IV

Completeness and Hedging

Tomas Björk

Problems around Standard Black-Scholes

- We **assumed** that the derivative was traded. How do we price OTC products?
- Why is the option price independent of the expected rate of return α of the underlying stock?
- Suppose that we have sold a call option. Then we face financial risk, so how do we hedge against that risk?

All this has to do with **completeness**.

Definition:

We say that a T-claim X can be **replicated**, alternatively that it is **reachable** or **hedgeable**, if there exists a self financing portfolio h such that

$$
V^h(T) = X, \quad P - a.s.
$$

In this case we say that h is a **hedge** against X. Alternatively, h is called a **replicating** or **hedging** portfolio. If every contingent claim is reachable we say that the market is **complete**

Basic Idea: If X can be replicated by a portfolio h then the arbitrage free price for X is given by

$$
\mathsf{\Pi}[t;X] = V^h(t).
$$

Trading Strategy

Consider a replicable claim X which we want to sell at $t = 0$..

- Compute the price Π [0; X] and sell X at a slightly (well) higher price.
- Buy the hedging portfolio and invest the surplus in the bank.
- Wait until expiration date T .
- The liabilities stemming from X is exactly matched by $V^h(T)$, and we have our surplus in the bank.

Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim $X = \Phi(S(T))$. We want to find processes V, u^0 and u^* such that

$$
dV = V \left\{ u^0 \frac{dB}{B} + u^* \frac{dS}{S} \right\}
$$

$$
V(T) = \Phi(S(T)).
$$

i.e.

$$
dV = V\{u^{0}r + u^{\star}\alpha\}dt + Vu^{\star}\sigma dW,
$$

$$
V(T) = \Phi(S(T)).
$$

Heuristics:

Let us **assume** that X is replicated by $h =$ (u^0, u^*) with value process V.

Ansatz:

$$
V(t) = F(t, S(t))
$$

Ito gives us

$$
dV = \left\{ F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss} \right\} dt + \sigma S F_s dW,
$$

Write this as

$$
dV = V \left\{ \frac{F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss}}{V} \right\} dt + V \frac{S F_s}{V} \sigma dW.
$$

Compare with

$$
dV = V\left\{u^0r + u^*\alpha\right\}dt + Vu^*\sigma dW
$$

6

Define
$$
u^*
$$
 by
\n
$$
u^*(t) = \frac{S(t)F_s(t, S(t))}{F(t, S(t))},
$$

This gives us the eqn

$$
dV = V \left\{ \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF} + u^* \alpha \right\} dt + V u^* \sigma dW.
$$

Compare with

$$
dV = V\left\{u^0r + u^*\alpha\right\}dt + Vu^*\sigma dW
$$

Natural choice for u^0 is given by

$$
u^0 = \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF},
$$

7

The relation $u^0 + u^* = 1$ gives us the Black-Scholes PDE

$$
F_t + rSF_s + \frac{1}{2}\sigma^2 S^2 F_{ss} - rF = 0.
$$

The condition

$$
V(T) = \Phi(S(T))
$$

gives us the boundary condition

$$
F(T,s) = \Phi(s)
$$

Moral: The model is complete and we have explicit formulas for the replicating portfolio.

Main Result

Theorem: Define F as the solution to the boundary value problem

$$
\begin{cases}\nF_t + rsF_s + \frac{1}{2}\sigma^2 s^2 F_{ss} - rF = 0, \\
F(T, s) = \Phi(s).\n\end{cases}
$$

Then X can be replicated by the relative portfolio

$$
u^{0}(t) = \frac{F(t, S(t)) - S(t)F_{s}(t, S(t))}{F(t, S(t))},
$$

$$
u^*(t) = \frac{S(t)F_{s}(t, S(t))}{F(t, S(t))}.
$$

The corresponding absolute portfolio is given by

$$
h^{0}(t) = \frac{F(t, S(t)) - S(t)F_{s}(t, S(t))}{B(t)},
$$

$$
h^{\star}(t) = F_{s}(t, S(t)),
$$

and the value process V^h is given by

$$
V^h(t) = F(t, S(t)).
$$

9

Notes

- Completeness explains unique price the claim is superfluous!
- Replicating the claim $P-a.s. \Longleftrightarrow$ Replicating the claim $Q - a.s.$ for any $Q \sim P$. Thus the price only depends on the support of P_{\cdot}
- Thus (Girsanov) it will not depend on the drift α of the state equation.
- The completeness theorem is a nice theoretical result, but the replicating portfolio is **continuously rebalanced**. Thus we are facing very high transaction costs.

Completeness vs No Arbitrage

Question:

When is a model arbitrage free and/or complete?

