
MATLAB language

Responsible teacher: Anatoliy Malyarenko

November 5, 2003

Abstract
Contents of the lecture:

☞ MATLAB programming: a quick start.
☞ Syntax and data.
☞ Entering matrices.
☞ More about matrices.
☞ Arithmetical operations.
☞ Logical operations.
☞ Flow control.
☞ Functions.

MATLAB Programming: A Quick Start

MATLAB provides a full programming language that enables you to write a series of
MATLAB statements into a file and then execute them with a single command. You write your
program in an ordinary text file, giving the file a name of filename.m. The term you use
for filename becomes the new command that MATLAB associates with the program. The file
extension of .m makes this a MATLAB M-file.

M-files can be scripts that simply execute a series of MATLAB statements, or they can
be functions that also accept arguments and produce output. You create M-files using a text
editor, then use them as you would any other MATLAB function or command.

The process looks like this

➀ Create an M-file using a text editor.

➁ Call the M-file from the command line, or from within another M-file.

– Typeset by FoilTEX –

MT1370 2003, period 2

Kinds of M-Files

There are two kinds of M-files.

Script M-Files Function M-Files
Do not accept input arguments or return
output arguments

Can accept input arguments and return
output arguments

Operate on data in the workspace Internal variables are local to the function
by default

Useful for automating a series of steps you
need to perform many times

Useful for extending the MATLAB
language for your application

Naming variables

MATLAB variable name must begin with a letter, which may be followed by any
combination of letters, digits and underscores. MATLAB distinguishes between uppercase
and lowercase characters, so a and A are not the same variable.

Although variable names can be of any length, MATLAB uses only the first N characters
of the name and ignores the rest. Here N is the number returned by the function
namelengthmax:

>> N=namelengthmax

N =

63

Special values

Several functions return important special values that you can use in your M-files.

– Typeset by FoilTEX – 1

MT1370 2003, period 2

Function Return value
ans Most recent answer
eps Floating-point relative accuracy
realmax Largest floating-point number
realmin Smallest floating-point number
pi 3.1415926536897. . .
i,j Imaginary unit
inf Infinity
NaN Not a Number
computer Computer type
version MATLAB version string

Entering matrices

You can enter matrices into MATLAB in several different ways.

☞ Enter an explicit list of elements.

☞ Load matrices from external data files.

☞ Generate matrices using built-in functions.

☞ Create matrices with your own functions in M-files.

Example: D ürer’s matrix

To enter Dürer’s matrix, simply type in the Command Window

A=[16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB displays the matrix you just entered.

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Once you have entered the matrix, it is automatically remembered in the MATLAB workspace.
You can refer to it simply as A.

– Typeset by FoilTEX – 2

MT1370 2003, period 2

sum, transpose, and diag

The first statement to try is

>> sum(A)

MATLAB responses with

ans =

34 34 34 34

You have computed a row vector containing the sums of the columns of A.

How about the row sums? The easiest way is to transpose the matrix, compute the
column sums of the transpose, and then transpose the result. The transpose operation is
denoted by the apostrophe ’, so

>> A’

produces

ans =

16 5 9 4

3 10 6 15

2 11 7 14

13 8 12 1

and

>> sum(A’)’

produces

ans =

34

34

34

34

The sum of the elements of the main diagonal is obtained with the sum and the diag functions.

>> diag(A)

produces

ans =

16

10

7

1

– Typeset by FoilTEX – 3

MT1370 2003, period 2

and

>> sum(diag(A))

produces

ans =

34

Subscripts

The element in row k and column l of A is denoted by A(k,l). It is also possible to refer
to the elements of row and column vectors with a single subscript, B(k).

If you try to use the value of an element outside of the matrix, it is an error:

>> A(4,5)

??? Index exceeds matrix dimensions.

The colon operator

The colon operator, :, occurs in several different forms. The expression

1:10

is a row vector containing the integers from 1 to 10

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify the increment. For example

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix.

A(1:k,l)

– Typeset by FoilTEX – 4

MT1370 2003, period 2

is the first k elements of the lth column of A.

The colon by itself refers to all the elements in a row or column of a matrix and the
keyword end refers to the last row or column. So

sum(A(:,end))

computes the sum of the elements in the last column of A.

Generating matrices

MATLAB provides four functions that generate basic matrices.

zeros All zeros
ones All ones
rand Uniformly distributed random elements
randn Normally distributed random elements

For example,

>> Z=zeros(2,4)

produces

Z =

0 0 0 0

0 0 0 0

Concatenation

Concatenation is the process of joining small matrices to make bigger ones. In fact, you
made matrix A by concatenating its individual elements. The pair of square brackets, [], is the
concatenation operator. For example,

B=[A A+32; A+48 A+16]

produces

16 3 2 13 48 35 34 45

5 10 11 8 37 42 43 40

9 6 7 12 41 38 39 44

4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29

53 58 59 56 21 26 27 24

57 54 55 60 25 22 23 28

52 63 62 49 20 31 30 17

– Typeset by FoilTEX – 5

MT1370 2003, period 2

Deleting rows and columns

You can delete rows and columns from a matrix using just a pair of square brackets. For
example, start with

>> X=A;

(semicolon ; suppresses the output). Then, to delete the second column of X, use

>> X(:,2)=[]

This changes X to

X =

16 2 13

5 11 8

9 7 12

4 14 1

Operators

Expressions use familiar arithmetic operators and precedence rules.

