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Typical Setup

Take as given the market price process, S(t),

of some underlying asset.

S(t) = price, at t, per unit of underlying asset

Consider a fixed financial derivative, e.g. a

European call option.

Main Problem: Find the arbitrage free price

of the derivative.
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We Need:

1. Mathematical model for the underlying price

process. (The Black-Scholes model)

2. Mathematical techniques to handle the price

dynamics. (The Itô calculus.)
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Stochastic Processes

• We model the stock price S(t) as a sto-

chastic process, i.e. it evolves randomly

over time.

• We model S as a Markov process, i.e. in

order to predict the future only the present

value is of interest. All past information

is already incorporated into today’s stock

prices. (Market efficiency).

Stochastic variable

Choosing a number at random

Stochastic process

choosing a curve (trajectory) at random.
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Notation

X(t) = any random process,

dt = small time step,

dX(t) = X(t + dt) − X(t)

• dX is called the increment of X over the
interval [t, t + dt].

• For any fixed interval [t, t + dt], the incre-
ment dX is a stochastic variable.

• If the increments dX(s) and dX(t), over
the disjoint intervals [s, s+ds] and [t, t+dt]
are independent, then we say that X has
independent increments.

• If every increment has a normal distribution
we say that X is a normal, or Gaussian
process.
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The Wiener Process

A stochastic process W is called a Wiener

process if it has the following properties

• The increments are normally distributed:

For s < t:

W (t) − W (s) ∼ N [0,
√

t − s]

E[W (t)−W (s)] = 0, V ar[W (t)−W (s)] = t−s

• W has independent increments.

• W (0) = 0

• W has continuous trajectories.

Continuous random walk
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Important Fact

Theorem:

A Wiener trajectory is, with probability one,

nowhere differentiable.

Proof. Hard.
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Wiener Process with Drift

A stochastic process X is called a Wiener process

with drift µ and diffusion coefficient σ if it

has the following dynamics

dX = µdt + σdW,

X(0) = x0

where x0, µ and σ are constants.

Summing all increments over the interval [0, t]

gives us

X(t) − x0 = µt + σW (t)

X(t) = x0 + µt + σW (t)

The distribution of X is thus given by

X(t) ∼ N [x0 + µt, σ
√

t]
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Stochastic Differential
Equations

Take as given two functions µ(t, x) and σ(t, x).

We say that the process X is an diffusion if it

has the local dynamics

dX = µ(t, Xt)dt + σ(t, Xt)dW,

X0 = x0

Interpretation:

Over the time interval [t, t+dt], the X-process

is driven by two separate terms.

• A locally deterministic velocity µ (t, X(t)).

• An independent Gaussian disturbance term,

amplified by the factor σ (t, X(t)) .

How do we make this precise?
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Possible Intrepretations

dX = µ(t, Xt)dt + σ(t, Xt)dW,

(I) “Divide” formally by dt. Then we obtain

the stochastic ODE

dXt

dt
= µ (t, Xt) + σ (t, Xt) vt

where

vt =
dW

dt

is the formal time derivative of the Wiener

process W .

This is impossible, since dW
dt does not exist.

(II) Write the equation on integrated form as

Xt = x0 +
∫ t

0
µ (s, Xs) ds +

∫ t

0
σ (s, Xs) dWs

How is this interpreted?
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Xt = x0 +
∫ t

0
µ (s, Xs) ds +

∫ t

0
σ (s, Xs) dWs

Two terms:

•
∫ t

0
µ (s, Xs) ds

Riemann integral for each X-trajectory.

•
∫ t

0
σ (s, Xs) dWs

Stochastic integral. This can not be in-

terpreted as a Stieljes integral for each tra-

jectory. We need a new theory for this Itô

integral.
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Information

Let the Wiener process W be given.

Def:

FW
t = “The information generated by W

over the interval [0, t]”

Def: Let Z be a stochastic variable. If the
value of Z is completely determined by FW

t ,
we write

Z ∈ FW
t

Ex:
For the stochastic variable Z, defined by

Z =
∫ 5

0
W (s)ds,

we have Z ∈ FW
5 .

We do not have Z ∈ FW
4 .
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Adapted Processes

Let W be a Wiener process.

Definition:

A process X is adapted to the filtration{
FW

t : t ≥ 0
}

if

Xt ∈ FW
t , ∀t ≥ 0

“An adapted process does not look

into the future”

Adapted processes are nice integrands for sto-

chastic integrals.
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• The process

Xt =
∫ t

0
Wsds,

is adapted.

