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Corrections and comments from Mia:

• Exercise 7.5: The denominator inside the Q-expression on the last line
of page 11 should be σ

√
T − t instead of σ. The same is true for the

denominator in the expressions for A and B on page 12.

• Exercise 7.6 and 8.3: These are not simple claims. However Risk Neu-
tral Valuation holds for all claims, even though it is not proved in
Tomas book. Hence for any payoff X paid out at time T the price
at time t is given by π[t, X] = e−r(T − t)EQ[X] (assuming constant
non-stochastic interest rates). Then you continue from here. This is
what is done in the solutions in this text. If you are not happy with
this solution you can (in both of these exercises) define a process Z
according to eqn (8.30) on page 116 in Tomas book and choose g in a
smart way so that you can use proposition 8.6. This is what I did in
class for exercise 8.3. However this is a bit of an overkill.

• Exercise 15.1: See suggested solution 16.1

• Exercise 16.2: See suggested solution 17.2. You also have to prove (by
using Ito) that

d
[
e−rtS(t)

]
= e−rtdS(t) − e−rtrS(t)dt

• Exercise 16.6: See suggested solution 17.6



4 Stochastic Integrals

Exercise 4.1

(a) Since Z(t) is determinist, we have

dZ(t) = αeαtdt

= αZ(t)dt.

(b) By definition of a stochastic differential

dZ(t) = g(t)dW (t)

(c) Using Itô’s formula

dZ(t) =
α2

2
eαW (t)dt + αeαW (t)dW (t)

=
α2

2
Z(t)dt + αZ(t)dW

(d) Using Itô’s formula and considering the dynamics of X(t) we have

dZ(t) = αeαxdX(t) +
α2

2
eαx(dX(t))2

= Z(t)
[
αµ +

1
2
α2σ2

]
dt + ασZ(t)dW (t).

(e) Using Itô’s formula and considering the dynamics of X(t) we have

dZ(t) = 2X(t)dX(t) + (d(X(t))2

= Z(t)
[
2α + σ2

]
dt + 2ZσdW (t).

Exercise 4.3 By definition we have that the dynamics of X(t) are given

by dX(t) = σ(t)dW (t).
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Consider Z(t) = eiuX(t). Then using the Itô’s formula we have that the

dynamic of Z(t) can be described by

dZ(t) =

[
−u2

2
σ2(t)

]
Z(t)dt + [iuσ(t)]Z(t)dW (t)

From Z(0) = 1 we get,

Z(t) = 1 − u2

2

∫ t

0
σ2(s)Z(s)ds + iu

∫ t

0
σ(s)Z(s)dW (s).

Taking expectations we have,

E [Z(t)] = 1 − u2

2
E

[∫ t

0
σ2(s)Z(s)ds

]
+ iuE

[∫ t

0
σ(s)Z(s)dW (s)

]

= 1 − u2

2

[∫ t

0
σ2(s)E [Z(s)] ds

]
+ 0

By setting E [Z(t)] = m(t) and differentiating with respect to t we find an

ordinary differential equation,

∂m(t)
∂t

= −u2

2
m(t)σ2(t)

with the initial condition m(0) = 1 and whose solution is

m(t) = exp

{
−u2

2

∫ t

0
σ2(s)ds

}

= E [Z(t)]

= E
[
eiuX(t)

]

So, X(t) is normally distributed. By the properties of the normal distribu-

tion the following relation

E
[
eiuX(t)

]
= eiuE[X(t)]−u2

2
V [X(t)]

where V [X(t)] is the variance of X(t), so it must be that E [X(t)] = 0 and

V [X(t)] =
∫ t
0 σ2(s)ds.
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Exercise 4.5 We have a sub martingale if E [X(t)| Fs] ≥ X(s)∀, t ≥ s.

From the dynamics of X we can write

X(t) = X(s) +
∫ t

s
µ(z)dz +

∫ t

s
σ(z)dW (z).

By taking expectation, conditioned at time s, from both sides we get

E [X(t)| Fs] = E [X(s)| Fs] + E

[∫ t

s
µ(z)dz

∣∣∣∣Fs

]

= X(s) + Es




∫ t

s
µ(z)dz

︸ ︷︷ ︸
≥0

∣∣∣∣∣∣∣∣∣
Fs




≥ X(s)

so X is a sub martingale.

Exercise 4.6 Set X(t) = h(W1(t), · · · ,Wn(t)).