+ matrix addition
- matrix subtraction
* matrix multiplication
/ matrix division
\ matrix left division
ˆ matrix power
’ matrix complex conjugate transpose
() Specify evaluation order

Arrays

When they are taken away from the world of linear algebra, matrices become two-
dimensional numeric arrays. Arithmetic operations on arrays are done element-by-element.
This means that addition and subtraction are the same for arrays and matrices, but that
multiplicative operations are different. MATLAB uses a dot, or decimal point, as part of the
notation for multiplicative array operations.

– Typeset by FoilTEX – 6

MT1370 2003, period 2

+ addition
- subtraction
.* element-by-element multiplication
./ element-by-element division
.\ element-by-element left division
.ˆ element-by-element power
.’ unconjugated array transpose

For example, if the Dürer matrix is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16, in an unusual order.

ans =

256 9 4 169

25 100 121 64

81 36 49 144

16 225 196 1

Relational Operators

MATLAB provides these relational operators.

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
˜= not equal to

The MATLAB relational operators compare corresponding elements of arrays with equal
dimensions. Relational operators always operate element-by-element. In this example, the
resulting matrix shows where an element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];

B = [8 7 0;3 2 5;4 -1 7];

A == B

ans =

0 1 0

0 0 1

0 0 0

– Typeset by FoilTEX – 7

MT1370 2003, period 2

For vectors and rectangular arrays, both operands must be the same size unless one is
a scalar. For the case where one operand is a scalar and the other is not, MATLAB tests the
scalar against every element of the other operand. Locations where the specified relation is
true receive the value 1. Locations where the relation is false receive the value 0.

Logical Operators

The following logical operators and functions perform element-wise logical operations
on their inputs to produce a like-sized output array. The examples shown in the following table
use vector inputs A and B, where

A = [0 1 1 0 1];

B = [1 1 0 0 1];

Operator Description Example
& Returns 1 for every element location that is true

(nonzero) in both arrays, and 0 for all other
elements.

A&B=01001

| Returns 1 for every element location that is true
(nonzero) in either one or the other, or both, arrays
and 0 for all other elements.

A|B=11101

˜ Complements each element of input array, A. ˜A=10010

xor Returns 1 for every element location that is true
(nonzero) in only one array, and 0 for all other
elements.

xor(A,B)=10100

For operators and functions that take two array operands, (&, |, and xor), both arrays
must have equal dimensions, with each dimension being the same size. The one exception
to this is where one operand is a scalar and the other is not. In this case, MATLAB tests the
scalar against every element of the other operand.

Character Arrays

In MATLAB, the term string refers to an array of characters.

Specify character data by placing characters inside a pair of single quotes. For example,
this line creates a 1-by-13 character array called name.

– Typeset by FoilTEX – 8

MT1370 2003, period 2

name = ’Thomas R. Lee’;

In the workspace, the output of whos shows

Name Size Bytes Class

name 1x13 26 char array

Flow Control

There are eight flow control statements in MATLAB:

➀ if, together with else and elseif, executes a group of statements based on some
logical condition.

➁ switch, together with case and otherwise, executes different groups of statements
depending on the value of some logical condition.

➂ while executes a group of statements an indefinite number of times, based on some
logical condition.

➃ for executes a group of statements a fixed number of times.

➄ continue passes control to the next iteration of a for or while loop, skipping any
remaining statements in the body of the loop.

➅ break terminates execution of for or while loop.

➆ try...catch changes flow control if an error is detected during execution.

➇ return causes execution to return to the invoking function.

We consider here only 4 first statements.

if

if evaluates a logical expression and executes a group of statements based on the
value of the expression. In its simplest form, its syntax is

if logical_expression

statements

end

– Typeset by FoilTEX – 9

MT1370 2003, period 2

If the logical expression is true (1), MATLAB executes all the statements between the if and
end lines. It resumes execution at the line following the end statement. If the condition is false
(0), MATLAB skips all the statements between the if and end lines, and resumes execution
at the line following the end statement.

For example,

if rem(a,2) == 0

disp(’a is even’)

b = a/2;

end

else

if expression

statements1

else

statements2

end

else is used to delineate an alternate block of statements. If expression evaluates as false,
MATLAB executes the one or more commands denoted here as statements2.

