
Tentamen i 5B1575 Finansiella Derivat.
Torsdag 25 augusti 2005 kl. 14.00–19.00.

Answers and suggestions for solutions.

1. (a) To obtain the replicating portfolio at t = 0 we have to solve the following set
of equations

{
1.1x + y · 140 = 0,
1.1x + y · 80 = 20,

since regardless of whether the stock price goes up or down the value of the
portfolio should equal the value of the option. This yields

x =
1400

33
, y = −

1

3
.

Using the same method we find the rest of the replicating portfolio strategy
and it is shown in the figure below.

− −, y=

0 0

x=

, y=x=

112100

140

196

0

2080

64

0

36

010/1.1

x =1400/33,y=−1/3

Note that since the option is exercised at the node with stock price 80, you will
from that node on no longer hold a portfolio.

That the portfolio strategy is self-financing is seen from the following equation

1.1 ·
1400

33
−

1

3
· 140 = 0 + 0 · 140.

(b) Let xS denote the number of underlying you should add to the portfolio, and
let xF denote the number of derivatives with price function F you should add
to the portfolio. For the underlying itself we have that

∆S = 1 and ΓS = 0.
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For the derivatives with price function F we have

∆F =
∂F

∂s
= 2s exp

{(
−

r

2
−

σ2

8

)
(T − t)

}
,

ΓF =
∂2F

∂s2
= 2 exp

{(
−

r

2
−

σ2

8

)
(T − t)

}
.

So with S0 = 10, r = 0.05, and σ = 0.5 we have

∆F ≈ 17.8719 and ΓF ≈ 1.7872.

In order to make the portfolio both delta and gamma neutral you should solve
the following equations





∆P + xS∆S + xF∆F = 0

ΓP + xSΓS + xF ΓF = 0

The solution is




xF = −
ΓP

ΓF
≈ −0.56,

xS =
∆FΓP

ΓF
− ∆P = 10,

that is, you should sell 0.56 derivatives and buy 10 of the underlying stock.

(c) i. Theorem 1 (First Fundamental Theorem) The model is arbitrage free
essentially if and only if there exists a (local) martingale measure Q.

ii. Theorem 2 (Second Fundamental Theorem) Assume that the mar-
ket is arbitrage free. Then the market is complete if and only if the mar-
tingale measure is unique.

2. The payoff X of the chooser option at time T0 equals

X = max {C(T0, ST0
,K, T, r, σ), P (T0 , ST0

,K, T, r, σ)} ,

where C(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of a Eu-
ropean call option with exercise price K and expiry date T , when the current price
of the underlying is s, the interest rate is r, and the volatility of the underlying is σ.
The notation P (t, s,K, T, r, σ) is used for the price of the corresponding put option.

Using put-call-parity, P (t, s,K, T, r, σ) = Ke−r(T−t) + C(t, s,K, T, r, σ) − s, this
payoff can be written as

X = max
{
C(T0, ST0

,K, T, r, σ),Ke−r(T−T0) + C(T0, ST0
,K, T, r, σ) − ST0

}

= C(T0, ST0
,K, T, r, σ) + max

{
0,Ke−r(T−T0) − ST0

}
.

The price of the chooser option is therefore given by

Π(t;X) = e−r(T0−t)EQ
[
C(T0, ST0

,K, T, r, σ) + max{0,Ke−r(T−T0) − ST0
}
∣∣∣Ft

]

= e−r(T0−t)EQ [C(T0, ST0
,K, T, r, σ)|Ft ]

+ e−r(T0−t)EQ
[
max

{
0,Ke−r(T−T0) − ST0

}∣∣∣Ft

]
.



5B1575 Tentamen 2005-08-25 3

Now, using that all price processes normalized by the risk free asset B are Q-
martingales we find that e−r(T0−t)E[C(T0, ST0

,K, T, r, σ)|Ft ] = C(t, St,K, T, r, σ).
The second term in the price is easily identified as the price at time t of a put op-
tion, with exercise date T0, and exercise price Ke−r(T−T0). The price of the chooser
option is thus given by

Π(t;X) = C(t, St,K, T, r, σ) + P (t, St,Ke−r(T−T0), T0, r, σ).