We have by Itô that

dX(t) =
n∑

i=1

∂h

∂xi
dWi(t) +

1
2

n∑

i,j=1

∂2h

∂xi∂xj
dWi(t)dWj(t)

where ∂h
∂xi

denotes the first derivative with respect to the i-th variable, ∂2h
∂xi∂xj

denotes the second order cross-derivative between the i-th and j-th variable

and all derivatives should be evaluated at (W1(s), · · · ,Wn(s)).

Since we are dealing with independent Wiener processes we know

∀u : dWi(u)dWj(u) = 0 for i 6= j and dWi(u)dWj(u) = du for i = j,

so, integrating we get

X(t) =
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
dWi(u)dWj(u)

=
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i=1

∂2h

∂xi∂xj
[dWi(u)]2

=
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
du.
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Taking expectations

E [X(t)| Fs] = E

[∫ t

0

n∑

i=1

∂h

∂xi
dWi(u)

∣∣∣∣∣Fs

]
+ E


 1

2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs




=
∫ s

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ s

0

n∑

i,j=1

∂2h

∂xi∂xj
du

︸ ︷︷ ︸
X(s)

+E

[∫ t

0

n∑

i=1

∂h

∂xi
dWi(u)

∣∣∣∣∣Fs

]

︸ ︷︷ ︸
0

+E


 1

2

∫ t

s

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs




= X(s) + E


 1

2

∫ t

s

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs


 .

• If h is harmonic the last term is zero, since
∑n

i,j=1
∂2h

∂xi∂xj
= 0, we have

E [X(t)| Fs] = X(s) so X is a martingale.

• If h is subharmonic the last term is always nonnegative, since
∑n

i,j=1
∂2h

∂xi∂xj
≥

0 we have

E [X(t)| Fs] ≥ X(s) so X is a submartingale.

Exercise 4.8

(a) Using the Itô’s formula we find the dynamics of R(t),

dR(t) = 2X(t)(dX(t)) + 2Y (t)(dY (t)) +
1
2

[
2(dX(t))2 + 2(dY (t))2

]

= (2α + 1)
[
X2(t) + Y 2(t)

]
dt

= (2α + 1)R(t)dt

From the dynamics we can see immediately that R(t) is deterministic

(it has no stochastic component!).
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(b) Integrating the SDE for X(t) and taking expectations we have

X(t) = x0 + α

∫ t

0
E [X(s)] ds

Which once more can be solve setting m(t) = E [X(t)],taking the

derivative with respect to t and using ODE methods, to get the answer

E [X(t)] = x0e
αt

5 Differential Equations

Exercise 5.1 We have:

dY (t) = αeαtx0dt, dZ(t) = αeαtσdt, dR(t) = e−αtdW (t).

Itô’s formula then gives us (the cross term dZ(t) · dR(t) vanishes)

dX(t) = dY (t) + Z(t) · dR(t) + R(t) · dZ(t)

= αeαtx0dt + eαt · σ · e−αtdW (t) +
∫ t

0
e−αsdW (s) · αeαtσdt

= α

[
eαtx0 + σ

∫ t

0
eα(t−s)dW (s)

]
dt + σdW (t)

= αX(t)dt + σdW (t).

Exercise 5.5 Using the dynamics of X(t) and the Itô formula we get

dY (t) =
[
αβ +

1
2
β(β − 1)σ2

]
Y (t)dt + σβY (t)dW (t)

= µY (t)dt + δY (t)dW (t)

where µ = αβ + 1
2β(β − 1)σ2 and δ = σβ so Y is also a GBM.
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Exercise 5.6 From the Itô formula and using the dynamics of X and Y

dZ(t) =
1

Y (t)
dX(t) − X(t)

Y (t)2
dY (t) − 1

Y (t)2
dX(t)dY (t) +

X(t)
Y (t)3

(dY (t))2

= Z(t)
[
α − γ + δ2

]
dt + σZ(t)dW (t) − δZ(t)dV (t).

Exercise 5.9 From Feyman-Kac we have We have

F (t, x) = Et,x [2 ln[X(T )]] ,

and

dX(s) = µX(s)ds + σXdW (s),

X(t) = x.

Solving the SDE, we obtain (check the solution of the GBM in th extra

exercises if you do not remmeber)

X(T ) = exp
{

lnx + (µ − 1
2
σ2)(T − t) + σ[W (T ) − W (t)]

}
,

and thus

F (t, x) = 2 ln(x) + 2(µ − 1
2
σ2)(T − t).

