VII

Several Underlying Assets

Tomas Björk

Model

Under the objective probability measure P,
 the S-dynamics are given by

$$dS_i(t) = \alpha_i S_i(t) dt + S_i(t) \sum_{j=1}^n \sigma_{ij} d\overline{W}_j(t),$$

for $i=1,\ldots,n$. Here $\bar{W}_1,\ldots,\bar{W}_n$ are independent P-Wiener processes.

- The coefficients α_i and σ_{ij} above are assumed to be known constants.
- The volatility matrix

$$\sigma = \left\{\sigma_{ij}\right\}_{i,j=1}^n$$

is nonsingular.

Compact Notation

$$dS_i(t) = \alpha_i S_i(t) dt + S_i(t) \sigma_i d\bar{W}(t)$$

$$\bar{W}(t) = \begin{bmatrix} \bar{W}_1(t) \\ \vdots \\ \bar{W}_n(t) \end{bmatrix}$$

$$\sigma_i = [\sigma_{i1}, \dots, \sigma_{in}]$$

$$dS(t) = D[S(t)] \alpha dt + D[S(t)] \sigma d\overline{W}(t).$$

$$D[x] = \begin{bmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_n \end{bmatrix}$$

$$\alpha = \left[\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_n \end{array} \right].$$

Main Problem

Find arbitrage free price for claim of the form

$$\mathcal{X} = \Phi(S_T)$$

Assumption:

The price process is of the form

$$\Pi\left[t;\mathcal{X}\right] = F\left(t,S(t)\right)$$

for some deterministic function

$$F: R_+ \times R^n \to R.$$

Procedure

- Take Φ , F as given.
- Form a self-financing portfolio, based on S_1, \ldots, S_n, B and F. (n + 1 degrees of freedom)
- Choose the portfolio weights such that the driving Wiener processes are canceled in the portfolio (uses up n degrees of freedom)

$$dV(t) = V(t)k(t)dt.$$

• Use the remaining degree of freedom in order to force the value dynamics to be of the form

$$dV(t) = (r + \beta) V(t) dt$$

where β is some fixed nonzero real number. "beat the risk free asset"

- This is possible if and only if a certain matrix is nonsingular.
- Absence of arbitrage possibilities implies that this matrix has to be singular.
- The singularity condition of the matrix leads to a PDE for the pricing function F.

Portfolio dynamics:

$$dV = V \left[\sum_{1}^{n} u_i \frac{dS_i}{S_i} + u_F \frac{dF}{F} + u_B \frac{dB}{B} \right],$$

Derivative dynamics:

$$dF = F \cdot \alpha_F dt + F \cdot \sigma_F d\bar{W},$$

where

$$\alpha_F(t) = \frac{1}{F} \left[F_t + \sum_{1}^{n} \alpha_i S_i F_i + \frac{1}{2} tr \left\{ \sigma^* D[S] F_{ss} D[S] \sigma \right\} \right]$$

$$\sigma_F(t) = \frac{1}{F} \sum_{1}^{n} S_i F_i \sigma_i.$$

Insert dF/F, dS_i/S_i and dB/B in portfolio dynamics and use the relation

$$u_B = 1 - \left(\sum_{1}^{n} u_i + u_F\right)$$

Value dynamcis:

$$dV = V \cdot \left[\sum_{1}^{n} u_{i} (\alpha_{i} - r) + u_{F} (\alpha_{F} - r) + r \right] dt$$

$$+ V \cdot \left[\sum_{1}^{n} u_{i} \sigma_{i} + u_{F} \sigma_{F} \right] d\overline{W}.$$

Wipe out the noise by choosing weights as

$$\sum_{1}^{n} u_i \sigma_i + u_F \sigma_F = 0.$$

Value dynamics:

$$dV = V \cdot \left[\sum_{1}^{n} u_i (\alpha_i - r) + u_F (\alpha_F - r) + r \right] dt,$$

Now we try to "beat the bank" (by a factor β) by choosing the weights such that

$$\sum_{1}^{n} u_{i} (\alpha_{i} - r) + u_{F} (\alpha_{F} - r) + r = r + \beta.$$

On matrix form we thus want to solve:

$$\begin{bmatrix} \alpha_1 - r & \dots & \alpha_n - r & \alpha_F - r \\ \sigma_1^{\star} & \dots & \sigma_n^{\star} & \sigma_F^{\star} \end{bmatrix} \begin{bmatrix} u_S \\ u_F \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix}$$

Absence of arbitrage \Rightarrow this system cannot be solved for $\beta \neq 0$.