Answer:

Count the number of risky assets, and the number of random sources.

- $R =$ number of random sources
- $N =$ number of risky assets

Intuition:

If N is large, compared to R, you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim.

Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

$N \leq R$

• The market is complete if and only if

$N \geq R$

Example:

The Black-Scholes model. R=N=1. Arbitrage free and complete.

Parity Relations

Let Φ and Ψ be contract functions for the Tclaims $\mathcal{X} = \Phi(S(T))$ and $Y = \Psi(S(T))$. Then for any real numbers α and β we have the following price relation.

 $\Pi[t; \alpha \Phi + \beta \Psi] = \alpha \Pi[t; \Phi] + \beta \Pi[t; \Psi].$

Proof. Linearity of mathematical expectation.

Consider the following "basic" contract functions.

$$
\Phi_S(x) = x,
$$

\n
$$
\Phi_B(x) \equiv 1,
$$

\n
$$
\Phi_{C,K}(x) = \max[x - K, 0].
$$

Prices:

$$
\begin{array}{rcl}\n\Pi[t; \Phi_S] & = & S(t), \\
\Pi[t; \Phi_B] & = & e^{-r(T-t)}, \\
\Pi[t; \Phi_{C,K}] & = & c(t, S(t); K, T).\n\end{array}
$$

If we have

$$
\Phi = \alpha \Phi_S + \beta \Phi_B + \sum_{i=1}^n \gamma_i \Phi_{C, K_i},
$$

then

$$
\Pi[t; \Phi] = \alpha \Pi[t; \Phi_S] + \beta \Pi[t; \Phi_B] + \sum_{i=1}^{n} \gamma_i \Pi[t; \Phi_{C, K_i}]
$$

We may replicate the claim Φ using a portfolio consisting of basic contracts that is **constant** over time, i.e. a **buy-and hold** portfolio:

- α shares of the underlying stock,
- β zero coupon T-bonds with face value \$1,
- γ_i European call options with strike price K_i , all maturing at T.

Put-Call Parity

Consider a European put contract

 $\Phi_{P,K}(s) = \max [K - s, 0]$

It is easy to see (draw a figure) that

$$
\begin{array}{rcl}\n\Phi_{P,K}(x) & = & \Phi_{C,K}(x) - s + K \\
& = & \Phi_{P,K}(x) - \Phi_S(x) + \Phi_B(x)\n\end{array}
$$

We immediately get

Put-call parity:

$$
p(t, s; K) = c(t, s; K) - s + Ke^{r(T-t)}
$$

Thus you can construct a synthetic put option, using a buy-and-hold portfolio.

Delta Hedging

Consider a fixed claim

 $X = \Phi(S_T)$

with pricing function

 $F(t, s)$.

Setup:

We are at time t , and have a short (interpret!) position in the contract.

Goal:

Offset the risk in the derivative by buying (or selling) the (highly correlated) underlying.

Definition:

A position in the underlying is a **delta hedge** against the derivative if the portfolio (underlying $+$ derivative) is immune against small changes in the underlying price.

Formal Analysis

- -1 = number of units of the derivative product
	- $x =$ number of units of the underlying

$$
s =
$$
 today's stock price

 $t =$ today's date

Value of the portfolio:

$$
V = -1 \cdot F(t, s) + x \cdot s
$$

A delta hedge is characterized by the property that

$$
\frac{\partial V}{\partial s} = 0.
$$

We obtain

$$
-\frac{\partial F}{\partial s} + x = 0
$$

Solve for $x!$

Result:

We should have

$$
\hat{x} = \frac{\partial F}{\partial s}
$$

shares of the underlying in the delta hedged portfolio.

Definition:

For any contract, its "delta" is defined by

$$
\Delta = \frac{\partial F}{\partial s}.
$$

Result:

We should have

$$
\hat{x} = \Delta
$$

shares of the underlying in the delta hedged portfolio.

Warning:

The delta hedge must be rebalanced over time. (why?)

Black Scholes

For a European Call in the Black-Scholes model we have

$\Delta = N[d_1]$

NB This is **not** a trivial result!

From put call parity it follows (how?) that ∆ for a European Put is given by

$$
\Delta = N[d_1] - 1
$$

Check signs and interpret!

Rebalanced Delta Hedge

- Sell one call option a time $t = 0$ at the B-S price F.
- Compute ∆ and by ∆ shares. (Use the income from the sale of the option, and borrow money if necessary.)
- Wait one day (week, minute, second..). The stock price has now changed.
- Compute the new value of ∆, and borrow money in order to adjust your stock holdings.
- Repeat this procedure until $t = T$. Then the value of your portfolio $(B+S)$ will match the value of the option almost exactly.
- Lack of perfection comes from discrete, instead of continuous, trading.
- You have created a "synthetic" option. (Replicating portfolio).

