, Agrawal and

Mann (2001). The adjust R2’s are higher for many of the cases in the speculative

grade bonds relative to the investment grade bonds. This could be explained

by the higher proportion of the conditional risk dynamics being captured by the

macroeconomic variables.

4 Conclusions

In this paper we investigate the nature of the credit risk premium adjustments in

the Jarrow-Lando-Turnbull model of credit risk spreads. The adjustments relate

the equivalent martingale measures to the empirical measures of unconditional

transition probabilities. We provide a modified version of the risk adjustment

that allows a linear partition of the credit spread into an unconditional default

component, a recovery component, and the risk premium adjustment. The risk

adjustments are decreasing in both term structure as well as lower credit ratings.

The negative log-transform of the risk adjustment is the conditional risk com-

ponent of the credit spread. Increases in this conditional risk leads to increases

in the credit spread. The conditional risks are stationary and can be specified as

linear regressions on a set of macroeconomic variables.

The decomposition facilitates the interpretation of the conditional risks to

be unrelated to unconditional default probabilities and recovery factors. Instead

they are likely to be related to conditional default risk, illiquidity risk, and other

factors including diversification aspects of the bond in a portfolio context. The

constants of the regressions show an increasing term structure of conditional risk.

The conditional risks are highly sensitive to short-term Treasury rate movements

as well as Treasury slope changes. However, the conditional risks appear to be

insensitive to market returns. The finding could suggest that the market return
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appears to impact on recovery related factors and not on conditional default

risk or illiquidity risk premium during our sample period. Potentially interesting

questions can be explored in this framework.

The sensitivity of conditional risk to short-term Treasury rate movements may

suggest a contradiction to the JLT model that assumes the statistical indepen-

dence of the riskfree rate and the default processes. Empirical work on the JLT

model to account for possible correlation between default and short-rate processes

may be a worthwhile extension of research in this area.

Analyzing components of the credit spread is an interesting advancement of

research in this field. The methodology to condition transition probabilities on

exogenous variables can be extended to include conditional empirical default prob-

abilities as well, and will provide some avenues for future methodological research.
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Table 1: Transition Probability Matrix. The table shows the 1-year, 5-year, and

10-year empirical transition probability matrices of credit ratings of corporate bonds. Each

entry in a row shows the probability of a bond starting with the rating in the row and ending

up with the rating in the column after 1 year, 5 years, or 10 years respectively. The probabilities

in each row sum to one. The numbers are maximum likelihood estimators based on actual credit

migration and default data in the period in US from January 1992 to March 1998.

One-Year
Aaa Aa A Baa Ba B Caa Default

Aaa 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aa 0.0000 0.9663 0.0334 0.0002 0.0001 0.0000 0.0000 0.0000
A 0.0000 0.0161 0.9640 0.0149 0.0049 0.0000 0.0000 0.0001

Baa 0.0000 0.0003 0.0343 0.9516 0.0136 0.0001 0.0000 0.0001
Ba 0.0000 0.0000 0.0039 0.0725 0.8991 0.0162 0.0078 0.0005
B 0.0000 0.0000 0.0001 0.0056 0.0191 0.9433 0.0278 0.0041

Caa 0.0000 0.0000 0.0000 0.0000 0.0004 0.0381 0.8440 0.1175
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Five-Year

Aaa Aa A Baa Ba B Caa Default
Aaa 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aa 0.0000 0.8473 0.1453 0.0054 0.0018 0.0001 0.0000 0.0000
A 0.0000 0.0700 0.8421 0.0659 0.0202 0.0007 0.0003 0.0005

Baa 0.0000 0.0061 0.1455 0.7929 0.0515 0.0022 0.0008 0.0006
Ba 0.0000 0.0010 0.0354 0.2685 0.5978 0.0609 0.0259 0.0101
B 0.0000 0.0001 0.0031 0.0339 0.0699 0.7574 0.0905 0.0449

Caa 0.0000 0.0000 0.0001 0.0022 0.0064 0.1227 0.4354 0.4329
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Ten-Year

Aaa Aa A Baa Ba B Caa Default
Aaa 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aa 0.0000 0.7282 0.2464 0.0190 0.0059 0.0003 0.0001 0.0002
A 0.0000 0.1188 0.7297 0.1137 0.0328 0.0026 0.0010 0.0014

Baa 0.0000 0.0204 0.2407 0.6524 0.0748 0.0068 0.0026 0.0023
Ba 0.0000 0.0057 0.0905 0.3780 0.3764 0.0864 0.0326 0.0304
B 0.0000 0.0006 0.0124 0.0718 0.0972 0.5892 0.1099 0.1189

