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Problems around Standard
Black-Scholes

e \We assumed that the derivative was traded.
How do we price OTC products?

e \Why is the option price independent of the
expected rate of return o of the underlying
stock?

e Suppose that we have sold a call option.
Then we face financial risk, so how do we
hedge against that risk?

All this has to do with completeness.



Definition:

We say that a T-claim X can be replicated, al-
ternatively that it is reachable or hedgeable,
if there exists a self financing portfolio A such
that

V(T =X, P-—a.s.

In this case we say that h is a hedge against
X . Alternatively, h is called a replicating or
hedging portfolio. If every contingent claim is
reachable we say that the market is complete

Basic Idea: If X can be replicated by a port-
folio h then the arbitrage free price for X is
given by

Nt X] = Vi@).



Trading Strategy

Consider a replicable claim X which we want
tosell at t =20..

e Compute the price N [0; X] and sell X at a
slightly (well) higher price.

e Buy the hedging portfolio and invest the
surplus in the bank.

e \Wait until expiration date T

e T he liabilities stemming from X is exactly
matched by VA(T), and we have our sur-
plus in the bank.



Completeness of Black-Scholes

Theorem: The Black-Scholes model is com-
plete.

Proof. Fix a claim X = & (S(T)). We want
to find processes V, «9 and uw* such that

|4 {uodB + u*ﬁ}

dV —
B S

V(T) = ®(5(1)).

dV

vV {uor -+ u*oz} dt + Vu*odW,

V(T) = @(5(1)).



Heuristics:
Let us assume that X is replicated by h =
(u9, w*) with value process V.

Ansatz:
V(t) = F(,S5(1))

Ito gives us

1
dV = {Ft + aSFs + EUQSQFSS} dt + o SFydW,

Write this as

|4

SF,
dt+V

dV =V { odW.

Compare with

dV =V {uor -+ u*oz} dt + Vu* ocdW



Define u* by

(1) = SOFs(tS®)

F(t,S()

This gives us the egn

Ft + %O-QSQFSS

rF

AV =V { r + u*oz} dt + Vu*adW.

Compare with

dV =V {uo’r -+ u*oz} dt + Vu*odW

Natural choice for 0 is given by

o rF ’

u



The relation v + v* = 1 gives us the Black-
Scholes PDE

1
F, +rSFs + 5(;QSQFSS —rF=0.

The condition
V(T) = (S(T))
gives us the boundary condition

F(T,s) = ®(s)

Moral: The model is complete and we have
explicit formulas for the replicating portfolio.



Main Result

Theorem: Define F as the solution to the
boundary value problem

1
F, + rsFs + EUQSQFSS —rF = 0,

F(T,s) = ®P(s).

Then X can be replicated by the relative port-
folio

EF(t,5()) — S@)Fs(t, S(1))

uO(t) = ,
F(t,S(t))
() S(t)Fs(t, S(t))
F(t,S()

The corresponding absolute portfolio is given
by
F(t,S(t)) — S(t)Fs(t, S(t))

B(t) ’

KO (1)
h*(t) = Fs(t,S(t)),
and the value process V" is given by

Vi) = F(t, S(t)).



Notes

Completeness explains unique price - the
claim is superfluous!

Replicating the claim P —a.s. <= Replicat-
ing the claim Q —a.s. for any Q ~ P. Thus
the price only depends on the support of
P.

Thus (Girsanov) it will not depend on the
drift o« of the state equation.

The completeness theorem is a nice theo-
retical result, but the replicating portfolio
is continuously rebalanced. Thus we are
facing very high transaction costs.
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Completeness vs No Arbitrage

Question:

When is a model arbitrage free and/or com-
plete?

Answer:

Count the number of risky assets, and the
number of random sources.

R = number of random sources
N = number of risky assets
Intuition:

If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus
lots of chances of making arbitrage profits.
Also many chances of replicating a given claim.
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Meta-T heorem

Generically, the following hold.

e [ he market is arbitrage free if and only if

N<R

e [ he market is complete if and only if

N>R

Example:
The Black-Scholes model. R=N=1. Arbitrage
free and complete.
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Parity Relations

Let & and W be contract functions for the T-
claims X = ®(S(T)) and Y = WV (S(T)). Then
for any real numbers o and 8 we have the fol-
lowing price relation.

N[t a® + W] = al [t; ®] + 61 [t; V].
Proof. Linearity of mathematical expectation.

Consider the following “basic’” contract func-
tions.

Pg(xz) = =,
dp(z) = 1,
Po g(z) = max[z— K,OQ].
Prices:
Nt es] = S),
Nit;, el = e_T(T_t),

M [t; e i c(t, S(t); K,T).
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If we have

n
P =adg+ P+ Y VPck,
i=1

then
n
N[t ®] = af[t; Pg]+BM [t Ppl+ > %M |t Po k]
i=1
We may replicate the claim & using a portfolio

consisting of basic contracts that is constant
over time, i.e. a buy-and hold portfolio:

e « shares of the underlying stock,
e 3 zero coupon T-bonds with face value $1,

e ; European call options with strike price
K;, all maturing at T'.
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Put-Call Parity

Consider a European put contract
CIDP’K(S) = MmaX [K — S, O]

It is easy to see (draw a figure) that

P p () Por(r) —s+ K

dp () — Ps(z) + Pp(z)

We immediately get

Put-call parity:

p(t,s; K) =c(t,s; K) — s + Ke" (Tt

T hus you can construct a synthetic put option,
using a buy-and-hold portfolio.
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Delta Hedging

Consider a fixed claim
X = ®(57)
with pricing function

F(t,s).

