X

Change of Numeraire

Tomas Bjork



Change of Numeraire
(Geman, Jamshidian, El Karoui)

Valuation formula:

T
Nt X] = Ef?f,« i r(s)ds oy

Hard to compute. Double integral.

Note: If X and r are independent then

Mt X] = Egr [e— ftTT(S)ds] .Et% [ X]

p(t,T) - B [X].

Nice! We do not have to compute p(¢,T). It
can be observed directly on the market!
Single integral!

Sad Fact: X and r are (almost) never inde-
pendent!



Idea: Use T-bond (for a fixed T') as numeraire.
Define the T-forward measure Q! by the re-
quirement that

(1)
p(t,T)
is a QT-martingaIe for every price process I (t).

Then

Nt Xl _ o

Nit; X] = pt, T)ET [X |F] s

Do such measures exist?.



“The forward measure takes care of the sto-
chastics over the interval [¢,T]."

Enormous computational advantages.

Useful for interest rate derivatives, currency
derivatives and derivatives defined by several
underlying assets.

We carry out this within a factor model.



A Factor Model

Given: Non traded underlying factor process
X.

P-dynamics:

dX () =pu(t, X)) dt + o (t, X)) dW ().

Bank:
dB(t) = rB(t)dt,

Problem: Price claims of the form

Y= (X(T))

Incomplete market!

(Compare with short rate models)



e \We cannot say anything about the price
of any particular derivative.

e [0 avoid arbitrage possibilities, prices of
different derivatives must satisfy certain
internal consistency relations.

(Compare with short rate models)



Pricing PDE

Theorem: The pricing function F(t,x) of the
T-claim (X (T)) solves

1
Fy4+{pu— Ao} Fr + EO‘QFQ;Q; —rF = 0,
F(T,z) = ®(),

The market price of risk A(¢,z) is universal for
all derivatives.



Risk neutral VValuation

Theorem: The pricing function is given by
F(t,z) = e "I VEZ [o(X(T)],
where the Q dynamics of X are

dX = {u(t, X) — A\(t, X)o (t, X))} dt+o (¢, X) dW.



The Roles of () and )\

Let S be the price process of any traded asset.

P-dynamics:

Then

e ()-dynamics:

dS = rSdt + SosdW

e [ he process

is a Q-martingale.

e [ he market price of risk is given by




Basic Model

Factor process:

dX(t) = p(t, X (@) dt + 6 (t, X(t)) dW (¢).

Price process vector:

Write S-dynamcis under Q) as

dS; = rS;dt + S;o;dW

Assumption:

e [ he model is given under a fixed martin-
gale measure Q.

e For the “numeraire process’ Sg we have

So(t) >0, Sp(0)=1

Problem: Price a T-claim Y.
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The Normalized Economy

Use Sp as numeraire (accounting unit).

Z =2 =202, .2, = |20 5L  5n
S0 So So S0

A portfolio can now interpreted in the S-economy
or the Z-economy.

Definition:
VSR = 3 h(8)Si(0)
1=0
VEGR) = 3 hi()Zi(t)
1=0
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Invariance Lemma:

e A portfolio h is S-self-financing iff it is Z-
self-financing.

e [ he value process are connected by

VZ(t; h) = VS(t; h)

1
So(t)

e A claim )Y is S-reachable iff

Yy
So(T)

IS Z-reachable

e T he price process Il is S-arbitrage free iff

[

n% = —
S0

IS Z-arbitrage free.
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Pricing

Pricing Formula: Let Il denote S-price process
for derivative. Then:

SNl A
M[t; Y] = So(t) - M (t, SO(T)>

Moral: Computation of I [t; )] is reduced to
: Z (. Y
computation of Il <t, —SO<T))

Main Idea: In the Z-economy

S
Z=—=[Zo,21,---,Zn]=[
So

the asset Zp is riskless with

oo S

Zo=1

Thus:

In the Z-economy

the short rate equals zero!
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-dynamics of S

dS; = S;rdt + S;o;dW

X-dynamics of Z

dZ; = 7, [ag - az-ao] dt + Z; (o; — og) dW

QY-dynamics of Z (zero short rate!)

dZ; = Z;[o; — ool dWP, i=0,...,n.

Thus
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T heorem:

e For every T-claim ), we have

169 = S0 | 5 37|

e QY-dynamics of Z

dZ; = Z;[o; — ool AW, i=0,...,n.

e QY-dynamics of S
dS; = S; (r + o;00) dt + SiO'idWO,

where WO is a Q9-Wiener process.

e QP%-dynamics of X

dX (t) = {p + dog} dt + 6dwO(¢).
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Forward mesures

Use a T-bond (for a fixed T' as numerairel!

So(t) = p(t, T)

Denote the corresponding measure by QT: the
“I'-forward neutral measure’ .

