Continuous Time Finance

Tomas Björk

II

Stochastic Calculus

Tomas Björk

Typical Setup

Take as given the market price process, $S(t)$, of some underlying asset.

 $S(t)$ = price, at t, per unit of underlying asset

Consider a fixed **financial derivative**, e.g. a European call option.

Main Problem: Find the arbitrage free price of the derivative.

We Need:

- 1. Mathematical model for the underlying price process. (The Black-Scholes model)
- 2. Mathematical techniques to handle the price dynamics. (The Itô calculus.)

Stochastic Processes

- We model the stock price $S(t)$ as a sto**chastic process**, i.e. it **evolves randomly over time**.
- *•* We model S as a **Markov process**, i.e. in order to predict the future only the present value is of interest. All past information is already incorporated into today's stock prices. (Market efficiency).

Stochastic variable Choosing a **number** at random

Stochastic process choosing a **curve** (trajectory) at random.

Notation

$$
X(t) = \text{any random process},
$$

\n
$$
dt = \text{small time step},
$$

\n
$$
dX(t) = X(t + dt) - X(t)
$$

- *•* dX is called the **increment** of X over the interval $[t, t + dt]$.
- For any fixed interval $[t, t + dt]$, the increment dX is a stochastic variable.
- If the increments $dX(s)$ and $dX(t)$, over the disjoint intervals $[s, s+ds]$ and $[t, t+dt]$ are independent, then we say that X has **independent increments**.
- *•* If every increment has a normal distribution we say that X is a **normal**, or **Gaussian** process.

The Wiener Process

A stochastic process W is called a **Wiener process** if it has the following properties

• The increments are normally distributed: For $s < t$:

$$
W(t) - W(s) \sim N[0, \sqrt{t-s}]
$$

 $E[W(t)-W(s)] = 0, \quad Var[W(t)-W(s)] = t-s$

- *W* has independent increments.
- $W(0) = 0$
- W has continuous trajectories.

Continuous random walk

Important Fact

Theorem:

A Wiener trajectory is, with probability one, **nowhere differentiable**.

Proof. Hard.

Wiener Process with Drift

A stochastic process X is called a Wiener process with **drift** μ and **diffusion coefficient** σ if it has the following dynamics

$$
dX = \mu dt + \sigma dW,
$$

$$
X(0) = x_0
$$

where x_0 , μ and σ are constants.

Summing all increments over the interval $[0, t]$ gives us

$$
X(t) - x_0 = \mu t + \sigma W(t)
$$

$$
X(t) = x_0 + \mu t + \sigma W(t)
$$

The distribution of X is thus given by

$$
X(t) \sim N[x_0 + \mu t, \ \sigma \sqrt{t}]
$$

Stochastic Differential Equations

Take as given two functions $\mu(t,x)$ and $\sigma(t,x)$. We say that the process X is an **diffusion** if it has the local dynamics

$$
dX = \mu(t, X_t)dt + \sigma(t, X_t)dW,
$$

\n
$$
X_0 = x_0
$$

Interpretation:

Over the time interval $[t, t+dt]$, the X-process is driven by two separate terms.

- A locally deterministic velocity $\mu(t, X(t))$.
- *•* An independent Gaussian disturbance term, amplified by the factor $\sigma(t, X(t))$.

How do we make this precise?

Possible Intrepretations

$$
dX = \mu(t, X_t)dt + \sigma(t, X_t)dW,
$$

(I) "Divide" formally by dt. Then we obtain the stochastic ODE

$$
\frac{dX_t}{dt} = \mu(t, X_t) + \sigma(t, X_t) v_t
$$

where

$$
v_t = \frac{dW}{dt}
$$

is the formal time derivative of the Wiener process W.

This is impossible, since $\frac{dW}{dt}$ does not exist.

(II) Write the equation on integrated form as

$$
X_t = x_0 + \int_0^t \mu(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dW_s
$$

How is this interpreted?

$$
X_t = x_0 + \int_0^t \mu(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dW_s
$$

Two terms:

•

•

$$
\int_{0}^{t}\mu\left(s,X_{s}\right) ds
$$

Riemann integral for each X-trajectory.

$$
\int_0^t \sigma\left(s,X_s\right) dW_s
$$

Stochastic integral. This can **not** be interpreted as a Stieljes integral for each trajectory. We need a new theory for this Itô **integral**.