In this example, if both of the conditions are not satisfied, then the student fails the
course.

if ((attendance >= 0.90)

& (grade_average >= 60))

pass = 1;

else

fail = 1;

end;

elseif

if expression1

statements1

elseif expression2

statements2

end

– Typeset by FoilTEX – 10

MT1370 2003, period 2

If expression1 evaluates as false and expression2 as true, MATLAB executes the
one or more commands denoted here as statements2.

Here is an example showing if, else, and elseif.

for m = 1:k

for n = 1:k

if m == n

a(m,n) = 2;

elseif abs(m-n) == 2

a(m,n) = 1;

else

a(m,n) = 0;

end

end

end

For k = 5 you get the matrix

a =

2 0 1 0 0

0 2 0 1 0

1 0 2 0 1

0 1 0 2 0

0 0 1 0 2

switch

switch executes certain statements based on the value of a variable or expression. Its
basic form is

switch expression

case v1

statements %Executes if expression is v1

case v2

statements %Executes if expression is v2

.

.

.

otherwise

statements %Executes if expression does

– Typeset by FoilTEX – 11

MT1370 2003, period 2

%not match any case

end

This block consists of:

☞ The word switch followed by an expression to evaluate.

☞ Any number of case groups. These groups consist of the word case followed by a
possible value for the expression, all on a single line. Subsequent lines contain the
statements to execute for the given value of the expression. These can be any valid
MATLAB statement including another switch block. Execution of a case group ends
when MATLAB encounters the next case statement or the otherwise statement. Only
the first matching case is executed.

☞ An optional otherwise group. This consists of the word otherwise, followed by the
statements to execute if the expression’s value is not handled by any of the preceding
case groups. Execution of the otherwise group ends at the end statement.

☞ An end statement.

The code below shows a simple example of the switch statement. It checks the variable
input_num for certain values. If input_num is −1, 0, or 1, the case statements display
the value on screen as text. If input_num is none of these values, execution drops to the
otherwise statement and the code displays the text ’other value’.

switch input_num

case -1

disp(’negative one’);

case 0

disp(’zero’);

case 1

disp(’positive one’);

otherwise

disp(’other value’);

end

while

The while loop executes a statement or group of statements repeatedly as long as the
controlling expression is true (1). Its syntax is

while expression

statements

end

– Typeset by FoilTEX – 12

MT1370 2003, period 2

For example, this while loop finds the first integer n for which n! (n factorial) is a 100-digit
number.

n = 1;

while prod(1:n) < 1e100

n = n + 1;

end

for

The for loop executes a statement or group of statements a predetermined number of
times. Its syntax is:

for index = start:increment:end

statements

end

The default increment is 1. You can specify any increment, including a negative one. For
positive indices, execution terminates when the value of the index exceeds the end value; for
negative increments, it terminates when the index is less than the end value.

For example, this loop executes five times.

for i = 2:6

x(i) = 2*x(i-1);

end

You can nest multiple for loops.

for i = 1:m

for j = 1:n

A(i,j) = 1/(i + j - 1);

end

end

Functions

Here we show the basic parts of a function M-file, so you can familiarise yourself with
MATLAB programming and get started with some examples.

– Typeset by FoilTEX – 13

MT1370 2003, period 2

function f = fact(n) % Function definition line

% FACT Factorial. % H1 line

% FACT(N) returns the factorial % Help text

% of N, H!, usually denoted by N!

% Put simply, FACT(N) is PROD(1:N).

f = prod(1:n); % Function body

This function has some elements that are common to all MATLAB functions:

☞ A function definition line. This line defines the function name, and the number and order
of input and output arguments.

☞ An H1 line. H1 stands for “help 1” line. MATLAB displays the H1 line for a function when
you use lookfor or request help on an entire directory.

☞ Help text. MATLAB displays the help text entry together with the H1 line when you request
help on a specific function.

☞ The function body. This part of the function contains code that performs the actual
computations and assigns values to any output arguments.

Function Workspaces

Each M-file function has an area of memory, separate from the MATLAB base
workspace, in which it operates. This area is called the function workspace, with each function
having its own workspace context.

While using MATLAB, the only variables you can access are those in the calling context,
be it the base workspace or that of another function. The variables that you pass to a function
must be in the calling context, and the function returns its output arguments to the calling
workspace context.

Problems

1. Write the following script. Execute it. Add your own comments with explanation of results.

x=[2 3 4 5]

y=-1:1:2

x.ˆy

x.*y

x./y

– Typeset by FoilTEX – 14

MT1370 2003, period 2

2. Calculate square roots of integer numbers from 1 to 1000.

3. (For pass with distinction). Given a vector x with n elements, write a MATLAB function
with x as input parameter to form the vector p with elements

pk = x1x2 . . . xk−1xk+1 . . . xn,

that is, pk will contain the products of all the vector elements except the kth. Call your
function from the Command window using the value x = [1 2 3]. Call it once more using
the value x = 1. Call it once more using the value x = [] .

– Typeset by FoilTEX – 15