Formal result:

The relative weights in the replicating portfolio are

$$
u_S = \frac{S \cdot \Delta}{F},
$$

$$
u_B = \frac{F - S \cdot \Delta}{F}
$$

Portfolio Delta

Assume that you have a portfolio consisting of derivatives

$$
\Phi_i(S_{T_i}), \quad i=1,\cdots,n
$$

all **written on the same underlying** stock S.

 $F_i(t, s)$ = pricing function for i:th derivative Δ_i = ∂F_i ∂s $h_i =$ units of i:th derivative

Portfolio value:

$$
\Pi = \sum_{i=1}^{n} h_i F_i
$$

Portfolio delta:

$$
\Delta_{\Pi} = \sum_{i=1}^{n} h_i \Delta_i
$$

22

Gamma

A problem with discrete delta-hedging is.

• As time goes by S will change.

• This will cause
$$
\Delta = \frac{\partial F}{\partial s}
$$
 to change.

• Thus you are sitting with the wrong value of delta.

Moral:

- If delta is sensitive to changes in S , then you have to rebalance often.
- If delta is insensitive to changes in S you do not need to rebalance so often.

Definition:

Let Π be the value of a derivative (or portfolio). **Gamma** (Γ) is defined as

$$
\Gamma = \frac{\partial \Delta}{\partial s}
$$

i.e.

$$
\Gamma = \frac{\partial^2 \Pi}{\partial s^2}
$$

Gamma is a measure of the sensitivity of ∆ to changes in S.

Result: For a European Call in a Black-Scholes model, Γ can be calculated as

$$
\Gamma = \frac{N'[d_1]}{S\sigma\sqrt{T-t}}
$$

Important fact:

For a position in the underlying stock itself we have

$$
\Gamma = 0
$$

Gamma Neutrality

A portfolio Π is said to be **gamma neutral** if its gamma equals zero, i.e.

 $\Gamma_{\Pi} = 0$

• Since $\Gamma = 0$ for a stock you can not gammahedge using only stocks. item Typically you use some derivative to obtain gamma neutrality.

General procedure

Given a portfolio Π with underlying S. Consider two derivatives with pricing functions F and G.

 x_F = number of units of F

 x_G = number of units of G

Problem:

Choose x_F and x_G such that the entire portfolio is delta- and gamma-neutral.

Value of hedged portfolio:

$$
V = \Pi + x_F \cdot F + x_G \cdot G
$$

Value of hedged portfolio:

$$
V = \Pi + x_F \cdot F + x_G \cdot G
$$

We get the equations

$$
\frac{\partial V}{\partial s} = 0,
$$

$$
\frac{\partial^2 V}{\partial s^2} = 0.
$$

i.e.

$$
\Delta_{\Pi} + x_F \Delta_F + x_G \Delta_G = 0,
$$

$$
\Gamma_{\Pi} + x_F \Gamma_F + x_G \Gamma_G = 0
$$

Solve for x_F and $x_G!$

Particular Case

- In many cases the original portfolio Π is already delta neutral.
- Then it is natural to use a derivative to obtain gamma-neutrality.
- This will destroy the delta-neutrality.
- Therefore we use the underlying stock (with zero gamma!) to delta hedge in the end.

Formally:

$$
V = \Pi + x_F \cdot F + x_S \cdot S
$$

$$
\Delta_{\Pi} + x_F \Delta_F + x_S \Delta_S = 0,
$$

$$
\Gamma_{\Pi} + x_F \Gamma_F + x_S \Gamma_S = 0
$$

We have

$$
\Delta_{\Pi} = 0,
$$

$$
\Delta_S = 1
$$

$$
\Gamma_S = 0.
$$

i.e.

$$
\Delta_{\Pi} + x_F \Delta_F + x_S = 0,
$$

$$
\Gamma_{\Pi} + x_F \Gamma_F = 0
$$

$$
x_F = -\frac{\Gamma_{\Pi}}{\Gamma_F}
$$

$$
x_S = \frac{\Delta_F \Gamma_{\Pi}}{\Gamma_F} - \Delta_{\Pi}
$$

29

Further Greeks

$$
\Theta = \frac{\partial \Pi}{\partial t},
$$

$$
V = \frac{\partial \Pi}{\partial \sigma},
$$

$$
\rho = \frac{\partial \Pi}{\partial r}
$$

V is pronounced "Vega".

NB!

- A delta hedge is a hedge against the movements in the underlying stock, given a **fixed model**.
- A Vega-hedge is not a hedge against movements of the underlying asset. It is a hedge against a **change of the model itself**.