Exercise 5.10 Given the dynamics of X(t) any F (t, x) that solves the prob-

lem has the dynamics given by

dF (t, x) =
∂F

∂t
dt +

∂F

∂x
dX(t) +

1
2

∂2F

∂x2
(dX(t))2

=
∂F

∂t
dt +

∂F

∂x
[µ(t, x)dt + σ(t, x)dW (t)] + k(t, x)dt − k(t, x)dt

+
1
2

∂2F

∂x2

[
σ2(t, x)dW (t)

]

=





∂F

∂t
+ µ(t, x)

∂F

∂x
+

1
2
σ2(t, x) + k(t, x)

︸ ︷︷ ︸
0





dt − k(t, x)dt

+
∂F

∂x
σ(t, x)dW (t)

= −k(t, x)dt +
∂F

∂x
σ(t, x)dW (t)
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We now write F (T,X(T )) in terms of F (t, x) and the dynamics of F during

the time period t . . . T (recall that we defined X(t) = x)

F (t,X(T )) = F (t, x) −
∫ T

t
k(s,X(s)ds +

∫ T

t

∂F

∂x
σ(s,X(s))dW (s)

⇔

F (t, x) = F (T,X(T )) +
∫ T

t
k(s,X(s)ds −

∫ T

t

∂F

∂x
σ(s,X(s))dW (s)

Taking expectations Et,x [.] from both sides

F (t, x) = Et,x [F (T,X(T ))] + Et,x

[∫ T

t
k(s,X(s)ds

]

= Et,x [Φ(T )] +
∫ T

t
Et,x [k(s,X(s)] ds

Exercise 5.11 Using the representation formula from Exercise 5.10 we get

F (t, x) = Et,x

[
2 ln[X2(T )]

]
+
∫ T

t
Et,x [X(s)] ds,

Given

dX(s) = X(s)dW (s).

The first term is easily computed as in the exercise 5.9 above. Furthermore

it is easily seen directly from the SDE (how?)that Et,x [X(s)] = x. Thus we

have the result

F (t, x) = 2 ln(x) − (T − t) + x(T − t)

= ln(x2) + (x − 1)(T − t)

7 Arbitrage Pricing

Exercise 7.1
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(a) From standard theory we have

Π (t) = F (t, S(t)), where F solves the Black-Scholes equation.

Using Itô we obtain

dΠ(t) =

[
∂F

∂t
+ rS(t)

∂F

∂s
+

1
2
σ2S2(t)

∂2F

∂s2

]
dt + σS(t)

∂F

∂s
dW (t).

Using the fact that F satisfies the Black-Scholes equation, and that

F (t, S(t)) = Π (t) we obtain

dΠ(t) = rΠ(t) dt + σS(t)
∂F

∂s
dW (t)

and so g(t) = σS(t)∂F
∂s .

(b) Apply Itô’s formula to the process Z(t) = Π(t)
B(t) and use the result in

(a).

dZ(t) =
1

B(t)
(dΠ(t)) − Π(t)

B2(t)
(d(B(t))

=
g(t)
B(t)

dW (t)

= Z(t)
σS(t)
Π(t)

∂F

∂s
dW (t)

Z is a martingale since Et [Z(T )] = Z(t) for all t < T and its diffusion

coefficient is given by σZ(t) = σS(t)
Π(t)

∂F
∂s .

Exercise 7.4 We have as usual

Π (t) = e−r(T−t)EQ
t,s

[
Sβ(T )

]
.

We know from earlier exercises (check exercises 3.4 and 4.5) that Y (t) =

Sβ(t) satisfies the SDE under Q

dY (t) =
[
rβ +

1
2
β(β − 1)σ2

]
Y (t)dt + σβY (t)dW (t).
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Using the standard technique, we can integrate, take expectations, differen-

tiate with respect to time and solve by ODE techniques, to obtain

EQ
t,s

[
Sβ(T )

]
= sβe[rβ+ 1

2
β(β−1)σ2](T−t),

So,

Π(t) = sβe[r(β−1)+ 1
2
β(β−1)σ2](T−t).

Exercise 7.5 In the case of the ”binary option” the payoff Φ(s) can be

described as

Φ(s) =

{
K, if s ∈ [α, β]

0, otherwise.

We know that the arbitrage free price Π(t) is given by

Π (t) = e−r(T−t)EQ
t,s [Φ(S(T ))] .

Without any loss of generality we can normalize K and set K = 1. Given

the specially form of the payoff Φ(s) we have

EQ
t,s [φ(T )] = Q [S(T ) ∈ [α, β]]

= Q [α ≤ S(T ) ≤ β] .

