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Change of Numeraire
(Geman, Jamshidian, El Karoui)

Valuation formula:

Π [t;X] = E
Q
t,r

[
e−
∫ T
t r(s)ds × X

]

Hard to compute. Double integral.

Note: If X and r are independent then

Π [t;X] = E
Q
t,r

[
e−
∫ T
t r(s)ds

]
· EQ

t,r [X]

= p(t, T ) · EQ
t,r [X] .

Nice! We do not have to compute p(t, T ). It
can be observed directly on the market!
Single integral!

Sad Fact: X and r are (almost) never inde-
pendent!
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Idea: Use T -bond (for a fixed T ) as numeraire.

Define the T-forward measure QT by the re-

quirement that

Π (t)

p(t, T )

is a QT -martingale for every price process Π (t).

Then

Π [t;X]

p(t, T )
= ET

[
Π [T ;X]

p(T, T )

∣∣∣∣∣Ft

]

Π [T ; X] = X, p(T, T ) = 1.

Π [t;X] = p(t, T )ET [X |Ft] s

Do such measures exist?.
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“The forward measure takes care of the sto-

chastics over the interval [t, T ].”

Enormous computational advantages.

Useful for interest rate derivatives, currency

derivatives and derivatives defined by several

underlying assets.

We carry out this within a factor model.
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A Factor Model

Given: Non traded underlying factor process

X.

P -dynamics:

dX(t) = µ (t, X(t)) dt + σ (t, X(t)) dW̄ (t).

Bank:

dB(t) = rB(t)dt,

Problem: Price claims of the form

Y = Φ(X(T ))

Incomplete market!

(Compare with short rate models)
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• We cannot say anything about the price

of any particular derivative.

• To avoid arbitrage possibilities, prices of

different derivatives must satisfy certain

internal consistency relations.

(Compare with short rate models)
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Pricing PDE

Theorem: The pricing function F(t, x) of the

T -claim Φ(X(T )) solves

Ft + {µ − λσ}Fx +
1

2
σ2Fxx − rF = 0,

F(T, x) = Φ(x),

The market price of risk λ(t, x) is universal for

all derivatives.
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Risk neutral Valuation

Theorem: The pricing function is given by

F(t, x) = e−r(T−t)E
Q
t,x [Φ(X(T ))] ,

where the Q dynamics of X are

dX = {µ (t, X) − λ(t, X)σ (t, X)} dt+σ (t, X) dW.
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The Roles of Q and λ

Let S be the price process of any traded asset.

P -dynamics:

dS = αsSdt + SσsdW

Then

• Q-dynamics:

dS = rSdt + SσsdW

• The process

Z(t) =
S(t)

B(t)

is a Q-martingale.

• The market price of risk is given by

λ(t) =
αs(t) − r

σs(t)
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Basic Model

Factor process:

dX(t) = µ (t, X(t)) dt + δ (t, X(t)) dW̄ (t).

Price process vector:

S = (S0, S1, . . . , Sn) , where Sn(t) = B(t)

Write S-dynamcis under Q as

dSi = rSidt + SiσidW

Assumption:

• The model is given under a fixed martin-
gale measure Q.

• For the “numeraire process” S0 we have

S0(t) > 0, S0(0) = 1

Problem: Price a T -claim Y .
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The Normalized Economy

Use S0 as numeraire (accounting unit).

Z =
S

S0
= [Z0, Z1, . . . , Zn] =

[
S0

S0
,
S1

S0
, . . . ,

Sn

S0

]

A portfolio can now interpreted in the S-economy

or the Z-economy.

Definition:

V S(t; h) =
n∑

i=0

hi(t)Si(t)

V Z(t; h) =
n∑

i=0

hi(t)Zi(t)
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Invariance Lemma:

• A portfolio h is S-self-financing iff it is Z-

self-financing.