Information

Let the Wiener process W be given.

Def:

 $\mathcal{F}_t^W \;\;=\;\;$ "The information generated by W over the interval $[0, t]'$

Def: Let Z be a stochastic variable. If the value of Z is completely determined by \mathcal{F}_t^W , we write

$$
Z \in \mathcal{F}_t^W
$$

Ex:

For the stochastic variable Z , defined by

$$
Z = \int_0^5 W(s)ds,
$$

we have $Z \in \mathcal{F}_5^W$.

We do **not** have $Z \in \mathcal{F}_4^W$.

Adapted Processes

Let W be a Wiener process.

Definition:

A process X is **adapted** to the filtration $\left\{\mathcal{F}_{t}^{W}: t \geq 0\right\}$ if

$$
X_t \in \mathcal{F}_t^W, \quad \forall t \ge 0
$$

"**An adapted process does not look into the future**"

Adapted processes are nice integrands for stochastic integrals.

• The process

$$
X_t = \int_0^t W_s ds,
$$

is adapted.

• The process

$$
X_t = \sup_{s \le t} W_s
$$

is adapted.

• The process

$$
X_t = \sup_{s \le t+1} W_s
$$

is **not** adapted.

The Itˆo Integral

We will define the Itô integral

$$
\int_a^b g(s)dW(s)
$$

for processes $g \in \mathcal{L}^2$, i.e.

- The process *g* is adapted.
- The process *g* satisfies

$$
\int_{a}^{b} E\left[g^{2}(s)\right] ds < \infty
$$

This will be done in two steps.

I: Simple Integrands

Definition:

The process g is **simple**, if

$$
\bullet \ \ g \in \pounds^2
$$

• There exists deterministic points $t_0 \ldots, t_n$ with $a = t_0 < t_1 < \ldots < t_n = b$ such that g is piecewise constant, i.e.

$$
g(s) = g(t_k), \quad s \in [t_k, t_{k+1})
$$

For simple g we define

$$
\int_{a}^{b} g(s)dW(s) = \sum_{k=0}^{n-1} g(t_k) \left[W(t_{k+1}) - W(t_k) \right]
$$

FORWARD INCREMENTS!

II: General Case

For a general $g \in \mathcal{L}^2$ we do as follows.

1. Approximate g with a sequence of simple g_n such that

$$
\int_a^b E\left[\{g_n(s)-g(s)\}^2\right]ds\to 0.
$$

2. For each n the integral

$$
\int_a^b g_n(s)dW(s)
$$

is a well defined stochastic variable Z_n .

- 3. One can show that the Z_n sequence converges to a limiting stochastic variable.
- 4. We define $\int_a^b g dW$ by $\int b$ $\int_a^b g(s)dW(s) = \lim_{n\to\infty}\int_a^b$ $g_n(s)dW(s).$

Properties of the Integral

Theorem:

•

•

•

The following relations hold

$$
E\left[\int_a^b g(s)dW(s)\right] = 0
$$

$$
E\left[\left(\int_a^b g(s)dW(s)\right)^2\right] = \int_a^b E\left[g^2(s)\right]ds
$$

$$
\int_a^b g(s)dW(s) \in \mathcal{F}_b^W
$$

Martingales

Definition: An adapted process is a **martingale** if

$$
E\left[X_t|\mathcal{F}_s\right]=X_s, \quad \forall s\leq t
$$

"A martingale is a process without drift"

Proposition: For $g \in \mathcal{L}^2$, the process

$$
X_t = \int_0^t g_s dW_s
$$

is a martingale.

Proposition: If X has dynamics

$$
dX_t = \mu_t dt + \sigma_t dW_t
$$

then X is amartingale **iff** $\mu = 0$.

Stochastic Calculus

General Model:

$$
dX_t = \mu_t dt + \sigma_t dW_t
$$

Let the function $f(t, x)$ be given, and define the stochastic process Z_t by

$$
Z_t = f(t, X_t)
$$

Problem: What does $df(t, X_t)$ look like?

The answer is given by the Itô formula.