Caa 0.0000 0.0000 0.0011 0.0087 0.0153 0.1468 0.2009 0.6270
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Table 2: Descriptive Statistics of the Credit Risk Premium Adjust-
ments. This table shows the mean, standard deviation, minimum, and maximum of the
credit risk premium adjustments πi(t, T ) and its transform (T − t)−1 ln 1

πi(t,T ) for the different
Aaa-rated, Aa-rated, A-rated, Baa-rated, and Ba-rated bonds. For each bond, the statistics for
the factors across different terms of 1-year, 2-year, up to 10-year are shown.

πi(t, T ) (T − t)−1 ln 1
πi(t,T )

Rating Maturity Mean Std.Dev. Minimum Maximum Mean Std.Dev. Minimum Maximum
Aaa 1-year 0.9892 0.0096 0.966 0.999 0.0109 0.0097 0.000 0.035
Aaa 2-year 0.9786 0.0191 0.932 0.999 0.0219 0.0197 0.000 0.071
Aaa 3-year 0.9679 0.0285 0.898 0.999 0.0330 0.0299 0.001 0.107
Aaa 4-year 0.9568 0.0357 0.865 0.999 0.0449 0.0380 0.001 0.145
Aaa 5-year 0.9450 0.0366 0.832 0.998 0.0573 0.0395 0.002 0.183
Aaa 6-year 0.9329 0.0465 0.741 0.998 0.0708 0.0528 0.002 0.300
Aaa 7-year 0.9068 0.0482 0.724 0.995 0.0994 0.0569 0.005 0.324
Aaa 8-year 0.8829 0.0547 0.645 0.945 0.1267 0.0679 0.056 0.439
Aaa 9-year 0.8779 0.0735 0.592 0.991 0.1341 0.0914 0.009 0.525
Aaa 10-year 0.8583 0.0754 0.668 0.997 0.1567 0.0897 0.003 0.403
Aa 1-year 0.9856 0.0093 0.967 0.999 0.0073 0.0047 0.000 0.017
Aa 2-year 0.9714 0.0184 0.935 0.999 0.0146 0.0095 0.000 0.033
Aa 3-year 0.9561 0.0289 0.897 0.999 0.0227 0.0152 0.001 0.054
Aa 4-year 0.9365 0.0373 0.847 0.985 0.0332 0.0201 0.008 0.083
Aa 5-year 0.9227 0.0409 0.822 0.979 0.0407 0.0226 0.010 0.098
Aa 6-year 0.8950 0.0555 0.779 0.975 0.0564 0.0317 0.012 0.125
Aa 7-year 0.8770 0.0562 0.755 0.944 0.0667 0.0329 0.029 0.141
Aa 8-year 0.8539 0.0596 0.716 0.935 0.0802 0.0359 0.033 0.167
Aa 9-year 0.8238 0.0637 0.675 0.930 0.0985 0.0397 0.036 0.196
Aa 10-year 0.8122 0.0571 0.669 0.906 0.1053 0.0363 0.049 0.201
A 1-year 0.9838 0.0107 0.956 0.999 0.0055 0.0036 0.000 0.015
A 2-year 0.9672 0.0217 0.913 0.999 0.0112 0.0075 0.000 0.030
A 3-year 0.9504 0.0327 0.875 0.998 0.0172 0.0115 0.001 0.045
A 4-year 0.9235 0.0504 0.709 0.980 0.0271 0.0189 0.007 0.115
A 5-year 0.8927 0.0508 0.731 0.969 0.0384 0.0194 0.011 0.104
A 6-year 0.8404 0.0663 0.676 0.950 0.0590 0.0267 0.017 0.130
A 7-year 0.7885 0.1151 0.158 0.934 0.0850 0.0736 0.023 0.614
A 8-year 0.7113 0.1171 0.153 0.877 0.1208 0.0812 0.044 0.625
A 9-year 0.6545 0.1294 0.050 0.848 0.1571 0.1365 0.055 0.999
A 10-year 0.6687 0.1386 0.021 0.850 0.1559 0.1730 0.054 1.286

