## IV

## Completeness and Hedging

Tomas Björk

# Problems around Standard Black-Scholes

- We assumed that the derivative was traded.
   How do we price OTC products?
- Why is the option price independent of the expected rate of return  $\alpha$  of the underlying stock?
- Suppose that we have sold a call option.
   Then we face financial risk, so how do we hedge against that risk?

All this has to do with completeness.

#### **Definition:**

We say that a T-claim X can be **replicated**, alternatively that it is **reachable** or **hedgeable**, if there exists a self financing portfolio h such that

$$V^h(T) = X, \quad P - a.s.$$

In this case we say that h is a **hedge** against X. Alternatively, h is called a **replicating** or **hedging** portfolio. If every contingent claim is reachable we say that the market is **complete** 

**Basic Idea:** If X can be replicated by a portfolio h then the arbitrage free price for X is given by

$$\Pi\left[t;X\right] = V^h(t).$$

## **Trading Strategy**

Consider a replicable claim X which we want to sell at t = 0..

- Compute the price  $\Pi[0; X]$  and sell X at a slightly (well) higher price.
- Buy the hedging portfolio and invest the surplus in the bank.
- Wait until expiration date T.
- The liabilities stemming from X is exactly matched by  $V^h(T)$ , and we have our surplus in the bank.

## Completeness of Black-Scholes

**Theorem:** The Black-Scholes model is complete.

**Proof.** Fix a claim  $X = \Phi(S(T))$ . We want to find processes V,  $u^0$  and  $u^*$  such that

$$dV = V \left\{ u^0 \frac{dB}{B} + u^* \frac{dS}{S} \right\}$$

$$V(T) = \Phi(S(T)).$$

i.e.

$$dV = V \left\{ u^{0}r + u^{\star}\alpha \right\} dt + Vu^{\star}\sigma dW,$$

$$V(T) = \Phi(S(T)).$$

Heuristics:

Let us **assume** that X is replicated by  $h = (u^0, u^*)$  with value process V.

#### Ansatz:

$$V(t) = F(t, S(t))$$

Ito gives us

$$dV = \left\{ F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss} \right\} dt + \sigma S F_s dW,$$

Write this as

$$dV = V \left\{ \frac{F_t + \alpha SF_s + \frac{1}{2}\sigma^2 S^2 F_{ss}}{V} \right\} dt + V \frac{SF_s}{V} \sigma dW.$$

Compare with

$$dV = V \left\{ u^{0}r + u^{\star}\alpha \right\} dt + Vu^{\star}\sigma dW$$

**Define**  $u^{\star}$  by

$$u^{\star}(t) = \frac{S(t)F_s(t, S(t))}{F(t, S(t))},$$

This gives us the eqn

$$dV = V \left\{ \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF} r + u^* \alpha \right\} dt + V u^* \sigma dW.$$

Compare with

$$dV = V \left\{ u^{0}r + u^{\star}\alpha \right\} dt + Vu^{\star}\sigma dW$$

Natural choice for  $u^0$  is given by

$$u^{0} = \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF},$$

The relation  $u^0 + u^\star = 1$  gives us the Black-Scholes PDE

$$F_t + rSF_s + \frac{1}{2}\sigma^2 S^2 F_{ss} - rF = 0.$$

The condition

$$V(T) = \Phi(S(T))$$

gives us the boundary condition

$$F(T,s) = \Phi(s)$$

**Moral:** The model is complete and we have explicit formulas for the replicating portfolio.

#### Main Result

**Theorem:** Define F as the solution to the boundary value problem

$$\begin{cases} F_t + rsF_s + \frac{1}{2}\sigma^2 s^2 F_{ss} - rF = 0, \\ F(T, s) = \Phi(s). \end{cases}$$

Then  $\boldsymbol{X}$  can be replicated by the relative portfolio

$$u^{0}(t) = \frac{F(t, S(t)) - S(t)F_{s}(t, S(t))}{F(t, S(t))},$$
  
$$u^{*}(t) = \frac{S(t)F_{s}(t, S(t))}{F(t, S(t))}.$$

The corresponding absolute portfolio is given by

$$h^{0}(t) = \frac{F(t, S(t)) - S(t)F_{s}(t, S(t))}{B(t)},$$
  
 $h^{\star}(t) = F_{s}(t, S(t)),$ 

and the value process  $V^h$  is given by

$$V^h(t) = F(t, S(t)).$$

#### **Notes**

- Completeness explains unique price the claim is superfluous!
- Replicating the claim  $P-a.s. \iff$  Replicating the claim Q-a.s. for any  $Q\sim P$ . Thus the price only depends on the support of P.
- Thus (Girsanov) it will not depend on the drift  $\alpha$  of the state equation.
- The completeness theorem is a nice theoretical result, but the replicating portfolio is continuously rebalanced. Thus we are facing very high transaction costs.