• The value process are connected by

V Z(t; h) =
1

S0(t)
V S(t;h)

• A claim Y is S-reachable iff

Y
S0(T )

is Z-reachable

• The price process Π is S-arbitrage free iff

ΠZ =
Π

S0

is Z-arbitrage free.
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Pricing

Pricing Formula: Let Π denote S-price process
for derivative. Then:

Π [t;Y] = S0(t) · ΠZ

(
t;

Y
S0(T )

)

Moral: Computation of Π [t;Y] is reduced to
computation of ΠZ

(
t; Y

S0(T)

)

Main Idea: In the Z-economy

Z =
S

S0
= [Z0, Z1, . . . , Zn] =

[
S0

S0
,
S1

S0
, . . . ,

Sn

S0

]

the asset Z0 is riskless with

Z0 = 1

Thus:

In the Z-economy

the short rate equals zero!
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Q-dynamics of S

dSi = Sirdt + SiσidW

Q-dynamics of Z

dZi = Zi

[
σ2
0 − σiσ0

]
dt + Zi (σi − σ0) dW

Q0-dynamics of Z (zero short rate!)

dZi = Zi [σi − σ0] dW0, i = 0, . . . , n.

Thus

λ =

(
σ2
0 − σiσ0

)
− 0

σi − σ0
= −σ0
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Theorem:

• For every T -claim Y, we have

Π [t;Y] = S0(t)E
0
t,X(t)

[
Y

S0(T )

]
,

• Q0-dynamics of Z

dZi = Zi [σi − σ0] dW0, i = 0, . . . , n.

• Q0-dynamics of S

dSi = Si (r + σiσ0) dt + SiσidW0,

where W0 is a Q0-Wiener process.

• Q0-dynamics of X

dX(t) = {µ + δσ0} dt + δdW0(t).
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Forward mesures

Use a T -bond (for a fixed T as numeraire!

S0(t) = p(t, T )

Denote the corresponding measure by QT : the

“T -forward neutral measure”.

We obtain

Π [t;Y] = p(t, T )ET
t,X(t)

[
Y

p(T, T )

]
,

Pricing Formula:

Π [t;Y] = p(t, T )ET
t,X(t) [Y] ,
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Connections Between Q and QT

We have

Π [0;Y] = EQ

[
exp

{
−
∫ T

0
r(s)ds

}
Y
]

Π [0;Y] = p(0, T )ET [Y] .

Thus

ET [Y] = EQ



exp

{
−
∫ T
0 r(s)ds

}

p(0, T )
· Y


 ,

ET
t,Xt

[Y] =
E

Q
t,Xt

[
exp

{
−
∫ T
0 r(s)ds

}
· Y
]

p(t, T )
,

Corollary: If r is deterministic, then

Q = QT
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An Expectation Hypothesis

Silly conjecture:

f(0, T ) = EP [r(T )]

Common conjecture:

f(0, T ) = EQ [r(T )]

Neither of these conjectures are true. Instead

the following holds.

Lemma:

f(0, T ) = ET [r(T )]

Note: Different measures for different T .
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An Example

Exchange option: Fix T1 and T2

X = max [p(T, T2) − β · p(T, T1), 0]

Π [t;X] = p(t, T1)E
T1
t,Xt

[max [Z(T ) − 1, 0]]

where

Z(t) =
p(t, T2)

p(t, T1)

European Call on Z with strike price K. Zero

interest rate.

If we have a linear model for r, then bond

volatilities are deterministic.

Piece of cake!
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A new look on option pricing
(Geman, El Karoui, Rochet)

European call on asset S with strike price K

and maturity T .

X = max [S(T ) − K, 0]

Write this as

X = [S(T ) − K] · I {S(T ) ≥ K}
= S(T ) · I {S(T ) ≥ K} − K · I {S(T ) ≥ K}

Use S(t) and p(t, T ) as numeraires.