We also know, from the properties of a GBM, that

EQ
t [ln (S(T ))] = ln (S(t)) + r − 1

2
σ2,

V [S(T )] = σ2 (T − t) and that lnS(T ) is normally distributed. So we have

lnS(T ) ∼ N

[
ln (S(t)) + r − 1

2
σ2, σ

√
T − t

]
.

Thus

EQ
t,s [φ(T )] = Q [lnα ≤ ln(S(T )) ≤ lnβ]

= Q




lnα − lnS(t) − (r − σ2

2 )(T − t)
σ︸ ︷︷ ︸
A

≤ Z ≤
lnβ − lnS(t) − (r − σ2

2 )(T − t)
σ︸ ︷︷ ︸
B



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where Z ∼ N [0, 1] . So,we have

Π(t) = e−r(T−t) {N [A] − N [B]}

where A = ln α−ln S(t)−(r−σ2

2
)(T−t)

σ and B = ln β−lnS(t)−(r−σ2

2
)(T−t)

σ . For K 6=
1 we just have Π(t) = Ke−r(T−t) {N [A] − N [B]}.

Exercise 7.6 We want to find the arbitrage free price process for the claim

for the claim X where X is given by

X =
S(T1)
S(T0)

(1)

where the times T0 and T1 are given and claim is paid out at T1.

Under the martingale measure Q

dS = rSds + σSdWs

S(t) = s

Since the stock dynamics is a GBM we can solve for S(T1) and S(T0) ex-

plicitely.

S(T1) = s exp (r − 1
2
σ2)(T1 − t) + σ(W (T1) − W (t)) (2)

S(T0) = s exp (r − 1
2
σ2)(T0 − t) + σ(W (T0) − W (t)) (3)

Thus the ratio is
S(T1)
S(T0)

= exp (r − 1
2
σ2)(T1 − T0) + σ(W (T1) − W (T0)) (4)

Using the characteristic functions for normal distribution and noticing that

σ(W (T1) − W (T0)) with zero mean and variance σ2(T1 − T0)

EQ
[
S(T1)
S(T0)

]
= e(r− 1

2
σ2)(T1−T0)EQ

[
eσ(W (T1)−W (T0))

]

= e(r− 1
2
σ2)(T1−T0)e

1
2
σ(T1−T0) = e−r(T1−T0)

The arbitrage free price process is equal then

Π(t, s) = e−r(T1−t)e−r(T1−T0) = e−r(T0−t) (5)
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Exercise 7.7 The price in SEK of the ACME INC., Z, is defined as Z(t) =

S(t)Y (t) and by Itô has the following dynamics under Q

dZ(t) = rZ(t)dt + σZ(t)dW1(t) + δZ(t)dW2(t)

We also have, by using Itô once more, that the dynamics of lnZ2 are

d lnZ2(t) =
[
2r − σ2 − δ2

]
dt + 2σdW1(t) + 2δdW2(t)

which integrating and taking conditioned expectations give us

EQ
t,z

[
ln[Z2(T )]

]
= ln z2 +

[
2r − σ2 − δ2

]
(T − t)

Since we know that

Π(t) = F (t, s) = e−r(T−t)EQ
t,z

[
ln[Z2(T )]

]
,

the arbitrage free pricing function Π is

Π(t) = e−r(T−t)
{
ln z2 +

[
2r − σ2 − δ2

]
(T − t)

}

= e−r(T−t)
{
2 ln(sy) +

[
2r − σ2 − δ2

]
(T − t)

}
,

where, as usual, z = Z(t), s = S(t) and y = Y (t).

Exercise 7.9 The forward price, i.e. the amount of money to be payed out

at time T , but decided at the time t is

F (t, T ) = EQ
t [X ] .

Note that the forward price is not the price of the forward contract on the

T -claim X which is what we are looking for.

Take for instance the long position: at time T , the buyer of a forward

contract receives X and pays F (t, T ). Hence, the price at time t of that

position is

Π(t;X − F (t, T )) = EQ
t


e−r(T−t)


X − F (t, T )︸ ︷︷ ︸

EQ
t [X ]





 = 0.
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At time s > t, however, the underlying asset may have changed in value, in

a way different from expectations, so then the price of a forward contract

can be defined as

Π(s;X − F (t, T )) = EQ
s

[
e−r(T−s) (X − F (t, T ))

]

= e−r(T−s)


EQ

s [X ] −

F (t,T )︷ ︸︸ ︷
EQ

t [X ]


 .