Setup:
We are at time ¢, and have a short (interpret!)
position in the contract.

Goal:
Offset the risk in the derivative by buying (or
selling) the (highly correlated) underlying.

Definition:
A position in the underlying is a delta hedge
against the derivative if the portfolio (under-
lying + derivative) is immune against small
changes in the underlying price.
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Formal Analysis

—1 = number of units of the derivative product
r =— hnumber of units of the underlying
s — today’s stock price
t — today’s date

Value of the portfolio:

V=-1-F(ts)4+x-s

A delta hedge is characterized by the property
that
oV
— = 0.
0s

We obtain

oF
7 —0
0s T

Solve for z!
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Result:

We should have

OF

Bs

shares of the underlying in the delta hedged
portfolio.

Tr =

Definition:
For any contract, its “delta” is defined by

OF

A = —.

0s
Result:
We should have

= A

shares of the underlying in the delta hedged
portfolio.

Warning:
The delta hedge must be rebalanced over time.
(why?)
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Black Scholes

For a European Call in the Black-Scholes model
we have

A = Nld4]

NB This is not a trivial result!

From put call parity it follows (how?) that A
for a European Put is given by

A = N[d{] — 1

Check signs and interpret!
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Rebalanced Delta Hedge

Sell one call option a time t = 0 at the B-S
price F'.

Compute A and by A shares. (Use the
income from the sale of the option, and
borrow money if necessary.)

Wait one day (week, minute, second..).
The stock price has now changed.

Compute the new value of A, and borrow
money in order to adjust your stock hold-
ings.

Repeat this procedure until ¢t = T'. Then
the value of your portfolio (B+S) will match
the value of the option almost exactly.
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e Lack of perfection comes from discrete, in-
stead of continuous, trading.

e You have created a “synthetic’ option.
(Replicating portfolio).

Formal result:
T he relative weights in the replicating portfolio
are

us

up
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Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

CDZ'(STi)a 1= 1,"',7’1,

all written on the same underlying stock S.

F;(t,s) = pricing function for i:th derivative
OF;
A, =
Os
h; = units of i:th derivative

Portfolio value:

Portfolio delta:

mn
An =) A,
i—=1
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Gamma

A problem with discrete delta-hedging is.
e As time goes by S will change.
e [ his will cause A = %—f to change.

e [ hus you are sitting with the wrong value
of delta.

Moral:

e If delta is sensitive to changes in S, then
you have to rebalance often.

e If delta is insensitive to changes in S you
do not need to rebalance so often.
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Definition:
Let N be the value of a derivative (or portfo-
lio). Gamma (IN) is defined as

_oa
0s
I.e.
2
r— 0<rl1
D52

Gamma is a measure of the sensitivity of A
to changes in S.

Result: For a European Call in a Black-5Scholes
model, ' can be calculated as

- N'[d1]
o SovT —t

Important fact:
For a position in the underlying stock itself we
have

=20
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Gamma Neutrality
A portfolio I1 is said to be gamma neutral if
its gamma equals zero, i.e.

|_|—|:O

e Sincel = 0O for a stock you can not gamma-
hedge using only stocks. item Typically

you use some derivative to obtain gamma
neutrality.
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General procedure

Given a portfolio Il with underlying S. Con-
sider two derivatives with pricing functions F
and G.

number of units of F

LF

T number of units of G

Problem:
Choose xr and z such that the entire port-
folio is delta- and gamma-neutral.

Value of hedged portfolio:
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Value of hedged portfolio:

V=MN4zp - F+zg -G
We get the equations

oV
= 0,
0s
92V
= 0.
D52
i.e.
Al_l_l_xFAF_I_xGAG — O,
mt+zplp+2glg = O

Solve for xp and zg!
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Particular Case

In many cases the original portfolio 1 is
already delta neutral.

Then it is natural to use a derivative to
obtain gamma-neutrality.

T his will destroy the delta-neutrality.

Therefore we use the underlying stock (with
zero gammal) to delta hedge in the end.
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Formally:

V=N+4+zp-F+xg-5

An+zpAp+agAg = 0,
|_|-|—|—.CUF|_F—|-$3|_S — O
We have
An = 0,
Ag = 1
¢ =
I.e.
Al_l_l_xFAF_I_xS — O,
(m+aplp = O
Ny
X = ——
F r
Al
g = ———Ap
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Further Greeks

o N
ot
,o_on
oo
_ o
p_é?r

V is pronounced ‘“Vega”.

NB!

e A delta hedge is a hedge against the move-
ments in the underlying stock, given a fixed
model.

e A Vega-hedge is not a hedge against move-
ments of the underlying asset. It is a hedge
against a change of the model itself.
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