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Contents of the lecture.
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+ Unified formulas.
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Introduction

Fundamental to the modeling of interest rate
patterns is the “term structure” of interest rates. This
refers to the relationship between bonds of different
terms.

When interest rates of bonds are plotted against
their terms, this is called the “yield curve”. The
shape of the yield curve reflects the market’s future
expectation for interest rates.
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Term structure of interest rates

Term structure models are based on the
assumption that the whole term structure of interest
rates can be derived from the stochastic behaviour
of one or many variables.

The one-parameter models normally use the
instantaneous rate as the state variable.

dr = µ(r, t) dt + σ(r, t) dz,

where µ(r, t) is the drift function, and σ(r, t) is the
volatility function.

Let λ(r, t) denotes the market price of risk,
and U(r, t) denotes the value of all interest rate
contingent claims. Then the next pricing equation
holds:

∂U
∂t
+

1
2
σ2(r, t)

∂2U
∂r2 +(µ(r, t)−λ(r, t)σ(r, t))

∂U
∂r
−rU = 0.

To find a unique solution to this equation, we
must impose one final and two boundary conditions.
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The Ho and Lee model

In the Ho and Lee model, the short rate dynamics
are represented by:

dr = ϑ(t) dt + σ dz,

where σ, the instantaneous standard deviation of the
short rate, is constant and ϑ(t) is

ϑ(t) =
∂F(0, t)
∂t

+ σ2t.

Here F(0, t) is the instantaneous for a maturity t as
seen at time zero.

In the Ho and Lee model, zero-coupon bonds
and European options on zero-coupon bonds can be
valued analytically. The price of a zero-coupon bond
at time t is

P(t,T ) = A(t,T )e−r(t)(T−t),

where

ln A(t,T ) = ln
P(0,T )
P(0,T )

−(T−t)
∂ ln P(0,T )
∂t

−
1
2
σ

2t(T−t)2.
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The price at time zero of a call option that
matures at time T on a zero-coupon bond maturing
at time s is

LP(0, s)N(h) − XP(0,T )N(h − σP),

where L is the principal of the bond, X is its strike
price,

h =
1
σP

ln
LP(0, s)
P(0,T )X

+
σP

2
and

σP = σ(s − T )
√

T .

The price of a put option on the bond is

p = XP(0,T )N(σP − h) − LP(0, s)N(−h).
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Example
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The Hull and White model

In the Hull and White model, the short rate
dynamics are represented by:

dr = (ϑ(t) − ar) dt + σ dz,

where a and σ are constants. It can be characterised
as the Ho and Lee model with mean reversion at rate
a. The Ho and Lee model is a particular case of the
Hull and White model with a = 0.

The ϑ(t) function can be calculated from the initial
term structure:

ϑ(t) =
∂F(0, t)
∂t

+ aF(0, t) +
σ2

2a
(1 − e−2att).

Bond prices at time t in the Hull and White model
are given by

P(t,T ) = A(t,T )e−B(t,T )r(t),

where

B(t,T ) =
1 − e−a(T−t)

a
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and

ln A(t,T ) = ln
P(0,T )
P(0, t)

− B(t,T )
∂ ln P(0,T )
∂t

−
1

4a3σ
2(e−aT − e−at)2(e2at − 1).

The price at time zero of a call option that
matures at time T on a zero-coupon bond maturing
at time s is

LP(0, s)N(h) − XP(0,T )N(h − σP),

where L is the principal of the bond, X is its strike
price,

h =
1
σP

ln
LP(0, s)
P(0,T )X

+
σP

2
and

σP =
σ

a
[1 − e−a(t−T )]

√
1 − e−2aT

2a
.

The price of a put option on the bond is

XP(0,T )N(σP − h) − LP(0, s)N(−h).
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Example
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A unified approach to interest rate
models

Introduce the following notation:

t0 valuation date
ts start date
te end date
X strike price
σ volatility
a reversion rate
N(x) normal distribution function
rir instantaneous rate
P term structure discount function

Then we can write a unified formula for all interest
rate models in PRIME:

P(rir, ts, te) = A(rir, ts, te) exp(−rirB(ts, te)),
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where

ln A(rir, ts, te) = ln
d(t0, te)
d(t0, ts)

−
B(ts, te)[d(t0, ts + 1/365) − d(t0, ts − 1/365)] · 365

2d(t0, ts)

−
B2(ts, te)g(te)σ2

2
,

and B, g, and σ are model-dependent.