## Completeness vs No Arbitrage

#### **Question:**

When is a model arbitrage free and/or complete?

#### **Answer:**

Count the number of risky assets, and the number of random sources.

R = number of random sources

N = number of risky assets

#### Intuition:

If N is large, compared to R, you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim.

## Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

$$N \leq R$$

• The market is complete if and only if

$$N \ge R$$

#### **Example:**

The Black-Scholes model. R=N=1. Arbitrage free and complete.

## **Parity Relations**

Let  $\Phi$  and  $\Psi$  be contract functions for the T-claims  $\mathcal{X} = \Phi(S(T))$  and  $Y = \Psi(S(T))$ . Then for any real numbers  $\alpha$  and  $\beta$  we have the following price relation.

$$\Pi[t; \alpha \Phi + \beta \Psi] = \alpha \Pi[t; \Phi] + \beta \Pi[t; \Psi].$$

**Proof.** Linearity of mathematical expectation.

Consider the following "basic" contract functions.

$$\Phi_S(x) = x,$$

$$\Phi_B(x) \equiv 1,$$

$$\Phi_{C,K}(x) = \max[x - K, 0].$$

Prices:

$$\Pi[t; \Phi_S] = S(t), 
\Pi[t; \Phi_B] = e^{-r(T-t)}, 
\Pi[t; \Phi_{C,K}] = c(t, S(t); K, T).$$

If we have

$$\Phi = \alpha \Phi_S + \beta \Phi_B + \sum_{i=1}^n \gamma_i \Phi_{C,K_i},$$

then

$$\Pi[t; \Phi] = \alpha \Pi[t; \Phi_S] + \beta \Pi[t; \Phi_B] + \sum_{i=1}^n \gamma_i \Pi[t; \Phi_{C, K_i}]$$

We may replicate the claim  $\Phi$  using a portfolio consisting of basic contracts that is **constant** over time, i.e. a **buy-and hold** portfolio:

- ullet  $\alpha$  shares of the underlying stock,
- $\beta$  zero coupon T-bonds with face value \$1,
- $\gamma_i$  European call options with strike price  $K_i$ , all maturing at T.

## **Put-Call Parity**

Consider a European put contract

$$\Phi_{P,K}(s) = \max\left[K - s, 0\right]$$

It is easy to see (draw a figure) that

$$\Phi_{P,K}(x) = \Phi_{C,K}(x) - s + K$$
$$= \Phi_{P,K}(x) - \Phi_{S}(x) + \Phi_{B}(x)$$

We immediately get

#### **Put-call parity:**

$$p(t, s; K) = c(t, s; K) - s + Ke^{r(T-t)}$$

Thus you can construct a synthetic put option, using a buy-and-hold portfolio.

## **Delta Hedging**

Consider a fixed claim

$$X = \Phi(S_T)$$

with pricing function

$$F(t,s)$$
.

#### Setup:

We are at time t, and have a short (interpret!) position in the contract.

#### Goal:

Offset the risk in the derivative by buying (or selling) the (highly correlated) underlying.

#### **Definition:**

A position in the underlying is a **delta hedge** against the derivative if the portfolio (underlying + derivative) is immune against small changes in the underlying price.

## Formal Analysis

-1 = number of units of the derivative product

x = number of units of the underlying

s = today's stock price

t = today's date

Value of the portfolio:

$$V = -1 \cdot F(t, s) + x \cdot s$$

A delta hedge is characterized by the property that

$$\frac{\partial V}{\partial s} = 0.$$

We obtain

$$-\frac{\partial F}{\partial s} + x = 0$$

Solve for x!

#### Result:

We should have

$$\hat{x} = \frac{\partial F}{\partial s}$$

shares of the underlying in the delta hedged portfolio.

#### **Definition:**

For any contract, its "delta" is defined by

$$\Delta = \frac{\partial F}{\partial s}.$$

#### Result:

We should have

$$\hat{x} = \Delta$$

shares of the underlying in the delta hedged portfolio.

## Warning:

The delta hedge must be rebalanced over time. (why?)

## **Black Scholes**

For a European Call in the Black-Scholes model we have

$$\Delta = N[d_1]$$

NB This is not a trivial result!

From put call parity it follows (how?) that  $\Delta$  for a European Put is given by

$$\Delta = N[d_1] - 1$$

Check signs and interpret!

## Rebalanced Delta Hedge

- Sell one call option a time t = 0 at the B-S price F.
- Compute  $\Delta$  and by  $\Delta$  shares. (Use the income from the sale of the option, and borrow money if necessary.)
- Wait one day (week, minute, second..).
   The stock price has now changed.
- ullet Compute the new value of  $\Delta$ , and borrow money in order to adjust your stock holdings.
- Repeat this procedure until t = T. Then the value of your portfolio (B+S) will match the value of the option almost exactly.