A close up of the Wiener process

Consider an "infinitesimal" Wiener increment

$$
dW = W(t + dt) - W(t)
$$

We know:

dW *∼* N[0, *√* $dt]% \centering \includegraphics[width=0.99\columnwidth]{figures/fig.pdf}} \caption{The 3D (black) and the 4D (black) are shown in Fig. \ref{fig:10}.}% \label{fig:2b}%$

$$
E[dW] = 0, Var[dW] = dt
$$

From this one can show

$$
E[(dW)^{2}] = dt, \quad Var[(dW)^{2}] = 3(dt)^{2}
$$

Important observation:

1. Both $E[(dW)^2]$ and $Var[(dW)^2]$ are very small when dt is small

2. $Var[(dW)^2]$ is negligeable compared to $E[(dW)^2]$. **3.** Thus $(dW)^2$ is **deterministic**.

$$
(dW)^2 = dt
$$

Multiplication table.

•

•

•

$$
(dt)^2 = 0
$$

$$
dW \cdot dt = 0
$$

$$
(dW)^2 = dt
$$

Deriving the Itô formula

 $dX_t = \mu_t dt + \sigma_t dW_t$

$$
Z_t = f(t, X_t)
$$

We want to compute $df(t, X_t)$ (i.e. the change in $f(t, X_t)$

Make a Taylor expansion of $f(t, X_t)$ including second order terms:

$$
df = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX + \frac{1}{2} \frac{\partial^2 f}{\partial t^2} (dt)^2
$$

$$
+ \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX)^2 + \frac{\partial^2 f}{\partial t \partial x} dt \cdot dX
$$

Plug in the expression for dX , expand, and use the multiplication table!

We get:

$$
df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}[\mu dt + \sigma dW] + \frac{1}{2}\frac{\partial^2 f}{\partial t^2}(dt)^2
$$

+
$$
\frac{1}{2}\frac{\partial^2 f}{\partial x^2}[\mu dt + \sigma dW]^2 + \frac{\partial^2 f}{\partial t \partial x}dt \cdot [\mu dt + \sigma dW]
$$

=
$$
\frac{\partial f}{\partial t}dt + \mu \frac{\partial f}{\partial x}dt + \sigma \frac{\partial f}{\partial x}dW + \frac{1}{2}\frac{\partial^2 f}{\partial t^2}(dt)^2
$$

+
$$
\frac{1}{2}\frac{\partial^2 f}{\partial x^2}[\mu^2(dt)^2 + \sigma^2(dW)^2 + 2\mu\sigma dt \cdot dW]
$$

+
$$
\mu \frac{\partial^2 f}{\partial t \partial x}(dt)^2 + \sigma \frac{\partial^2 f}{\partial t \partial x}dt \cdot dW
$$

Using the multiplikation table this reduces to:

$$
df = \left\{ \frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial x} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2} \right\} dt
$$

$$
+ \sigma \frac{\partial f}{\partial x} dW
$$

25

Itˆo's formula

$$
dX_t = \mu_t dt + \sigma_t dW_t
$$

$$
Z_t = f(t, X_t)
$$

$$
df = \left\{ \frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial x} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2} \right\} dt
$$

$$
+ \sigma \frac{\partial f}{\partial x} dW
$$

Alternatively

$$
df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dX + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dX)^2,
$$

where we use the multiplication table.

A Useful Trick

Problem: Compute $E[Z(T)]$.

• Use Itˆo to get

$$
dZ(t) = \mu_Z(t)dt + \sigma_Z(t)dW_t
$$

• Integrate.

$$
Z(T) = z_0 + \int_0^T \mu_Z(t)dt + \int_0^T \sigma_Z(t)dW_t
$$

• Take expectations.

$$
E[Z(T)] = z_0 + \int_0^T E[\mu_Z(t)] dt + 0
$$

• The problem has been reduced to that of computing $E[\mu_Z(t)]$.

The Black-Scholes model

Price dynamics:(Geometrical Brownian Motion)

$$
dS = \alpha S dt + \sigma S dW,
$$

Simple analysis:

Assume that $\sigma = 0$. Then

$$
dS = \alpha S dt
$$

Divide by $dt!$

$$
\frac{dS}{dt} = \alpha S
$$

Simple ordinary differential equation with solution

$$
S_t = s_0 e^{\alpha t}
$$

Conjecture: The solution of the SDE above is a randomly disturbed exponential function.