In particular, for the case of the Ho and Lee
model we have

B(ts, te) = te − ts,

g(te) = te,

σ(ts, te) = σ
√

ts − t0(te − ts).
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For the case of the Hull and White model we have

B(ts, te) =
1 − exp(−a(te − ts))

a
,

g(te) =
1 − exp(−2ate)

2a
,

σ(ts, te) =

√
σ2(1 − exp(−2a(ts − t0)))

2a
·

1 − exp(−a(te − ts))
a

.
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Unified formulas for interest rate
derivatives

The value of the call option on a zero coupon
discount bond is

c(rir, ts, te, X) = max{d(t0, te)N(h)−Xd(t0, ts)N(h−σ(ts, te)), 0},

and the value of the put option is

p(rir, ts, te, X) = max{Xd(t0, ts)N(σ−h)−d(t0, te)N(−h), 0}

where

h =
1

σ(ts, te)
ln

d(t0, te)
d(t0, ts)X

+
σ(ts, te)

2
.

Let Xr denotes the strike price expressed in rate,
and let Xd denotes the strike price expressed in
discount factor. The value of a caplet is determined
as

C =
p(rir, ts, te, Xd)

Xrd(ts, te)(te − ts)
· period · nominal.
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Consider the next notation:

ci cash flow amount of cash flow i
ti cash flow payday of cash flow i
texp option expiration date
tsett strike payday

The value of a call option on a bond is determined
as

C =
n∑

i=0

cic(rir, texp, ti, X∗i ) − Xc(rir, texp, tsett, X∗sett),

where
X∗i = P(r∗ir, texp, ti)

and r∗ir is the solution to the equation

n∑
i=0

ciP(r∗ir, texp, ti) − XP(r∗ir, texp, tsett) = 0.
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Example
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Constant maturity contracts

Constant maturity contracts, that is instruments
using a floating rate based on a swap index (i.e. the
par rate of a generic swap), are valued in PRIME
using the forward measure technology based on
term structure models.

Let the value of such a CMS contract equal
g(R f (Tp,T1,T2)) at payday Tp, where

R f (Tp,T1,T2) =
1
t
·

1 − p(T1,Tn)
n∑

i=2

p(T1,Ti)

is the swap rate, having

p(T1,Ti) zero coupon bond price at T1 of bond
maturing at Ti

t reset period
T1 reset day
T2 payday.

Let the dynamics of the instantaneous rate under
the measure Q is described by the Ho and Lee
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model
dr = ϑ(t) dt + σ dz

or by the Hull and White model:

dr = (ϑ(t) − ar) dt + σ dz.

Define the forward measure QT as

dQT

dQ
=

exp
{
−

∫ T

0
r(s) ds

}
EQ

[
exp

{
−

∫ T

0
r(s) ds

}].

Then the present value of the contract PV(t) can be
expressed as

PV(t) = p(t,TP)EQTp[g(R f (Tp,Ts,Te))|r(t) = r].

Calculating the conditional mathematical expectation,
we obtain

PV(t) = p(t,TP)
1
√

2πν

∫ ∞

−∞

g(r) exp
(
−

(r − m)2

2ν

)
dr,

(1)
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where

m = EQTp[r(Tr)],

ν = VarQTp[r(Tr)]

are model-dependent. In the case of the Ho and Lee
model we have

m = −
∂

∂s
ln p(0, s)

∣∣∣∣∣
s=Tr

+ σ2Tr(Tr − Tp),

ν = σ2Tr,

while in the case of the Hull and White model

m = −
∂

∂s
ln p(0, s)

∣∣∣∣∣
s=Tr

+
σ2

2a2e−aTr(e−aTr − eaTr

+ ea(2Tt−Tp) − e−aTp),

ν =
σ2

2a
(1 − e−2aTr).
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Example
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Compound options

By compound options, we mean options on
option-style instruments. These include:

+ options on options;

+ options on caps/floors;

+ options on free defined cash flows where there is
at least one optional cash flow.