Baa 1-year 0.9809 0.0100 0.962 0.999 0.0048 0.0026 0.000 0.010
Baa 2-year 0.9618 0.0201 0.924 0.999 0.0098 0.0052 0.000 0.020
Baa 3-year 0.9410 0.0316 0.858 0.999 0.0153 0.0084 0.000 0.038
Baa 4-year 0.9069 0.0424 0.759 0.982 0.0247 0.0120 0.004 0.069
Baa 5-year 0.8580 0.0601 0.606 0.947 0.0390 0.0190 0.014 0.125
Baa 6-year 0.8200 0.0723 0.499 0.916 0.0507 0.0243 0.022 0.174
Baa 7-year 0.7804 0.0873 0.330 0.902 0.0639 0.0338 0.026 0.277
Baa 8-year 0.7277 0.0915 0.340 0.870 0.0819 0.0373 0.035 0.270
Baa 9-year 0.6528 0.1073 0.166 0.775 0.1117 0.0572 0.064 0.449
Baa 10-year 0.6190 0.1327 0.124 0.812 0.1290 0.0783 0.052 0.521
Ba 1-year 0.9714 0.0183 0.919 1.000 0.0058 0.0038 0.000 0.017
Ba 2-year 0.9441 0.0358 0.843 1.000 0.0117 0.0077 0.000 0.034
Ba 3-year 0.9096 0.0520 0.771 1.002 0.0193 0.0115 -0.000 0.052
Ba 4-year 0.8431 0.0751 0.489 0.981 0.0350 0.0197 0.004 0.143
Ba 5-year 0.7684 0.1089 0.356 0.916 0.0551 0.0335 0.018 0.207
Ba 6-year 0.7001 0.1066 0.392 0.901 0.0739 0.0331 0.021 0.187
Ba 7-year 0.6430 0.0887 0.434 0.886 0.0902 0.0281 0.024 0.167
Ba 8-year 0.5591 0.1386 0.008 0.842 0.1302 0.1081 0.034 0.957
Ba 9-year 0.4889 0.1341 0.050 0.775 0.1564 0.0898 0.051 0.599
Ba 10-year 0.4384 0.1408 0.050 0.707 0.1808 0.0947 0.069 0.599
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Table 3: Relationship Between Credit Risk Premium Adjustment and
Macroeconomic Variables. This table shows the results of regressions of the credit
risk premium adjustments for Aaa-rated, Aa-rated, A-rated, Baa-rated, and Ba-rated bonds on
the macroeconomic variables of S&P500 stock market return, 3-month Treasury bill rate, and
term structure slope of 30-year Treasury bond rate less 3-month bill rate. These variables are
denoted as “Market”, “T-Rate”, and “Slope” respectively in the Table. The maturity indicates
the maturity of the bonds in years from which the risk premium adjustment is computed. The
values in parentheses are the t-values. ∗ ∗ ∗, ∗∗ and ∗ indicate significance at the 1%, 5% and
10% levels respectively. The standard errors are computed using White’s Heteroskedasticity-
Consistent estimators. We also report the Augmented Dickey-Fuller statistics of the dependent
variable and regression residual for each regression. Rejection of unit root is indicated at the
∗ ∗ ∗ (1%), ∗∗ (5%) or ∗ (10%) level respectively.

Maturity Constant Market T-Rate Slope Adj-R2 ADF (dep var) ADF (resid)
Panel I: Aaa-rated Bonds

1 0.0031 0.0450 0.1580 -0.0026 0.017 -3.078∗∗ -3.298∗∗
(0.227) (1.124) (0.764) (-0.014)

2 0.0063 0.0907 0.3177 -0.0071 0.017 -3.085∗∗ -3.304∗∗
(0.229) (1.121) (0.760) (-0.018)

3 0.0097 0.1370 0.4791 -0.0135 0.017 -3.091∗∗ -3.312∗∗
(0.230) (1.118) (0.756) (-0.023)

4 -0.0016 0.1564 0.8879 0.1666 0.021 -3.473∗∗∗ -3.695∗∗∗
(-0.029) (1.037) (1.069) (0.223)

5 -0.0494 0.1942 1.8399∗ 0.8642 0.065 -4.092∗∗∗ -4.552∗∗∗
(-0.803) (1.597) (1.860) (1.099)

6 -0.1360 0.2918∗∗ 3.4080∗∗ 2.0271∗∗ 0.105 -4.113∗∗∗ -4.816∗∗∗
(-1.667) (2.398) (2.494) (2.124)

7 0.0941 -0.0424 0.3832 -0.4877 -0.015 -4.521∗∗∗ -4.471∗∗∗
(1.361) (-0.219) (0.351) (-0.576)