Both prices in the above formula can be explicitly computed using Black-Schloes
formula, and put-call-parity.

3. (a) Recall that if the dynamics of the zero-coupon bond prices, p(t, T ), are given
by

dp(t, T ) = µ(t, T )p(t, T )dt + ν(t, T )p(t, T )dW (t),

under the objective measure P , then the market price of risk λ is defined as

λ(t) =
µ(t, T ) − r(t)

ν(t, T )
.

Now, generally you expect people to be risk averse, and thus requiring risky
assets to have higher expected rate of return than the risk less asset, if they
are to invest in them. This means that typically µ(t, T ) > r(t), and thus you
would expect λ to be positive (recall that λ is assumed to be a constant here).

(b) We have that

rt = r0 +

∫ t

0
κ
(
θQ − ru

)
du +

∫ t

0
σdVu.

Let m(t) = EQ[rt] and take expectations to obtain

m(t) = r0 +

∫ t

0
κ
[
θQ − m(u)

]
+ 0.

This gives the ODE




ṁ = κ

[
θQ − m

]
,

m(0) = r0,

with solution m(t) = r0e
−κt + θQ

(
1 − e−κt

)
.

Thus we have that

EQ[r(T )] = r0e
−κT + θQ

(
1 − e−κT

)
,

and this tends to θQ as T tends to infinity.

i. The initial zero-coupon yields are given by

y(0, T ) = −
ln p(0, T )

T
= −

{A(0, T ) − B(0, T )r0}

T

=
B(0, T )r0

T
−

A(0, T )

T
.

From one of the hints we have

A(0, T ) =
[B(0, T ) − T ][ab − 1

2σ2]

a2
−

σ2B2(0, T )

4a
,
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and

B(0, T ) =
1

a

(
1 − e−aT

)
,

for the parameterization dr = (b− ar)dt+σdV . Using these expression we
find that

lim
T→0

y(0, T ) = r0.

To see this use l’Hospitals rule once, or use the interpretation of the yield.
Furthermore we find that

lim
T→∞

y(0, T ) =
ab − 1

2σ2

a2
.

If the model is parameterized as dr = κ(θQ − r)dt + σdV instead, we have
a = κ, and b = κ · θQ, and then we have

lim
T→∞

y(0, T ) = θQ −
1

2

(
σ

κ

)2

.

Thus if r0 = θQ the curve starts at θQ and tends to θQ − σ2/(2κ2), with a
slight downward slope.

ii. If r0 = θP , and λ > 0 we have r0 = θP > θQ, and the curve starts at θP

and tends to θQ − σ2/(2κ2), with a downward slope.

iii. Assuming that the short rate is stationary its expected value is θQ under
Q, and θP under P . Setting r0 to these values we thus get a picture of
what the yield curve will typically look like under Q and P , respectively,
since typically under Q the short rate will oscillate around θQ, just as it
typically will oscillate around θP under P .

4. (a) The drift of any (ideally traded) price process under the risk neutral martingale
measure is equal to the short rate (given that the asset pays no dividends). This
means that we should have b(t, T ) = 0. Using the expression for b(t, T ) and
taking the derivative w.r.t. T we get the HJM drift condition

α(t, T ) = σ(t, T )

∫ T

t
σ(t, u)′du,

where ′ denotes transpose.

(b) i. Under Qd the following processes should be martingales

Bd

Bd
, and

B̃f

Bd
=

XBf

Bd
.

This means that the processes Bd, and B̃f should have a local rate of return
equal to rd.
Using Itô’s formula the Qd-dynamics of B̃f are found to be

dB̃f = B̃f (rf + αX)dt + B̃fσXdV.