The present value of a compound option is
calculated by (1), where

m = −
∂

∂s
ln p(0, s)

∣∣∣∣∣
s=Tp

and in the case of the Ho and Lee model

ν = σ2Tp,

while in the case of the Hull and White model

ν =
σ2

2a
(1 − e−2aTp).
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Example
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Quanto contracts

Quanto contracts have floating cash flows where
the reference rate is a rate index in a currency other
than the payout currency. The quanto products that
are supported in PRIME include:

+ differential swaps;

+ quanto caps/floors;

+ quanto bond options;

+ swaptions.

Let Z(t), WF(t), and X(t) be three Wiener
processes. Let ρ be the correlation between Z(t) and
WF(t), and let δ be the correlation between WF(t)
and X(t). The domestic rate, r(t), the foreign rate,
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y(t), and the exchange rate, S (t) are modeled as

dr(t) = αr dt + σr dZ,

dy(t) = αy dt + σy dWF,

dS (t)
S (t)

= (r − y) dt + σs dX.

– Typeset by FoilTEX – 22



MT1460 2005, period 3

Differential swaps

Differential swaps are valued using the following
formula:

PV(t) = pt1(t)
[

1
qt1(t0)

−
1

pt1(t0)

]
+

n∑
i=2

(Dti−1,ti(t)−pti−1(t)),

where

pT (t) the value of a zero coupon bond paying out
1 unit of the domestic currency at time T ,

qT (t) the value of a zero coupon bond paying out
1 unit of the foreign currency at time T ,

Dt,τ(t) =
pτ(t)qT (t)

qτ(t)
b(t),

and b(t) = ecov(t,T,τ) is the “correction factor” that
takes the quanto effect into account. This factor is
model-dependent. In the Ho and Lee model

cov(t,T, τ) = σy(τ − T )(T − t)[δσs − σyτ + ρσrT

+
σy − ρσr

2
(T + t)

]
,
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while in the Hull and White model

cov(t,T, τ) = C(T, τ)(I1 + I2 + I3),

where

C(T, τ) =
σy

ay
[e−ay(τ−T ) − 1],

I1 =
δσs

ay
[1 − e−ay(T−t)],

I2 =
σy

ay

[
1 − e−ay(T−t)

ay
−

1 − e−2ay(T−t)

2ay

]
,

I3 =
ρσr

ar

[
1 − e−ay(T−t)

ay
−

1 − e−(ay+ar)(T−t)

ay + ar

]
.

The time t0 does not have to be the starting time of
the contract; it can be any reset date.
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Example
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Quanto caps/floors

The caplet value is:

pT (t)
[
b(t)qT (t)

qτ(t)
Φ(d+) − (1 + (τ − T )R)Φ(d−)

]
,

where

d± =
ln

(
b(t)qT (t)

qτ(t)(1 + (τ − T )R)

)
ν(t)

±
ν(t)
2
,

ν2(t) is the total variation of the function f (s) on the
interval [t,T ]??, and

f =
bqT

qτ
.
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Example
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Quanto bond options

An option on a portfolio of zero-coupon bonds
can be valued as a portfolio of options on zero-
coupon bonds. The value of the ith option on a zero
coupon bond is then:

pT (t)
[
qTi(t)b(t)

qT (T )
Φ(d+) − DiΦ(d−)

]
,

where Di are discount factors,

d± =
ln( f (t)/Di)
νi(t)

±
νi(t)

2
,

ν2
i (t) is the total variation of the function fi(s) on the

interval [t,T ]??, and

fi =
bqTi

qT .
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Example
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Cash flow spread options

A spread option gives the holder the difference,
if positive, between two foreign interest rates,
multiplied by the nominal amount in the domestic
currency (USD).

Assume the rate index currencies are DEM and
FFR. The dollar pay-off of such a contract at maturity
T can be derived to:

X =
N
τ − T

max{ f (T ) − Kq, 0},

where N is the nominal amount, K1 = K(τ − T ), K is
the strike,

f (T ) =
1

dD
τ

−
1

dF
τ

,

and the q variables represent the German and
French bond prices.