8 -0.1454 -0.0171 4.1494∗∗∗ 3.5458∗∗∗ 0.066 -2.964∗∗ -3.284∗∗
(-1.579) (-0.081) (2.791) (2.720)

9 0.4242∗∗∗ -0.1493 -5.2617∗∗ -2.0896 0.104 -2.755∗ -3.006∗∗
(3.230) (-0.466) (-2.521) (-1.382)

10 0.2022∗∗ -0.1648 -1.8775 1.7246 0.173 -2.675∗ -3.070∗∗
(2.336) (-0.526) (-1.450) (1.302)

Panel II: Aa-rated Bonds
1 0.0261∗∗∗ 0.0050 -0.3135∗∗∗ -0.1960∗∗ 0.080 -3.078∗∗ -3.129∗∗

(4.003) (0.257) (-3.055) (-2.355)
2 0.0526∗∗∗ 0.0100 -0.6341∗∗∗ -0.3968∗∗ 0.080 -3.085∗∗ -3.133∗∗

(3.999) (0.256) (-3.057) (-2.358)
3 0.0849∗∗∗ 0.0601 -1.0322∗∗∗ -0.6803∗∗ 0.097 -3.091∗∗ -3.062∗∗

(4.168) (1.026) (-3.248) (-2.563)
4 0.0921∗∗∗ -0.0741 -0.8940∗∗ -0.7278∗∗ 0.016 -3.473∗∗∗ -3.800∗∗∗

(3.591) (-0.836) (-2.188) (-2.267)
5 0.1284∗∗∗ 0.0364 -1.3988∗∗∗ -1.0368∗∗ 0.063 -4.092∗∗∗ -3.734∗∗∗

(4.100) (0.403) (-2.800) (-2.630)
6 0.1421∗∗∗ 0.2536∗∗ -1.3431∗∗ -1.1750∗∗ 0.090 -4.113∗∗∗ -3.562∗∗

(3.531) (2.283) (-2.062) (-2.358)
7 0.1140∗∗∗ -0.0609 -0.4171 -1.1515∗∗ 0.060 -4.521∗∗∗ -4.908∗∗∗

(3.210) (-0.481) (-0.751) (-2.343)
8 -0.0325 0.0869 1.9429∗∗∗ 1.0017∗ 0.061 -2.964∗∗ -4.841∗∗∗

(-0.795) (0.623) (2.961) (1.713)
9 0.0545 0.1181 0.3357 1.1059∗ 0.029 -2.755∗ -5.398∗∗∗

(1.088) (0.786) (0.416) (1.731)
10 0.1124∗∗ 0.2017 -0.2556 0.0250 -0.012 -2.675∗ -4.938∗∗∗

(2.251) (1.465) (-0.328) (0.039)
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continuation of Table 3.
Maturity Constant Market T-Rate Slope Adj-R2 ADF (dep var) ADF (resid)

Panel III: A-rated Bonds
1 0.0194∗∗∗ -0.0002 -0.2260∗∗∗ -0.1536∗∗ 0.059 -3.078∗∗∗ -3.300∗∗

(3.755) (-0.013) (-2.789) (-2.286)
2 0.0415∗∗∗ 0.0039 -0.4882∗∗∗ -0.3463∗∗ 0.068 -3.085∗∗ -3.114∗∗

(3.897) (0.120) (-2.943) (-2.464)
3 0.0598∗∗∗ 0.0281 -0.6955∗∗∗ -0.4836∗∗ 0.060 -3.091∗∗ -3.170∗∗

(3.753) (0.583) (-2.793) (-2.311)
4 0.1004∗∗∗ -0.0632 -1.0419∗∗∗ -1.0579∗∗ 0.072 -3.473∗∗∗ -3.870∗∗∗

(3.622) (-0.621) (-2.763) (-2.573)
5 0.1187∗∗∗ 0.0538 -1.0760∗∗∗ -1.3477∗∗∗ 0.210 -4.092∗∗∗ -3.818∗∗∗

(4.738) (0.632) (-2.914) (-3.839)
6 0.0640∗∗ -0.0380 0.2983 -0.7382∗ 0.157 -4.113∗∗∗ -3.600∗∗∗

(2.118) (-0.363) (0.622) (-1.821)
7 0.1714 -0.0476 -0.7007 -2.2386 0.046 -4.521∗∗∗ -1.398

(1.476) (-0.194) (-0.447) (-1.283)
8 0.3027∗ 0.1216 -2.9063 -2.1531 -0.006 -2.964∗∗ -2.224