We obtain

Nt Y] = p(t,T)EZX(t) Lﬁ] ,

Pricing Formula:

N[t Y] = pt, TVE! x 1) D]
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Connections Between Q and Q7

We have
M[o;y] = E€ [exp {— /OT’I“(S)CZS} y]
npo;y] = p(0,MHE"[V].
Thus
- _ 0 exp{—fOTr(s)ds} |
B¢ exp{— [dr(s)ds! Y
ngt V] = t’Xt[ {p(t ;> } },

Corollary: If r is deterministic, then

Q=q!
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An Expectation Hypothesis

Silly conjecture:

£(0,T) = EX [r(T)]

Common conjecture:

£(0,T) = E° [r(T)]

Neither of these conjectures are true. Instead
the following holds.

Lemma:

£(0,7) = E* [r(1)]
Note: Different measures for different T.
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An Example

Exchange option: Fix 77 and 15

X =max[p(T,12) — 8- p(T,T1), O]

N[t X] = p(t, T1) By, [max [2(T) — 1, 0]]

where

p(t, T>)

p(t, T1)

European Call on Z with strike price K. Zero
interest rate.

Z(t) =

If we have a linear model for r, then bond
volatilities are deterministic.

Piece of cakel
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A new look on option pricing
(Geman, El Karoui, Rochet)

European call on asset S with strike price K
and maturity T.

X =max|[S(T) — K, 0]
Write this as

X

[S(T) — K]- 1{S(T) > K}
S(T) - T{S(T) > K} — K - 1{S(T) > K}

Use S(t) and p(t,T) as numeraires.

Theorem:
M[0; X] =

S(0) - QY [S(T) > K] — K -p(0,T) - QT [S(T) > K]

(Compare with Black-Scholes)
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Analytical Results

Assumption: Assume that ZsT, defined by

S(t)

Zgr(t) = o (0. T’

has dynamics

dZg1(t) = Zgp®)mF.(t)dt + Zg(t)ogr(t)dW,

where og7(t) is deterministic.

We have to compute

Q' [S(T) > K]
and

Q”[S(T) > K]
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T T S(T)
OT (S(T) > K) = Q <p<T,T>ZK>

= Q" (Zs1(T) > K)

By definition Zgr is a Q1-martingale, so Q-
dynamics are given by

dZs1(t) = Zgr(t)ogr(t)dW?,

with the solution

Zgr(T) =

S(0)
p(0,T)

1 (T T
xexp{—5 | losz@IPde+ | as,Tof)dWT}

Lognormal distribution!
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The integral

T T
/O o (£)dW

is Gaussian, with zero mean and variance

>2,.(T) = g ) ||2dt
sr(T) = ‘ los ()|

Thus

QT (S(T) > K) = N[da],

S
_In(ga(oly) — 3=3.0(7)

\/Z%,T(T)
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Q° (S(T) > K) =

|
Q

N
VR
S
=
3
|_l
N————

Y7 is a @Q”-martingale, so Q°-dynamics are

dYs7(t) = Ygr(t)dgr(t)dW>.

—1
Yor = ZS,T
2

65 1(t) = —og7(t)
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Y
s7(T)

p(0,1
SO(’O))
exp{ W
_1
E/T
0 0'2
S
T
0 o)
s.7(
£)d
S}

Q° (S
(T) > K
):
N(d;]

1
\/
S T
, ( )
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Proposition: Price of call is given by

N[0; X] = S(0)Nld2] — K -p(0,T)Nld1]

SO
In (gogo’ry) — 3= 32(T)

\/Z%,T(T)

di = da+/TF(T)

>2 (T = g £)||2dt
57(T) 5 los. ()]
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Bond Options in the Hull-White
Model

Option on T5-bond with expiration date Ty

-dynamics:

dr = {P(t) — ar}dt + odW.

Affine term structure:

p(t,T) — eA(t,T)—B(t,T)T(t),

B, T) = 1 {1- e_a’(T_t)} .

a
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Check if Z has deterministic volatility

_ S@) _
—p(t,T]_)’ S(t) _p(taTQ)

_ p(t,T2)

2=y

Z(t) = exp {AA(t) — ABDr(1)},

AA(D)
AB(t)

A(t7 TQ) T A(ta T1)7
B(t7 TQ) T B(t7 T1)7

dZ(t) = Z(#) {--Ydt + Z(t) - o-(t)dW,

o:(t) = —c AB(t) = Zet [e—aTl _ e—aTQ}
a

Deterministic volatility!
28



Bond Option Pricing Formula

Proposition: In the Hull-White model we have

MN[0, X] = p(0,T5)N[d1] — K - p(0,T1)N|[d2],

where
L n(Eedh) 3
2 = /52 :
dy = d2+\/§,
s2 ;7;{1 e—QaTl}{l_e—a(TQ—Tl)}z'
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