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Definitions

Bonds:

T -bond = zero coupon bond, paying 1$ at the
date of maturity T .

p(t, T ) = price, at t, of a T -bond.

p(T, T ) = 1.

Main Problem

• Investigate the term structure, i.e. how
prices of bonds with different dates of ma-
turity are related to each other.

• Compute arbitrage free prices of interest
rate derivatives (bond options, swaps, caps,
floors etc.)
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Risk Free Interest Rates

At time t:

• Sell one S-bond

• Buy exactly p(t, S)/p(t, T ) T−bonds

• Net investment at t: 0$.

At time S:

• Pay 1$

At time T:

• Collect p(t, S)/p(t, T ) · 1$
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Net Effect

• The contract is made at t.

• An investment of 1 at time S has yielded

p(t, S)/p(t, T ) at time T .

• The equivalent constant rates, R, are given

as the solutions to

Continuous rate:

eR·(T−S) · 1 =
p(t, S)

p(t, T )

Simple rate:

[1 + R · (T − S)] · 1 =
p(t, S)

p(t, T )
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Continuous Interest Rates

1. The forward rate for the period [S, T ],
contracted at t is defined by

R(t;S, T ) = −
log p(t, T ) − log p(t, S)

T − S
.

2. The spot rate, R(S, T ), for the period [S, T ]
is defined by

R(S, T ) = R(S;S, T ).

3. The instantaneous forward rate at T ,
conracted at t is defined by

f(t, T ) = −
∂ log p(t, T )

∂T
= lim

S→T
R(t; S, T ).

4. The instantaneous short rate at t is de-
fined by

r(t) = f(t, t).
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Simple Rates
(LIBOR)

1. The simple forward rate L(t;S,T)for the

period [S, T ], contracted at t is defined

by

L(t; S, T ) =
1

T − S
·
p(t, S) − p(t, T )

p(t, T )

2. The simple spot rate, L(S, T ), for the pe-

riod [S, T ] is defined by

L(S, T ) =
1

T − S
·
1 − p(S, T )

p(S, T )
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Practical Formula
(LIBOR)

The simple spot rate, L(T, T + δ), for the

period [T, T + δ] is given by

p(T, T + δ) =
1

1 + δL(T, T + δ)

i.e.

L =
1

δ
·
1 − p

p

7



Bond prices ∼ forward rates

p(t, T ) = p(t, s) · exp
{
−
∫ T

s
f(t, u)du

}
,

In particular we have

p(t, T ) = exp

{
−
∫ T

t
f(t, s)ds

}
.
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Caps

Basic idea: Buy an insurance against high in-
terest rates in the future.

1. The contract is written at t = 0. At that
time also the principal, K, and the fixed
cap rate, R are determined.

2. A cap is a sum of elementary contracts, so
called caplets.

3. A caplet is active over the period [T, T +δ],

4. At time T + δ the holder of the caplet re-
ceives

X = Kδ max [L − R,0] = Kδ (L − R)+

where L is the simple spot rate (LIBOR)
for the period [T, T + δ], i.e.

L = L(T, T + δ)
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We set K = 1 and plug in earlier formulas for

LIBOR rates

p =
1

1 + δL

L =
1

δ
·
1 − p

p

X = δ (L − R)+ = δ

(
1 − p

pδ
− R

)+

=

(
1

p
− (1 + δR)

)+

=

(
1

p
− R?

)+

.

where R? = 1 + δR.
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At T + δ the holder thus receives

Xi =

(
1

p
− R?

)+

= R? ·
1

p

(
1

R?
− p

)+

This is equivalent to receiving

Y = R? ·
(

1

R?
− p(T, T + δ)

)+

at time T .

Result:

A caplet is equivalent to a European Put with

excercise date T , on an underlying (T + δ)-

bond.

The theoretcial price of the cap will depend

upon our choice of interest rate model.
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Interest Rate Options

Problem:

We want to price, at t, a European Call, with

exercise date S, and strike price K, on an un-

derlying T -bond. (t < S < T).

Naive approach: Use Black-Scholes’s formula.

F(t, p) = pN [d1] − e−r(S−t)KN [d2] .

d1 =
1

σ
√

S − t

{
ln
(

p

K

)
+
(
r +

1

2
σ2
)
(S − t)

}
,

d2 = d1 − σ
√

S − t.

where

p = p(t, T )
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Is this allowed?

• p shall be the price of a traded asset. OK!

• The volatility of p must be constant. Here
we have a problem because of pull-to-par,
i.e. the fact that p(T, T ) = 1. Bond volatil-
ities will tend to zero as the bond approaches
the time of maturity.

• The short rate must be constant and de-

terministic. Here the approach collapses
completely, since the whole point of study-
ing bond prices lies in the fact that interest
rates are stochastic.

There is some hope in the case when the re-
maining time to exercise the option is small in
relation to the remaining time to maturity of
the underlying bond (why?).

13



Deeply felt need

A consistent arbitrage free model for
the bond market
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Stochastic interest rates

We assume that the short rate r is a stochastic

process.

Money in the bank will then grow according to:
{

dB(t) = r(t)B(t)dt,
B(0) = 1.

i.e.

B(t) = e
∫ t
0 r(s)ds
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Models for the short rate

Model: (In reality)

P:

dr = µ(t, r)dt + σ(t, r)dW,

dB = r(t)Bdt.