• The process

Xt = sup
s≤t

Ws

is adapted.

• The process

Xt = sup
s≤t+1

Ws

is not adapted.
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The Itô Integral

We will define the Itô integral

∫ b

a
g(s)dW(s)

for processes g ∈ £2, i.e.

• The process g is adapted.

• The process g satisfies
∫ b

a
E
[
g2(s)

]
ds < ∞

This will be done in two steps.
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I: Simple Integrands

Definition:

The process g is simple, if

• g ∈ £2

• There exists deterministic points t0 . . . , tn

with a = t0 < t1 < . . . < tn = b such that g

is piecewise constant, i.e.

g(s) = g(tk), s ∈ [tk, tk+1)

For simple g we define

∫ b

a
g(s)dW(s) =

n−1∑

k=0

g(tk)
[
W (tk+1) − W (tk)

]

FORWARD INCREMENTS!
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II: General Case

For a general g ∈ £2 we do as follows.

1. Approximate g with a sequence of simple
gn such that

∫ b

a
E
[
{gn(s) − g(s)}2

]
ds → 0.

2. For each n the integral
∫ b

a
gn(s)dW(s)

is a well defined stochastic variable Zn.

3. One can show that the Zn sequence con-
verges to a limiting stochastic variable.

4. We define
∫ b
a gdW by

∫ b

a
g(s)dW(s) = lim

n→∞

∫ b

a
gn(s)dW(s).
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Properties of the Integral

Theorem:

The following relations hold

•

E

[∫ b

a
g(s)dW(s)

]
= 0

•

E



(∫ b

a
g(s)dW(s)

)2

 =

∫ b

a
E
[
g2(s)

]
ds

•
∫ b

a
g(s)dW(s) ∈ FW

b
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Martingales

Definition: An adapted process is a martin-

gale if

E [Xt| Fs] = Xs, ∀s ≤ t

“A martingale is a process without drift”

Proposition: For g ∈ £2, the process

Xt =
∫ t

0
gsdWs

is a martingale.

Proposition: If X has dynamics

dXt = µtdt + σtdWt

then X is amartingale iff µ = 0.

20



Stochastic Calculus

General Model:

dXt = µtdt + σtdWt

Let the function f(t, x) be given, and define

the stochastic process Zt by

Zt = f(t, Xt)

Problem: What does df(t, Xt) look like?

The answer is given by the Itô formula.
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A close up of the Wiener process

Consider an “infinitesimal” Wiener increment

dW = W (t + dt) − W (t)

We know:

dW ∼ N [0,
√

dt]

E[dW ] = 0, V ar[dW ] = dt

From this one can show

E[(dW)2] = dt, V ar[(dW)2] = 3(dt)2

Important observation:

1. Both E[(dW)2] and V ar[(dW)2] are very

small when dt is small .

2. V ar[(dW)2] is negligeable compared to E[(dW)2].

3. Thus (dW)2 is deterministic.

(dW)2 = dt
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Multiplication table.

•

(dt)2 = 0

•

dW · dt = 0

•

(dW )2 = dt
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Deriving the Itô formula

dXt = µtdt + σtdWt

Zt = f(t, Xt)

We want to compute df(t, Xt) (i.e. the change

in f(t, Xt))

Make a Taylor expansion of f(t, Xt) including

second order terms:

df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂t2
(dt)2

+
1

2

∂2f

∂x2
(dX)2 +

∂2f

∂t∂x
dt · dX

Plug in the expression for dX, expand, and use

the multiplication table!
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We get:

df =
∂f

∂t
dt +

∂f

∂x
[µdt + σdW ] +

1

2

∂2f

∂t2
(dt)2

+
1

2

∂2f

∂x2
[µdt + σdW ]2 +

∂2f

∂t∂x
dt · [µdt + σdW ]

=
∂f

∂t
dt + µ

∂f

∂x
dt + σ

∂f

∂x
dW +

1

2

∂2f

∂t2
(dt)2

+
1

2

∂2f

∂x2
[µ2(dt)2 + σ2(dW)2 + 2µσdt · dW ]

+ µ
∂2f

∂t∂x
(dt)2 + σ

∂2f

∂t∂x
dt · dW

Using the multiplikation table this reduces to:

df =
{

∂f
∂t + µ∂f

∂x + 1
2σ2∂2f

∂x2

}
dt

+ σ∂f
∂xdW

25



Itô’s formula

dXt = µtdt + σtdWt

Zt = f(t, Xt)

df =
{

∂f
∂t + µ∂f

∂x + 1
2σ2∂2f

∂x2

}
dt

+ σ∂f
∂xdW

Alternatively

df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2 (dX)2 ,

where we use the multiplication table.
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A Useful Trick

Problem: Compute E [Z(T )].