Setting the local rate of return equal to rd gives the following equation

rf + αX = rd,

and thus, under Qd we have

αX = rd − rf .

ii. Denote by pf (t, T ) the price at time t of a foreign zero-coupon bond. Given
the dynamics of ff the dynamics of pf are given by

dpf (t, T ) = [rf (t) + bf (t, T )]pf (t, T )dt + af (t, T )pf (t, T )dV (t),
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where

af (t, T ) = −

∫ T

t
σf (t, s)ds,

bf (t, T ) = −

∫ T

t
αf (t, s)ds +

1

2
‖af (t, T )‖2.

Furthermore we know from the previous exercise that the Qd-dynamics of
X are given by

dX = (rd − rf )Xdt + σXXdV.

Now, the drift αf has to be chosen so that the process p̃f (t, T ) = X(t)pf (t, T )
has a local rate of return equal to rd under Qd (or equivalently p̃f/Bd is a
Qd-martingale). Using Itô’s formula the Qd-dynamics of p̃f can be found
to be

dp̃f (t, T ) = [rd(t) + bf (t, T ) + af (t, T )σ′

X ]p̃f (t, T )dt

+[σX(t) + af (t, T )]p̃f (t, T )dV,

where ′ denotes transpose. Setting the local rate of return equal to rd we
obtain the following equation

bf (t, T ) + af (t, T )σX(t)′ = 0.

After inserting the expression for af (t, T ) and bf (t, T ), and taking the
derivative w.r.t. T the equation reads

αf (t, T ) = σf (t, T )

(∫ T

t
σf (t, s)′ds − σX(t)′

)
.

This is the drift restriction on the foreign forward rate process under the
domestic martingale measure Qd.

5. (a) A portfolio is a vector process h = (h0, h1) which is adapted (really it should
be predictable) and sufficiently integrable. Here h0 is the number of risk free
assets in the portfolio and h1 is the number of stocks. The value process is
given by

V (t;h) = h0(t)B(t) + h1(t)S(t).

The gain process G of the stock is defined by G(t) = S(t)+D(t) and a portfolio
h is self-financing if it holds that

dV (t;h) = h0(t)dB(t) + h1(t)dG(t).

(b) A probability measure Q ∼ P is a martingale measure if the normalized gain
process

GZ(t) =
S(t)

B(t)
+

∫ t

0

1

B(s)
dD(s),

is a Q-martingale.

(c) From Exercise (a) we know that the value process of a self-financing portfolio
satisfies

dV (t;h) = h0(t)dB(t) + h1(t)dG(t).

Now, defining the relative portfolio according to

u0(t) =
h0(t)B(t)

V (t)
, u1 =

h1(t)S(t)

V (t)
,
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we have that the value process of a self-financing relative portfolio should satisfy

dV (t;u) = u0(t)V (t)
dB(t)

B(t)
+ u1(t)V (t)

dG(t)

S(t)
.

Now, we are interested in the self-financing relative portfolio u = (0, 1), i.e. the
relative portfolio which at all times has all its money invested in the risky asset.
Recall that the dynamics under Q of a risky asset paying a constant dividend
yield of δ are given by

dSt = (r − δ)Stdt + σStdUt,

where U denotes a Q-Wiener process. The value process of this portfolio is
then seen to solve

dVt = 1 · Vt ·
dSt + dDt

St
= rVtdt + σVtdUt, (1)

V0 = S0, (2)

where we have used that we should start out owning exactly one risky asset to
begin with. Thus, the value process is given by geometrical Brownian motion,
and the explicit solution for V is given by

Vt = S0 exp

{(
r −

1

2
σ2
)

t + σUt

}
.

Finding the number of stocks owned at t, h1(t), is now easy. Simply use that
V (t) = h1(t)S(t) to obtain

h1(t) =
V (t)

S(t)
=

S0

St

exp

{(
r −

1

2
σ2
)

t + σUt

}
= eδt. (3)

The number of risky assets owned at time T is thus given by equation (3)
evaluated at t = T , and the dynamics of the portfolio are given by equation
(1).