Remark: For the special case where the contract is on one share S we get:

Π(s) = e−r(T−s)


EQ

s [S(T )] − S(t)er(T−t)

︸ ︷︷ ︸
EQ

t [S(T )]


 .

We can also easily calculate EQ
s [S(T )] since

EQ
s [S(T )] = S(t) + r

∫ s

t
S(u)du

︸ ︷︷ ︸
S(s)

+r

∫ T

s
EQ

s [S(u)] du

so,

EQ
s [S(T )] = S(s)er(T−s)

and, therefore, the free arbitrage pricing function at time s > t is

Π(s) = S(s) − S(t)er(s−t).
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8 Completeness and Hedging

Exercise 8.2 We have F (t, s, z) be defined by

Ft + r · s · Fs +
1
2
σ2s2Fss + gFz = rF

F (T, s, z) = Φ(s, z)

and the dynamics under Q for S and Z

dS(u) = rS(u)du + σS(u)dW (u)

dZ(u) = g(u, S(u))du

We want to show that F (t, S(t), Z(t)) = e−r(T−t)EQ
t,s,z [Φ(S(T ), Z(T ))].

For that we find , by Itô, the dynamics of Π(t) = F (t, S(t), Z(t)), the arbi-

trage free pricing process

dΠ(t) = Ftdt + Fs [(rS(t)dt + σS(t)dW (t)] + Fz · g(t, S(t))dt +
1
2
Fssσ

2S2(t)dt

=
[
Ft + r · S(t) · Fs +

1
2
σ2S2(t)Fss + g(t, S(t))Fz

]

︸ ︷︷ ︸
rΠ(t)

+σS(t)FsdW (t)

Integrating we have

Π(T ) = Π(t) + r

∫ T

t
Π(u)du + σ

∫ T

t
S(u)FsdW (u)

Hence

EQ
t,z,s [Π(T )] = Π(t) + r

∫ T

t
EQ

t,z,s [Π(u)] du

So, using the usual ”trick” of setting m(u) = EQ
t,z,s [Π(u)] and using tech-

niques of ODE we finally get

Π(t) = F (t, S(t), Z(t)) = e−r(T−t)EQ
t,s,z [Φ(S(T ), Z(T ))] .

(Remember that Π(T ) = F (T, S(T ), Z(T )) = Φ(S(T ), Z(T )).)
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Exercise 8.3 The price arbitrage free price is given by (note that this time

our claim is not simple, i.e. it is not of the form X= Φ(S(T ))).

Π(t) = e−r(T2−t)EQ
t [X ]

= e−r(T2−t) 1
T2 − T1

∫ T2

T1

EQ
t [S(u)] du

We know that under Q

dS(u) = rS(u)du + σS(u)dW (u)

S(t) = s

So,

⇒ EQ
t [S(u)] = ser(u−t)

1
T2 − T1

∫ T2

T1

ser(u−t)du =
1

T2 − T1

s

r

[
er(T2−t) − er(T1−t)

]

The price to the ”mean” contract is thus

Π(t) =
s

r(T2 − T1)

[
1 − e−r(T2−T1)

]
.

16



9 Parity Relations and Delta Hedging

Exercise 9.1 The T -claim X given by:

X =





K, if S(T ) ≤ A

K + A − S(T ), if A < S(T ) < K + A

0, otherwise.

,

has then following contract function (recall that X = ΦS(T ))

Φ(x) =





K, if x ≤ A

K + A − x, if A < x < K + A

0, otherwise.

,

which can be decomposed into the following ”basic” contract functions writ-

ten

Φ(x) = K · 1︸︷︷︸
ΦB(x)

−max [0, x − A]︸ ︷︷ ︸
Φc,A(x)

+max [0, x − A − K]︸ ︷︷ ︸
Φc,A+K(x)

.

Having this T-claim X is then equivalent to having the following (replicating)

portfolio at time T :

* K in monetary units

* short (position in) a call with strike A

* long (position in) a call with strike A + K

Given the decomposition of the contract function Φ into basic contract func-

tions, we immediately have that the arbitrage free pricing process Π is

Π(t) = K ·

B(t)︷ ︸︸ ︷
e−r(T−t) −c(s,A, T ) + c(s,A + K,T )

where c(s,A, T ) and c(s,A + K,T ) stand for the prices of European call

options on S and maturity T with strike prices A and A + K, respectively.

The Black-Scholes formula give us both c(s,A, T ) and c(s,A + K,T ) .