(1.892) (0.482) (-1.386) (-0.898)
9 0.5045∗∗ -0.0021 -5.1135∗ -4.8725 0.006 -2.755∗ -3.056∗∗

(2.132) (-0.005) (-1.680) (-1.343)
10 0.4478 0.1335 -4.1073 -4.5276 -0.012 -2.675∗ -2.487

(1.324) (0.251) (-0.954) (-0.868)
Panel IV: Baa-rated Bonds

1 0.0106∗∗∗ -0.0054 -0.1232∗∗ -0.0044 0.210 -3.078∗∗ -2.600
(3.469) (-0.557) (-2.566) (-0.114)

2 0.0227∗∗∗ -0.0084 -0.2675∗∗∗ -0.0301 0.193 -3.085∗∗ -2.431
(3.601) (-0.428) (-2.719) (-0.369)

3 0.0364∗∗∗ 0.0165 -0.4284∗∗∗ -0.0835 0.133 -3.091∗∗ -2.343
(3.542) (0.500) (-2.747) (-0.602)

4 0.0600∗∗∗ -0.0847 -0.5452∗∗∗ -0.4014∗ 0.048 -3.473∗∗∗ -3.926∗∗∗
(4.148) (-1.197) (-2.763) (-1.828)

5 0.1153∗∗∗ -0.0163 -0.9756∗∗∗ -1.3374∗∗∗ 0.200 -4.092∗∗∗ -4.117∗∗∗
(5.594) (-0.249) (-3.361) (-4.365)

6 0.0551 0.0595 0.1876 -0.5675 0.113 -4.113∗∗∗ -4.959∗∗∗
(1.262) (0.650) (0.257) (-1.102)

7 0.1096∗∗ 0.1006 -0.4610 -1.0886 0.067 -4.521∗∗∗ -1.932
(2.044) (0.887) (-0.596) (-1.431)

8 0.1851∗∗∗ 0.0236 -1.5373∗ -1.4069 0.014 -2.964∗∗ -2.422
(2.849) (0.161) (-1.728) (-1.489)

9 0.1251 0.0111 0.1999 -0.9626 0.018 -2.755∗ -3.122∗∗
(1.407) (0.061) (0.165) (-0.725)

10 0.1560 0.1227 -0.0962 -1.0393 -0.011 -2.675∗ -4.114∗∗∗
(1.066) (0.521) (-0.044) (-0.504)

Panel V: Ba-rated Bonds
1 0.0084∗∗ 0.0092 -0.1190∗ 0.1094∗∗ 0.403 -3.078∗∗ -3.346∗∗

(2.072) (0.868) (-1.786) (2.272)
2 0.0178∗∗ 0.0203 -0.2544∗ 0.2073∗∗ 0.395 -3.085∗∗ -3.298∗∗

(2.150) (0.946) (-1.879) (2.108)
3 0.0426∗∗∗ 0.0589 -0.5650∗∗ 0.0514 0.264 -3.091∗∗ -2.938∗∗

(3.009) (1.632) (-2.631) (0.274)
4 0.0964∗∗∗ -0.1071 -0.9271∗∗ -0.7627 0.034 -3.473∗∗∗ -3.826∗∗∗

(3.155) (-0.930) (-2.367) (-1.651)
5 0.2284∗∗∗ -0.0121 -2.3547∗∗∗ -2.7961∗∗∗ 0.258 -4.092∗∗∗ -2.921∗

(4.870) (-0.110) (-3.718) (-4.054)
6 0.1005∗∗ 0.0301 0.1030 -1.3367∗∗ 0.257 -4.113∗∗∗ -3.200∗∗

(2.607) (0.250) (0.187) (-2.403)
7 0.1751∗∗∗ 0.0711 -1.0627∗ -1.5849∗∗∗ 0.157 -4.521∗∗∗ -3.707∗∗∗

(4.352) (0.627) (-1.741) (-2.890)
8 0.0940 -0.7328 0.7224 0.5670 0.002 -2.964∗∗ -4.166∗∗∗

(0.366) (-1.021) (0.157) (0.200)
9 0.2735 -0.8232 -1.3971 -1.7766 0.030 -2.755∗ -4.646∗∗∗

(1.496) (-1.365) (-0.469) (-0.771)
10 0.2069 -0.5752 -0.0656 -0.6219 -0.012 -2.675∗ -4.773∗∗∗

(1.070) (-0.938) (-0.021) (-0.257)

32


	cover-LKG.pdf
	Lim Kian Guan