Theorem:

Π [0;X] =

S(0) · QS [S(T ) ≥ K] − K · p(0, T ) · QT [S(T ) ≥ K]

(Compare with Black-Scholes)
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Analytical Results

Assumption: Assume that ZS,T , defined by

ZS,T (t) =
S(t)

p(t, T )
,

has dynamics

dZS,T (t) = ZS,T (t)mS
T (t)dt + ZS,T(t)σS,T (t)dW,

where σS,T (t) is deterministic.

We have to compute

QT [S(T ) ≥ K]

and

QS [S(T ) ≥ K]
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QT (S(T ) ≥ K) = QT

(
S(T )

p(T, T )
≥ K

)

= QT
(
ZS,T (T ) ≥ K

)

By definition ZS,T is a QT -martingale, so QT -

dynamics are given by

dZS,T (t) = ZS,T (t)σS,T (t)dWT ,

with the solution

ZS,T (T ) =

S(0)

p(0, T )
×exp

{
−

1

2

∫ T

0
‖σS,T (t)‖2dt +

∫ T

0
σS,T (t)dWT

}

Lognormal distribution!
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The integral

∫ T

0
σS,T (t)dWT

is Gaussian, with zero mean and variance

Σ2
S,T (T ) =

∫ T

0
‖σS,T (t)‖2dt

Thus

QT (S(T ) ≥ K) = N [d2],

d2 =
ln
(

S(0)
Kp(0,T)

)
− 1

2Σ
2
S,T (T )

√
Σ2

S,T (T )
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QS (S(T ) ≥ K) = QS

(
p(T, T )

S(T )
≤

1

K

)

= QS
(
YS,T (T ) ≤

1

K

)
,

YS,T (t) =
p(t, T )

S(t)
=

1

ZS,T (t)
.

YS,T is a QS-martingale, so QS-dynamics are

dYS,T(t) = YS,T(t)δS,T (t)dWS.

YS,T = Z−1
S,T

⇓

δS,T(t) = −σS,T(t)
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YS,T (T ) =

p(0, T )

S(0)
exp

{
−

1

2

∫ T

0
σ2

S,T (t)dt −
∫ T

0
σS,T (t)dWS

}
,

QS (S(T ) ≥ K) = N [d1],

d1 = d2 +

√
Σ2

S,T (T )
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Proposition: Price of call is given by

Π [0;X] = S(0)N [d2] − K · p(0, T )N [d1]

d2 =
ln
(

S(0)
Kp(0,T)

)
− 1

2Σ
2
S,T (T )

√
Σ2

S,T (T )

d1 = d2 +

√
Σ2

S,T (T )

Σ2
S,T (T ) =

∫ T

0
‖σS,T (t)‖2dt
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Bond Options in the Hull-White
Model

Option on T2-bond with expiration date T1

Q-dynamics:

dr = {Φ(t) − ar} dt + σdW.

Affine term structure:

p(t, T ) = eA(t,T)−B(t,T)r(t),

B(t, T ) =
1

a

{
1 − e−a(T−t)

}
.
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Check if Z has deterministic volatility

Z =
S(t)

p(t, T1)
, S(t) = p(t, T2)

Z(t) =
p(t, T2)

p(t, T1)
,

Z(t) = exp {∆A(t) − ∆B(t)r(t)} ,

∆A(t) = A(t, T2) − A(t, T1),

∆B(t) = B(t, T2) − B(t, T1),

dZ(t) = Z(t) {· · ·} dt + Z(t) · σz(t)dW,

σz(t) = −σ∆B(t) =
σ

a
eat

[
e−aT1 − e−aT2

]

Deterministic volatility!
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Bond Option Pricing Formula

Proposition: In the Hull-White model we have

Π [0;X ] = p(0, T2)N [d1] − K · p(0, T1)N [d2],

where

d2 =
ln
(

p(0,T2)
Kp(0,T1)

)
− 1

2Σ
2

√
Σ2

,

d1 = d2 +
√

Σ2,

Σ2 =
σ2

2a3

{
1 − e−2aT1

} {
1 − e−a(T2−T1)

}2
.
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