17



The hedge portfolio thus consists of a reverse position in the above compo-

nents, i.e., borrow e−r(T−t)K, buy a call with strike K and sell a call with

strike A + K.

Exercise 9.4 We apply, once again, the exact same technique. The T -claim

X given by:

X =





0, if S(T ) < A

S(T ) − A, if A ≤ S(T ) ≤ B

C − S(T ), if B < S(T ) ≤ C

0, if S(T ) > C.

where B = A+C
2 , has a contract function Φ that can be written as

Φ(x) = max [0, x − A]︸ ︷︷ ︸
Φc,A(x)

+max [0, x − C]︸ ︷︷ ︸
Φc,C(x)

−2max [0, x − B]︸ ︷︷ ︸
Φc,B(x)

Having this butterfly is then equivalent to having the following constant(replicating)

portfolio at time T :

* long (position in) a call option with strike A

* long (position in) a call option with strike C

* short (position in) a call option with strike B

The arbitrage free pricing process Π follows immediately from the decom-

position of the contract function Φ and is given by

Π(t) = c(s,A, T ) + c(s, C, T ) − 2c(s,B, T )

where c(s,A, T ), c(s,B, T ) and c(s, C, T ) stand for the prices of European

call options on S, with maturity T and strike prices A, B and C, respectively,

and can be computed using the Black-Scholes formula.

The hedge portfolio consists of a reverse position in the above components,

i.e., sell two call options one with strike A and other with strike B and buy

other two both with strike B.
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Exercise 9.5 We have a portfolio P and two derivatives F and G. In order

to delta-hedge our portfolio we need to combine the two derivatives in a way

such that

uF .∆F + uG.∆G = −∆P ,

since, in addition we what to gamma-hedge we also need

uF .ΓF + uG.ΓG = −ΓF

Where uF and uG are the quantities of the derivatives F and G, respectively,

that should be bought (or sold if negative in value).

So we just need to solve the system




−uF + 5uG = −2

2uF − 2uG = −3




uF = −19
8

uG = −7
8

the hedging strategy is then to short 19
8 of derivative F and 7

8 of derivative

G.

Exercise 9.10 From the put-call parity we have that

p(t, s) = Ke−r(T−t) + c(t, s) − S

where p(t, s) and c(t, s) stand for the price of a put and a call option on S

with maturity T and strike price K.

The delta measures the variation in the price of a derivative with respect to

changes in the value of the underlying. Differentiating the put-call parity

w.r.t. S we have
∂p(t, s)

∂S︸ ︷︷ ︸
∆put

=
∂

∂S

(
Ke−r(T−t)

)
+

∂c(t, s)
∂S︸ ︷︷ ︸

∆call

−∂S

∂S

∆put = ∆call − 1
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Since,∆call = N [d1] ⇒ ∆put = N [d1] − 1.

To find the result on the gamma we differentiate one more time (so two

times) w.r.t. S the put-call parity and get

∂2p(t, s)
∂S2︸ ︷︷ ︸
Γcall

=
∂2c(t, s)

∂S2︸ ︷︷ ︸
Γput

From the fact that Γcall = ϕ(d1)

sσ
√

T−t
it follows that Γput = ϕ(d1)

sσ
√

T−t
.
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16 Incomplete Markets

Exercise 16.1 Given a claim X = Π(X(T ))) and since the dynamics of X

under the Q-measure are

dX(t) = [µ(t,X(t)) − λ(t,X(t))σ(t,X(t))] dt + σ(t,X(t))dWQ(t),

we can find the Q-dynamics of the pricing function F (t,X(t)) using the Ito

formula

dF (t,X(t)) =
∂F

∂t
dt +

∂F

∂x
dX(t) +

1
2

∂2F

∂x2
(dX(t))2

=
∂F

∂t
dt +

∂F

∂x
[µ(t,X(t)) − λ(t,X(t))σ(t,X(t))] dt + σ(t,X(t))dWQ(t)

+
1
2

∂2F

∂x2
σ2(t,X(t))dt

=

[
∂F

∂t
+

∂F

∂x
(µ(t,X(t)) − λ(t,X(t))σ(t,X(t))) +

1
2

∂2F

∂x2
σ2(t,X(t))

]

︸ ︷︷ ︸
rF (t,X(t))

dt

+σ(t,X(t))dWQ(t)

= rF (t,X(t)) + σ(t,X(t))dWQ(t)

where the last step results from the fact that F has to satisfy the pricing

PDE:

