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Problems around Standard
Black-Scholes

• We assumed that the derivative was traded.

How do we price OTC products?

• Why is the option price independent of the

expected rate of return α of the underlying

stock?

• Suppose that we have sold a call option.

Then we face financial risk, so how do we

hedge against that risk?

All this has to do with completeness.
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Definition:

We say that a T -claim X can be replicated, al-

ternatively that it is reachable or hedgeable,

if there exists a self financing portfolio h such

that

V h(T ) = X, P − a.s.

In this case we say that h is a hedge against

X. Alternatively, h is called a replicating or

hedging portfolio. If every contingent claim is

reachable we say that the market is complete

Basic Idea: If X can be replicated by a port-

folio h then the arbitrage free price for X is

given by

Π [t;X] = V h(t).
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Trading Strategy

Consider a replicable claim X which we want

to sell at t = 0..

• Compute the price Π [0;X] and sell X at a

slightly (well) higher price.

• Buy the hedging portfolio and invest the

surplus in the bank.

• Wait until expiration date T .

• The liabilities stemming from X is exactly

matched by V h(T ), and we have our sur-

plus in the bank.

4



Completeness of Black-Scholes

Theorem: The Black-Scholes model is com-

plete.

Proof. Fix a claim X = Φ(S(T )). We want

to find processes V , u0 and u? such that

dV = V

{
u0dB

B
+ u?dS

S

}

V (T ) = Φ(S(T )).

i.e.

dV = V
{
u0r + u?α

}
dt + V u?σdW,

V (T ) = Φ(S(T )).
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Heuristics:
Let us assume that X is replicated by h =
(u0, u?) with value process V .

Ansatz:

V (t) = F(t, S(t))

Ito gives us

dV =
{
Ft + αSFs +

1

2
σ2S2Fss

}
dt + σSFsdW,

Write this as

dV = V





Ft + αSFs + 1
2σ2S2Fss

V



 dt+V

SFs

V
σdW.

Compare with

dV = V
{
u0r + u?α

}
dt + V u?σdW
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Define u? by

u?(t) =
S(t)Fs(t, S(t))

F(t, S(t))
,

This gives us the eqn

dV = V





Ft +
1
2σ2S2Fss

rF
r + u?α



 dt + V u?σdW.

Compare with

dV = V
{
u0r + u?α

}
dt + V u?σdW

Natural choice for u0 is given by

u0 =
Ft +

1
2σ2S2Fss

rF
,
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The relation u0 + u? = 1 gives us the Black-

Scholes PDE

Ft + rSFs +
1

2
σ2S2Fss − rF = 0.

The condition

V (T ) = Φ(S(T ))

gives us the boundary condition

F(T, s) = Φ(s)

Moral: The model is complete and we have

explicit formulas for the replicating portfolio.
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Main Result

Theorem: Define F as the solution to the
boundary value problem





Ft + rsFs +
1

2
σ2s2Fss − rF = 0,

F(T, s) = Φ(s).

Then X can be replicated by the relative port-
folio

u0(t) =
F(t, S(t)) − S(t)Fs(t, S(t))

F(t, S(t))
,

u?(t) =
S(t)Fs(t, S(t))

F(t, S(t))
.

The corresponding absolute portfolio is given
by

h0(t) =
F(t, S(t)) − S(t)Fs(t, S(t))

B(t)
,

h?(t) = Fs(t, S(t)),

and the value process V h is given by

V h(t) = F(t, S(t)).
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Notes

• Completeness explains unique price - the

claim is superfluous!

• Replicating the claim P −a.s. ⇐⇒ Replicat-

ing the claim Q− a.s. for any Q ∼ P . Thus

the price only depends on the support of

P .

• Thus (Girsanov) it will not depend on the

drift α of the state equation.

• The completeness theorem is a nice theo-

retical result, but the replicating portfolio

is continuously rebalanced. Thus we are

facing very high transaction costs.
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Completeness vs No Arbitrage

Question:

When is a model arbitrage free and/or com-

plete?

Answer:

Count the number of risky assets, and the

number of random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of

possibilities of forming clever portfolios. Thus

lots of chances of making arbitrage profits.

Also many chances of replicating a given claim.
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Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:

The Black-Scholes model. R=N=1. Arbitrage

free and complete.
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Parity Relations

Let Φ and Ψ be contract functions for the T -
claims X = Φ(S(T )) and Y = Ψ(S(T )). Then
for any real numbers α and β we have the fol-
lowing price relation.

Π [t;αΦ + βΨ] = αΠ [t;Φ] + βΠ [t;Ψ] .

Proof. Linearity of mathematical expectation.

Consider the following “basic” contract func-
tions.

ΦS(x) = x,

ΦB(x) ≡ 1,

ΦC,K(x) = max [x − K,0] .

Prices:

Π [t;ΦS] = S(t),

Π [t;ΦB] = e−r(T−t),

Π
[
t;ΦC,K

]
= c(t, S(t); K, T).
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If we have

Φ = αΦS + βΦB +
n∑

i=1

γiΦC,Ki
,

then

Π [t;Φ] = αΠ [t;ΦS]+βΠ [t;ΦB]+
n∑

i=1

γiΠ
[
t;ΦC,Ki

]

We may replicate the claim Φ using a portfolio

consisting of basic contracts that is constant

over time, i.e. a buy-and hold portfolio:

• α shares of the underlying stock,

• β zero coupon T -bonds with face value $1,

• γi European call options with strike price

Ki, all maturing at T .
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Put-Call Parity

Consider a European put contract

ΦP,K(s) = max [K − s,0]

It is easy to see (draw a figure) that

ΦP,K(x) = ΦC,K(x) − s + K

= ΦP,K(x) − ΦS(x) + ΦB(x)

We immediately get

Put-call parity:

p(t, s;K) = c(t, s;K) − s + Ker(T−t)

Thus you can construct a synthetic put option,

using a buy-and-hold portfolio.
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Delta Hedging

Consider a fixed claim

X = Φ(ST )

with pricing function

F(t, s).