- Lack of perfection comes from discrete, instead of continuous, trading.
- You have created a "synthetic" option.
   (Replicating portfolio).

#### Formal result:

The relative weights in the replicating portfolio are

$$u_S = \frac{S \cdot \Delta}{F},$$

$$u_B = \frac{F - S \cdot \Delta}{F}$$

## Portfolio Delta

Assume that you have a portfolio consisting of derivatives

$$\Phi_i(S_{T_i}), \quad i=1,\cdots,n$$

all written on the same underlying stock S.

$$F_i(t,s)=$$
 pricing function for i:th derivative 
$$\Delta_i=\frac{\partial F_i}{\partial s}$$
  $h_i=$  units of i:th derivative

Portfolio value:

$$\Pi = \sum_{i=1}^{n} h_i F_i$$

Portfolio delta:

$$\Delta_{\Pi} = \sum_{i=1}^{n} h_i \Delta_i$$

#### Gamma

A problem with discrete delta-hedging is.

- As time goes by S will change.
- This will cause  $\Delta = \frac{\partial F}{\partial s}$  to change.
- Thus you are sitting with the wrong value of delta.

#### Moral:

- If delta is sensitive to changes in S, then you have to rebalance often.
- If delta is insensitive to changes in S you do not need to rebalance so often.

#### **Definition:**

Let  $\Pi$  be the value of a derivative (or portfolio). **Gamma** ( $\Gamma$ ) is defined as

$$\Gamma = \frac{\partial \Delta}{\partial s}$$

i.e.

$$\Gamma = \frac{\partial^2 \Pi}{\partial s^2}$$

**Gamma** is a measure of the sensitivity of  $\Delta$  to changes in S.

**Result:** For a European Call in a Black-Scholes model,  $\Gamma$  can be calculated as

$$\Gamma = \frac{N'[d_1]}{S\sigma\sqrt{T-t}}$$

#### **Important fact:**

For a position in the underlying stock itself we have

$$\Gamma = 0$$

## **Gamma Neutrality**

A portfolio  $\Pi$  is said to be **gamma neutral** if its gamma equals zero, i.e.

$$\Gamma_{\Pi} = 0$$

• Since  $\Gamma = 0$  for a stock you can not gammahedge using only stocks. item Typically you use some derivative to obtain gamma neutrality.

## General procedure

Given a portfolio  $\Pi$  with underlying S. Consider two derivatives with pricing functions F and G.

$$x_F$$
 = number of units of  $F$ 

$$x_G$$
 = number of units of  $G$ 

#### **Problem:**

Choose  $x_F$  and  $x_G$  such that the entire portfolio is delta- and gamma-neutral.

Value of hedged portfolio:

$$V = \Pi + x_F \cdot F + x_G \cdot G$$

Value of hedged portfolio:

$$V = \Pi + x_F \cdot F + x_G \cdot G$$

We get the equations

$$\frac{\partial V}{\partial s} = 0,$$

$$\frac{\partial^2 V}{\partial s^2} = 0.$$

i.e.

$$\Delta_{\Pi} + x_F \Delta_F + x_G \Delta_G = 0,$$

$$\Gamma_{\Pi} + x_F \Gamma_F + x_G \Gamma_G = 0$$

Solve for  $x_F$  and  $x_G$ !

## Particular Case

- ullet In many cases the original portfolio  $\Pi$  is already delta neutral.
- Then it is natural to use a derivative to obtain gamma-neutrality.
- This will destroy the delta-neutrality.
- Therefore we use the underlying stock (with zero gamma!) to delta hedge in the end.

## Formally:

$$V = \Pi + x_F \cdot F + x_S \cdot S$$
$$\Delta_{\Pi} + x_F \Delta_F + x_S \Delta_S = 0,$$
$$\Gamma_{\Pi} + x_F \Gamma_F + x_S \Gamma_S = 0$$

We have

$$\Delta_{\Pi} = 0,$$
 $\Delta_{S} = 1$ 
 $\Gamma_{S} = 0.$ 

i.e.

$$\Delta_{\Pi} + x_F \Delta_F + x_S = 0,$$

$$\Gamma_{\Pi} + x_F \Gamma_F = 0$$

$$x_F = -\frac{\Gamma_{\Pi}}{\Gamma_F}$$

$$x_S = \frac{\Delta_F \Gamma_{\Pi}}{\Gamma_F} - \Delta_{\Pi}$$

#### **Further Greeks**

$$\Theta = \frac{\partial \Pi}{\partial t},$$

$$V = \frac{\partial \Pi}{\partial \sigma},$$

$$\rho = \frac{\partial \Pi}{\partial r}$$

V is pronounced "Vega".

#### NB!

- A delta hedge is a hedge against the movements in the underlying stock, given a **fixed** model.
- A Vega-hedge is not a hedge against movements of the underlying asset. It is a hedge against a **change of the model itself**.