∂F

∂t
+

∂F

∂x
(µ(t,X(t)) − λ(t,X(t))σ(t,X(t))) +

1
2

∂2F

∂x2
σ2(t,X(t)) = rF.
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17 Dividends

Exercise 17.2 We know that when there is a continuous dividend δ being

paid we have the following dynamics under Q for the asset S and the dividen

structure D

dS(t) = [r − δ (S(t))]S(t)dt + σ (S(t))S(t)dW (t)

dD(t) = S(t)δ (S(t)) dt

Just by rewritting and rearranging terms we have

dS(t) = rS(t)dt − δ (S(t)) S(t)dt︸ ︷︷ ︸
dD(t)

+σ (S(t)) S(t)dW (t)

e−r·tdS(t) − e−r·trS(t)dt = −e−r·tdD(t) + e−r·tσ (S(t)) S(t)dW (t)

d
[
e−r·tS(t)

]
= −e−r·tdD(t) + e−r·tσ (S(t)) S(t)dW (t).

Integratting the last expression we get

e−r·tS(t) = e−r·0S(0) −
∫ t

0
e−rudD(u) +

∫ t

0
e−r·uσ (S(u))S(u)dW (u)

S(0) = e−r·tS(t) +
∫ t

0
e−rudD(u) −

∫ t

0
e−r·uσ (S(u))S(u)dW (u),

and taking EQ
0 [.] expectations we finally get the results

S(0) = EQ
0

[
e−r·tS(t) +

∫ t

0
e−rudD(u)

]
.

Exercise 17.6 In the Black-Scholes model with a constant continuous div-

idend yield δ we have, under the Q-measure we have

dS(t) = (r − δ) S(t)dt + σS(t)dWQ(t).

From the “standard” call-put parity, which must be valid, we have the fol-

lowing relation between call and put options with the same maturity T and

exercise price K:

p(t, x) = c(t, x) − Π(t, S(T )) + e−r(T−t)K.
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But we also know that

Π(t, S(T )) = e−r(T−t)EQ
t [S(T )]

= e−r(T−t)S(t)e(r−δ)(T−t)

= S(t)e−δ(T−t).

So,

p(t, x) = c(t, x) − S(t)e−δ(T−t) + e−r(T−t)K.
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18 Currency Derivatives

Exercise 18.1 We have, under the objective probability measure, the fol-

lowing processes for the spot exchange rate X (units of domestic currency d

per foreign currency unit f), and the domestic , Bd, and foreign, Bf , riskless

assets:

dX(t) = αxX(t)dt + σxX(t)dW (t)

dBd(t) = rdB(t)ddt

dBf (t) = rfB(t)ddt,

where rd and rf are the domestic and foreign short rates which are assumed

to be deterministic. Hence the Q-dynamics of X are given by

dX(t) = (rd − rf )X(t)dt + σxX(t)dW (t).

From the “standard” call-put parity, which must be valid, we have the fol-

lowing relation between call and put options with the same maturity T and

exercise price K:

p(t, x) = c(t, x) − Π(t,X(T )) + e−rd(T−t)K.

But we also know that

Π(t,X(T )) = e−rd(T−t)EQ
t [X(T )]

= e−rd(T−t)X(t)e(rd−rf )(T−t)

= X(t)e−rf (T−t).

So,

p(t, x) = c(t, x) − X(t)e−rf (T−t) + e−rd(T−t)K.

(Remark: Compare this exercise with exercise 11.6 in the previous sec-

tion, and see that the foreign risk-free rate can be treated as a continuous

dividend-yield on the spot exchange rate.)
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Exercise 18.2 The binary option on the exchange rate X is a T -claim, Z,

of the form

Z = 1[a,b] (X(T )) ,

i.e. if a ≤ X(T ) ≤ b then the holder of this claim will obtain one unit of

domestic currency, otherwise gets nothing. The dynamics under Q of the

exchange rate X are given by

dX(t) = (rd − rf )X(t)dt + σxX(t)dW (t).

where rd and rf are the domestic and foreign short rates which are assumed

to be deterministic.

Integrating the above expression we get

X(T ) = X(t) +
∫ T

t
(rd − rf )X(u)du +

∫ t

t
σxX(u)dW (u)

and so we have (by solving the SDE)

X(T ) = X(t)e

(
rd−rf−

σ2
x
2

)
(T−t)+σx(W (T )−W (t))

,

and we see from taking the logarithm that

ln(X(T )) ∼ N

[
ln (X(t)) +

(
rd − rf − σ2

x

2

)
(T − t), σx

√
T − t

]
.