Setup:

We are at time t, and have a short (interpret!)

position in the contract.

Goal:

Offset the risk in the derivative by buying (or

selling) the (highly correlated) underlying.

Definition:

A position in the underlying is a delta hedge

against the derivative if the portfolio (under-

lying + derivative) is immune against small

changes in the underlying price.
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Formal Analysis

−1 = number of units of the derivative product

x = number of units of the underlying

s = today’s stock price

t = today’s date

Value of the portfolio:

V = −1 · F(t, s) + x · s

A delta hedge is characterized by the property

that
∂V

∂s
= 0.

We obtain

−
∂F

∂s
+ x = 0

Solve for x!
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Result:

We should have

x̂ =
∂F

∂s

shares of the underlying in the delta hedged

portfolio.

Definition:

For any contract, its “delta” is defined by

∆ =
∂F

∂s
.

Result:

We should have

x̂ = ∆

shares of the underlying in the delta hedged

portfolio.

Warning:

The delta hedge must be rebalanced over time.

(why?)
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Black Scholes

For a European Call in the Black-Scholes model

we have

∆ = N [d1]

NB This is not a trivial result!

From put call parity it follows (how?) that ∆

for a European Put is given by

∆ = N [d1] − 1

Check signs and interpret!
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Rebalanced Delta Hedge

• Sell one call option a time t = 0 at the B-S
price F .

• Compute ∆ and by ∆ shares. (Use the
income from the sale of the option, and
borrow money if necessary.)

• Wait one day (week, minute, second..).
The stock price has now changed.

• Compute the new value of ∆, and borrow
money in order to adjust your stock hold-
ings.

• Repeat this procedure until t = T . Then
the value of your portfolio (B+S) will match
the value of the option almost exactly.
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• Lack of perfection comes from discrete, in-

stead of continuous, trading.

• You have created a “synthetic” option.

(Replicating portfolio).

Formal result:

The relative weights in the replicating portfolio

are

uS =
S · ∆

F
,

uB =
F − S · ∆

F
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Portfolio Delta

Assume that you have a portfolio consisting of

derivatives

Φi(STi
), i = 1, · · · , n

all written on the same underlying stock S.

Fi(t, s) = pricing function for i:th derivative

∆i =
∂Fi

∂s
hi = units of i:th derivative

Portfolio value:

Π =
n∑

i=1

hiFi

Portfolio delta:

∆Π =
n∑

i=1

hi∆i
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Gamma

A problem with discrete delta-hedging is.

• As time goes by S will change.

• This will cause ∆ = ∂F
∂s to change.

• Thus you are sitting with the wrong value

of delta.

Moral:

• If delta is sensitive to changes in S, then

you have to rebalance often.

• If delta is insensitive to changes in S you

do not need to rebalance so often.
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Definition:
Let Π be the value of a derivative (or portfo-
lio). Gamma (Γ) is defined as

Γ =
∂∆

∂s
i.e.

Γ =
∂2Π

∂s2

Gamma is a measure of the sensitivity of ∆
to changes in S.

Result: For a European Call in a Black-Scholes
model, Γ can be calculated as

Γ =
N ′[d1]

Sσ
√

T − t

Important fact:
For a position in the underlying stock itself we
have

Γ = 0
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Gamma Neutrality

A portfolio Π is said to be gamma neutral if

its gamma equals zero, i.e.

ΓΠ = 0

• Since Γ = 0 for a stock you can not gamma-

hedge using only stocks. item Typically

you use some derivative to obtain gamma

neutrality.
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General procedure

Given a portfolio Π with underlying S. Con-

sider two derivatives with pricing functions F

and G.

xF = number of units of F

xG = number of units of G

Problem:

Choose xF and xG such that the entire port-

folio is delta- and gamma-neutral.

Value of hedged portfolio:

V = Π + xF · F + xG · G
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Value of hedged portfolio:

V = Π + xF · F + xG · G

We get the equations

∂V

∂s
= 0,

∂2V

∂s2
= 0.

i.e.

∆Π + xF∆F + xG∆G = 0,

ΓΠ + xFΓF + xGΓG = 0

Solve for xF and xG!
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Particular Case

• In many cases the original portfolio Π is

already delta neutral.

• Then it is natural to use a derivative to

obtain gamma-neutrality.

• This will destroy the delta-neutrality.

• Therefore we use the underlying stock (with

zero gamma!) to delta hedge in the end.
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Formally:

V = Π + xF · F + xS · S

∆Π + xF∆F + xS∆S = 0,

ΓΠ + xFΓF + xSΓS = 0

We have

∆Π = 0,

∆S = 1

ΓS = 0.

i.e.

∆Π + xF∆F + xS = 0,

ΓΠ + xFΓF = 0

xF = −
ΓΠ

ΓF

xS =
∆FΓΠ

ΓF
− ∆Π
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Further Greeks

Θ =
∂Π

∂t
,

V =
∂Π

∂σ
,

ρ =
∂Π

∂r

V is pronounced “Vega”.

NB!

• A delta hedge is a hedge against the move-
ments in the underlying stock, given a fixed
model.

• A Vega-hedge is not a hedge against move-
ments of the underlying asset. It is a hedge
against a change of the model itself.
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