Question: Are bond prices uniquely deter-

mined by the P -dynamics of r, and the require-

ment of an arbitrage free bond market?

NO!!

WHY?
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Stock Models ∼ Interest Rates

Black-Scholes:

dS = αSdt + σSdw,

dB = rBdt.

Interest Rates:

dr = µ(t, r)dt + σ(t, r)dW,

dB = r(t)Bdt.

Question: What is the difference?

Answer: The short rate r is not the price

of a traded asset!
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1. Meta-Theorem:

N = 0, (no risky asset)
R = 1, (one source of randomness, W )

We have M < R. The exongenously given

market, consisting only of B, is incomplete.

2. Replicating portfolios:

We can only invest money in the bank, and

then sit down passively and wait.

We do not have enough underlying assets in

order to price bonds.

18



• There is not a unique price for a particular

T−bond.

• In order to avoid arbitrage, bonds of dif-

ferent maturities have to satisfy internal

consistency relations.

• If we take one “benchmark” T0-bond as

given, then all other bonds can be priced

in terms of the market price of the bench-

mark bond.

Assumption:

p(t, T ) = F(t, r(t); T )

p(t, T ) = FT (t, r(t)),

FT (T, r) = 1.
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Program:

• Form portfolio based on T− and S−bonds.

Use Itô on FT (t, r(t)) to get bond- and

portfolio dynamics.

dV = V

{
uT

dFT

FT
+ uS

dFS

FS

}

• Choose portfolio weights such that the dW−
term vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage ⇒ k = r .

• Read off the relation k = r!
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From Itô:

dFT = FTαTdt + FTσTdW̃ ,

where




αT =
FT

t +µFT
r +1

2σ2FT
rr

FT ,

σT = σFT
r

FT .

Portfolio dynamics

dV = V

{
uT dFT

FT
+ uSdFS

FS

}
.

Reshuffling terms gives us

dV = V ·
{
uTαT + uSαS

}
dt+V ·

{
uTσT + uSσS

}
dW.

Let the portfolio weights solve the system
{

uT + uS = 1,

uTσT + uSσS = 0.
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



uT = − σS
σT−σS

,

uS = σT
σT−σS

,

Portfolio dynamics

dV = V ·
{
uTαT + uSαS

}
dt.

i.e.

dV = V ·
{

αSσT − αTσS

σT − σS

}
dt.

Absence of arbitrage requires

αSσT − αTσS

σT − σS
= r

which can be written as

αS(t) − r(t)

σS(t)
=

αT (t) − r(t)

σT (t)
.
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αS(t) − r(t)

σS(t)
=

αT (t) − r(t)

σT (t)
.

Note!

The quotient does not depend upon the par-

ticular choice of maturity date.
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Result:

Assume that the bond market is free of arbi-

trage. Then there exists a universal process λ,

such that

αT (t) − r(t)

σT (t)
= λ(t),

holds for all t and for every choice of maturity

T .

NB: The same λ for all choices of T .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).

Slogan:

“On an arbitrage free market all bonds have

the same market price of risk.”

The relation
αT − r

σT
= λ

is actually a PDE!
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The Term Structure Equation

FT
t + {µ − λσ}FT

r +
1

2
σ2FT

rr − rFT = 0,

FT (T, r) = 1.

P -dynamics:

dr = µ(t, r)dt + σ(t, r)dW.

λ =
αT − r

σT
, for all T

In order to solve the TSE we need to know λ.
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General Term Structure Equation

Contingent claim:

X = Φ(r(T ))

Result:

The price is given by

Π [t;X] = F(t, r(t))

where F solves

Ft + {µ − λσ}Fr +
1

2
σ2Frr − rF = 0,

F(T, r) = Φ(r).

In order to solve the TSE we need to know λ.
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Question:
Who determines λ?

Answer:

THE MARKET!
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Moral

• Since the market is incomplete the require-

ment of an arbitrage free bond market will

not lead to unique bond prices.

• Prices on bonds and other interest rate

derivatives are determined by two main fac-

tors.

1. Partly by the requirement of an arbi-

trage free bond market (the pricing func-

tions satisfies the TSE).

2. Partly by supply and demand on the

market. These are in turn determined

by attitude towards risk, liquidity con-

sideration and other factors. All these

are aggregated into the particular λ used

(implicitly) by the market.
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Risk Neutral Valuation

Using Feynmac–Kač we obtain

F(t, r;T ) = E
Q
t,r

[
exp

{
−
∫ T

t
r(s)ds

}
× 1

]
.

Q-dynamics:

dr = {µ − λσ}dt + σdW
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Risk Neutral Valuation

Π [t;X] = E
Q
t,r

[
e−
∫ T
t r(s)ds × X

]

Q-dynamics:

dr = {µ − λσ}dt + σdW

• Price = expected value of future payments

• The expectation should not be taken under

the “objective” probabilities P , but under

the “risk adjusted” probabilities Q.
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Interpetation of the risk
adjusted probabilities

• The risk adjusted probabilities can be inter-

preted as probabilities in a (fictuous) risk

neutral world.

• When we compute prices, we can calcu-

late as if we live in a risk neutral world.

• This does not mean that we live in, or

think that we live in, a risk neutral world.

• The formulas above hold regardless of the

attitude towards risk of the investor, as

long as he/she prefers more to less.
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