The variance of the combined forward price that
is used in the calculations of the spread option prices
in the case of the Ho and Lee model is

ν
2(t) = (T − t)(τ − T )2(σ2

D + σ
2
F − 2ρσDσF),
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while in the case of the Hull and White model

ν
2(t) =

[
σD

aD
[e−aD(τ−T ) − 1]

]2

·

[
1 − e−2aD(T−t)

2aD

]
+

[
σF

aF
[e−aF(τ−T ) − 1]

]2

·

[
1 − e−2aF(T−t)

2aF

]
− 2ρ

[
σD

aD
[e−aD(τ−T ) − 1]

] [
σF

aF
[e−aF(τ−T ) − 1]

]
×

[
1 − e−(aD+aF)(T−t)

aD + aF

]
,

where ρ denotes the correlation between two Wiener
processes that drive the exchange rates of DEM and
FFR.
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Bermudan, American and Barrier
Options

Let u(r, t) be the value of a contract at time t with
a given payout function, if the rate at that time is r.
The Hull and White pricing equation is

∂u
∂t
= ru − (ϑ(t) − r)

∂u
∂r
−

1
2
σ

2∂
2u
∂r2 .

The payout function u(r,T ) depends on the option
and is known. It defines the final condition. The
boundary conditions u(0, t) and u(rmax, t) are also
known. We want to find u(r, 0).

In order to calculate this numerically, we will first
make time and rate discrete. The step in time is k
and the step in rate is h. Let us write time and rate
as:

t j = jk, j = 0, 1, 2, . . . ,T

ri = ih, i = 0, 1, 2, . . . ,N.
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Figure 1: How the time space and rate space are
made discrete

The derivatives are approximated with difference
quotients:

u(ri, t j) = ui, j,

∂u
∂t

(ri, t j) =
ui, j+1 − ui, j

k
,

∂u
∂r

(ri, t j) =
ui+1, j − ui−1, j

2h
,

∂2u
∂r2 (ri, t j) =

ui+1, j − 2ui, j + ui−1, j

h2 .
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Using these approximations, our equation can be
written as

dui, j

dt
= rui, j−(ϑ(t j)−ari)

ui+1, j − ui−1, j

2h
−

1
2
σ

2ui+1, j − 2ui, j + ui−1, j

h2 .

By rearranging this, we obtain

dui, j

dt
=

(
−
σ2

2h2 +
ϑ(t j) − ari

2h

)
ui−1, j +

(
σ2

h2 + ri

)
ui, j

+

(
−
σ2

2h2 −
ϑ(t j) − ari

2h

)
ui+1, j,

where the final values u(ri, tT ) and boundary values
u(r0, t j) and u(rN, t j) are known.

Let matrix A contain the time differentiation and
the boundary conditions. In matrix form, we get

du
dt
= A(t)u(t),

where A(t) is a triagonal (N + 1) × (N + 1) matrix

A(t) =


xB0(r0,t) yB0(r0) zB0(r0,t) 0 ... ... 0
x(r1,t) y(r1) z(r1,t) 0 ... ... 0

0 x(r2,t) y(r2) z(r2,t) 0 ... 0
... ... ... ... ... ... ...
... ... ... x(rN−2,t) y(rN−2) z(rN−2,t) 0
... ... ... ... x(rN−1,t) y(rN−1) z(rN−1,t)
... ... ... ... xBN(rN ,t) yBN(rN) zBN(rN ,t)


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with

x(ri, t j) = −
σ2

2h2 +
ϑ(t j) − ari

2h
,

y(ri) =
σ2

h2 + ri,

z(ri, t j) = −
σ2

2h2 −
ϑ(t j) − ari

2h
.

If we approximate the time derivative with a
difference quotient and apply the trapezoidal rule, we
obtain the Crank–Nicholson method:

u j+1 − u j

k
=

A(t j)u j + A(t j+1)u j+1

2
.

Solving this equation for u j yields

u j =

(
I +

k
2

A(t j)
)−1 (

I −
k
2

A(t j+1)
)

u j+1,

where I denotes the identity matrix.

We take one step backward in time. One step
further from the day when we had our original payout
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function and one step closer to today. For each time
step we take, we will have to solve a linear system of
equations with N + 1 unknown variables.

Figure 2: The Crank–Nicholson method to value a
given future payout function

These calculations are simplified by the triagonal
structure of A. Each iteration generates a new value
function valid for a time point one step closer to
today. The value function gives the present value
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of the payout function as a function of the rate.

The iterations continue until we have a value
function valid for today. From today’s value function
we can obtain the value using today’s rate. The value
is the risk-adjusted present value of the original
payout function.
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Example

– Typeset by FoilTEX – 38



MT1460 2005, period 3

Exercises
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