Economic Interpretation

$$
\frac{dS}{S} = \alpha dt + \sigma dW
$$

Over a small time interval $[t, t+dt]$ this means:

 $Return = (mean return)$ + σ *×* (Gaussian random disturbance)

- *•* The asset **return** is a random walk (with drift).
- $\alpha =$ mean rate of return per unit time
- $\sigma =$ "volatility"

Large σ = large random fluctuations

Small $\sigma =$ small random fluctuations

We will se that:

$$
S(t) = S(0)e^{(\alpha - \frac{1}{2}\sigma^2)t + \sigma W(t)}
$$

Stock prices are lognormally distributed.

Returns are normally distributed.

Example GBM

 $dS = \alpha Sdt + \sigma SdW$

We smell something exponential!

Natural Ansatz:

$$
S(t) = e^{Z(t)},
$$

\n
$$
Z(t) = \ln S(t)
$$

Itô on $f(t, s) = \ln(s)$ gives us

$$
\frac{\partial f}{\partial s} = \frac{1}{s}, \quad \frac{\partial f}{\partial t} = 0, \quad \frac{\partial^2 f}{\partial s^2} = -\frac{1}{s^2}
$$

$$
dZ = \frac{1}{S}dS - \frac{1}{2}\frac{1}{S^2}(dS)^2
$$

$$
= \left(\alpha - \frac{1}{2}\sigma^2\right)dt + \sigma dW
$$

Integrate!

$$
S(t) - S(0) = \int_0^t \left(\alpha - \frac{1}{2} \sigma^2 \right) d\tau + \sigma \int_0^t dW(s)
$$

$$
= \left(\alpha - \frac{1}{2} \sigma^2 \right) t + \sigma W(t)
$$

Using
$$
S = e^Z
$$
 gives us

$$
S(t) = S(0)e^{(\alpha - \frac{1}{2}\sigma^2)t + \sigma W(t)}
$$

Since $W(t)$ is $N[0,\sqrt{t}]$, we see that $S(t)$ has a lognormal distribution.

The Connection SDE *∼* **PDE**

Given: $\mu(t,x)$, $\sigma(t,x)$, $\Phi(x)$, T

Problem: Find a function F solving the Partial Differential Equation (PDE)

$$
\frac{\partial F}{\partial t}(t,x) + AF(t,x) = 0, \nF(T,x) = \Phi(x).
$$

where *A* is defined by

$$
\mathcal{A}F(t,x) = \mu(t,x)\frac{\partial F}{\partial x} + \frac{1}{2}\sigma^2(t,x)\frac{\partial^2 F}{\partial x^2}(t,x)
$$

Assume that F solves the PDE.

Fix the point (t, x) .

Define the process X by

$$
dX_s = \mu(s, X_s)dt + \sigma(s, X_s)dW_s,
$$

\n
$$
X_t = x,
$$

Apply Ito to the process $F(t, X_t)$!

$$
F(T, X_T) = F(t, X_t)
$$

+
$$
\int_t^T \left\{ \frac{\partial F}{\partial t}(s, X_s) + AF(s, X_s) \right\} ds
$$

+
$$
\int_t^T \sigma(s, X_s) \frac{\partial F}{\partial x}(s, X_s) dW_s.
$$

By assumption $\frac{\partial F}{\partial t} + AF = 0$, and $F(T, x) =$ $\Phi(x)$

Thus:

$$
\Phi(X_T) = F(t, x) \n+ \int_t^T \sigma(s, X_s) \frac{\partial F}{\partial x}(s, X_s) dW_s.
$$

Take expectations.

$$
F(t,x) = E_{t,x} \left[\Phi \left(X_T \right) \right],
$$

Feynman-Kaˇc

The solution $F(t, x)$ to the PDE

$$
\frac{\partial F}{\partial t} + \mu(t, x) \frac{\partial F}{\partial x} + \frac{1}{2} \sigma^2(t, x) \frac{\partial^2 F}{\partial x^2} - rF = 0,
$$

$$
F(T, x) = \Phi(x).
$$

is given by

$$
F(t,x) = e^{-r(T-t)} E_{t,x} \left[\Phi \left(X_T \right) \right],
$$

where X satisfies the SDE

$$
dX_s = \mu(s, X_s)dt + \sigma(s, X_s)dW_s,
$$

\n
$$
X_t = x.
$$

36