• Use Itô to get

dZ(t) = µZ(t)dt + σZ(t)dWt

• Integrate.

Z(T ) = z0 +
∫ T

0
µZ(t)dt +

∫ T

0
σZ(t)dWt

• Take expectations.

E [Z(T )] = z0 +
∫ T

0
E [µZ(t)] dt + 0

• The problem has been reduced to that of

computing E [µZ(t)] .
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The Black-Scholes model

Price dynamics:(Geometrical Brownian Mo-

tion)

dS = αSdt + σSdW,

Simple analysis:

Assume that σ = 0. Then

dS = αSdt

Divide by dt!

dS

dt
= αS

Simple ordinary differential equation with solu-

tion

St = s0eαt

Conjecture: The solution of the SDE above

is a randomly disturbed exponential function.
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Economic Interpretation

dS

S
= αdt + σdW

Over a small time interval [t, t+dt] this means:

Return = (mean return)

+ σ × (Gaussian random disturbance)

• The asset return is a random walk (with

drift).

• α = mean rate of return per unit time

• σ = “volatility”

Large σ = large random fluctuations

Small σ = small random fluctuations
29



We will se that:

S(t) = S(0)e(α−
1
2σ2)t+σW(t)

Stock prices are lognormally distributed.

Returns are normally distributed.
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Example GBM

dS = αSdt + σSdW

We smell something exponential!

Natural Ansatz:

S(t) = eZ(t),

Z(t) = lnS(t)

Itô on f(t, s) = ln(s) gives us

∂f

∂s
=

1

s
,

∂f

∂t
= 0,

∂2f

∂s2
= −

1

s2

dZ =
1

S
dS −

1

2

1

S2 (dS)2

=
(
α −

1

2
σ2
)

dt + σdW

Integrate!
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S(t) − S(0) =
∫ t

0

(
α −

1

2
σ2
)

dτ + σ
∫ t

0
dW(s)

=
(
α −

1

2
σ2
)

t + σW (t)

Using S = eZ gives us

S(t) = S(0)e

(
α−1

2σ2
)
t+σW(t)

Since W (t) is N [0,
√

t], we see that S(t) has a

lognormal distribution.
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The Connection SDE ∼ PDE

Given: µ(t, x), σ(t, x), Φ(x), T

Problem: Find a function F solving the Partial

Differential Equation (PDE)

∂F

∂t
(t, x) + AF(t, x) = 0,

F(T, x) = Φ(x).

where A is defined by

AF(t, x) = µ(t, x)
∂F

∂x
+

1

2
σ2(t, x)

∂2F

∂x2
(t, x)
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Assume that F solves the PDE.

Fix the point (t, x).

Define the process X by

dXs = µ(s, Xs)dt + σ(s, Xs)dWs,

Xt = x,

Apply Ito to the process F(t, Xt)!

F (T, XT ) = F (t, Xt)

+
∫ T

t

{
∂F

∂t
(s, Xs) + AF(s, Xs)

}
ds

+
∫ T

t
σ(s, Xs)

∂F

∂x
(s, Xs)dWs.

By assumption ∂F
∂t + AF = 0, and F(T, x) =

Φ(x)
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Thus:

Φ(XT ) = F (t, x)

+
∫ T

t
σ(s, Xs)

∂F

∂x
(s, Xs)dWs.

Take expectations.

F(t, x) = Et,x [Φ (XT )] ,
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Feynman-Kač

The solution F(t, x) to the PDE

∂F

∂t
+ µ(t, x)

∂F

∂x
+

1

2
σ2(t, x)

∂2F

∂x2
− rF = 0,

F(T, x) = Φ(x).

is given by

F(t, x) = e−r(T−t)Et,x [Φ (XT )] ,

where X satisfies the SDE

dXs = µ(s, Xs)dt + σ(s, Xs)dWs,

Xt = x.
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