Thus the coefficient matrix must be singular.

Proposition: Absence of arbitrage \Rightarrow There exist constants $\lambda_1, \ldots, \lambda_n$ such that

$$\alpha_i - r = \sum_{j=1}^n \sigma_{ij} \lambda_j, \quad i = 1, \dots, n,$$

$$\alpha_F - r = \sum_{j=1}^n \sigma_{Fj} \lambda_j,$$

Interpretation:

 $\lambda_j =$ "market price of risk" of type j

 $\lambda_j = \text{risk premium per unit volatility of type } j$

On matrix form

$$\alpha - r \mathbf{1}_n = \sigma \lambda,$$

$$\alpha_F - r = \sigma_F \lambda,$$

where

$$\lambda = \left[egin{array}{c} \lambda_1 \ dots \ \lambda_n \end{array}
ight] \qquad \mathbf{1}_n = \left[egin{array}{c} \mathbf{1} \ dots \ \mathbf{1} \end{array}
ight].$$

By assumption σ is invertible so

$$\lambda = \sigma^{-1} \left[\alpha - r \mathbf{1}_n \right]$$

Pluging this into

$$\alpha_F - r = \sigma_F \lambda$$

and using

$$\sigma_F = \frac{1}{F} \cdot [S_1 F_1, \dots, S_n F_n] \sigma.$$

gives us

$$\alpha_F - r = \frac{1}{F} \cdot [S_1 F_1, \dots, S_n F_n] [\alpha - r \mathbf{1}_n]$$

Recall

$$\alpha_F - r = \frac{1}{F} \cdot [S_1 F_1, \dots, S_n F_n] [\alpha - r \mathbf{1}_n]$$

Inserting α_F gives us.

Proposition: Absence of arbitrage implies that F has to satisfy the PDE

$$F_{t}(t,s) + \sum_{i=1}^{n} r s_{i} F_{i}(t,s) + \frac{1}{2} tr \{\sigma^{*}D[S]F_{ss}D[S]\sigma\} - rF(t,s) = 0,$$

$$F(T,s) = \Phi(s)$$

Risk Neutral Valuation

Proposition: The pricing function F is given by

$$F(t,s) = e^{-r(T-t)} E_{t,s}^{Q} \left[\Phi \left(S(T) \right) \right]$$

Q-dynamics:

$$dS_i = rS_i dt + S_i \sigma_i dW, \quad i = 1, \dots, n.$$

Alterntive formulation

Dynamics:

$$dS_i = S_i \alpha_i dt + S_i \sigma_i dW_i, \quad i = 1, \dots, n.$$

Now both σ_i and α_i are scalars.

$$W(t) = \begin{bmatrix} W_1(t) \\ \vdots \\ W_n(t) \end{bmatrix}$$

Here W_1, \dots, W_n are **correlated** Wiener processes, with unit variance parameter, and covariance structure

$$C_{ij} = Cov \left[dW_i, dW_j \right] = \rho_{ij} dt,$$

i.e.

$$C = E \left[dW \cdot dW^* \right] = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{21} & 1 & \cdots & \rho_{2n} \\ \vdots & & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \cdots & 1 \end{bmatrix} dt$$

Pricing PDE

$$\frac{\partial F}{\partial t} + \sum_{i=1}^{n} r s_{i} \frac{\partial F}{\partial s_{i}} + \frac{1}{2} \sum_{i,j} s_{i} s_{j} \sigma_{i} \sigma_{j} \rho_{ij} \frac{\partial^{2} F}{\partial s_{i} \partial s_{j}} - rF = 0,$$

$$F(T,s) = \Phi(s)$$

Risk neutral Valuation

$$F(t,s) = e^{-r(T-t)} E_{t,s}^{Q} [\Phi(S(T))]$$

Q-dynamics:

$$dS_i = rS_i dt + S_i \sigma_i dW_i,$$

Local rate of return equals r. Same covariance structure under Q as under P.