So, the price, Π(t) of the binary option is given by

Π(t) = e−rd(T−t)EQ
t [Z]

= e−rd(T−t)Q (a ≤ X(T ) ≤ b)

= e−rd(T−t)Q (ln (a) ≤ ln(X(T )) ≤ ln (b))

= e−rd(T−t)Q (da ≤ z ≤ db)

where z ∼ N [0, 1] and da =
ln
(

a
X(t)

)
−
(

rd−rf−
σ2

x
2

)
(T−t)

σx
√

T−t
and db =

ln
(

b
X(t)

)
−
(

rd−rf−
σ2

x
2

)
(T−t)

σx
√

T−t

and so we have that the price of the binary exchange option Z is:

Π(t) = e−rd(T−t) [N (db) − N (da)] .
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Exercise 18.3 Under the objective probability measure we have the follow-

ing dynamics for the domestic stock Sd, the foreign stock Sf , the exchange

rate X and the domestic Bd and foreign Bf riskless assets

dSd(t) = αdSd(t)dt + σdSd(t)dWd(t),

dSf (t) = αfSf (t)dt + σfSf (t)dWf (t),

dX(t) = αxX(t)dt + σxX(t)dW (t),

dBd(t) = rdBd(t)dt,

dBf (t) = rfSd(t)dt,

where rd and rf are the domestic and foreign short rates which are assumed

to be deterministic. The domestic stock denominated in terms of the foreign

currency is given by S̃d = Sd
X , then by Ito

dS̃d(t) =
1

X(t)
dSd(t) −

Sd(t)
X2(t)

dX(t) +
Sd(t)
X3(t)

(dX(t))2 − −1
X2(t)

dSd(t)dX(t)︸ ︷︷ ︸
0 for Wd and W indep.

= αdS̃d(t)dt + σdS̃d(t)dWd(t) − αxS̃d(t)dt − σxS̃d(t)dW (t) + σ2
xS̃d(t)dt

=
(
αd − αx + σ2

x

)
S̃d(t)dt + σdS̃d(t)dWd(t) − σxS̃d(t)dW (t).

The dynamics above are under the objective probability measure. Under Qf

the drift term of all assets denominated in the foreign currency must have

rf (the risk-free rate on the foreign economy) as the drift. Also, we can use

the properties of the Wiener processes to normalize the diffusion part.

It follows that

dS̃d(t) = rf S̃d(t)dt +
√

σ2
d + σ2

xS̃d(t)dWf (t).
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20 Bonds and Interest Rates

Exercise 20.1 Forward Rate Agreement

(a) Note that the cash flow to the lender’s in a FRA (−K at time S and

KeR∗(T−S) at time T ) can be replicated by the following portfolio:

* sell K S-bonds

* buy KeR∗(T−S) T -bonds

So, at time t < S, the value Π(t), on the lender’s cash flow in a FRA

has to equal to the value of the replicating portfolio and is given buy

Π(t) = KeR∗(T−S)p(t, T ) − Kp(t, S).

(b) If we have that Π(0) = 0 we must have

KeR∗(T−S)p(0, T ) − Kp(0, S) = 0

eR∗(T−S)p(0, T ) − p(0, S) = 0

R∗(T − S) = ln
(

p(0, S)
p(0, T )

)

R∗ =
ln(p(0, S)) − ln(p(0, T ))

T − S

Since by definition the forward rate R(t;S, T ) is given by

R(t;S, T ) = − ln(p(t, T )) − ln(p(t, S))
T − S

,

we have that R∗ = R(0;S, T ).

Exercise 20.2 Since f(t, T ) = −∂ ln(p(t,T ))
∂T and p(t, T ) satisfies

dp(t, T ) = p(t, T )m(t, T )dt + p(t, T )v(t, T )dW (t),
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then we have, by Ito, that ln(p(t, T )) has dynamics that are given by

d ln(p(t, T )) = m(t, T )dt + v(t, T )dW (t) − 1
2
v(t, T )v(t, T )∗dt

=
[
m(t, T ) − 1

2
v(t, T )v(t, T )∗

]
dt + v(t, T )dW (t),

and integrating we have

ln(p(t, T )) = ln(p(0, T ))+
∫ t

0
m(s, T ) − 1

2
v(s, T )v(s, T )∗ds+

∫ t

0
v(s, T )dW (s).

Since f(t, T ) = − ∂ ln(p(t,T ))
∂T , we also have

f(t, T ) = − ∂ ln(p(0, T ))
∂T︸ ︷︷ ︸

f(0,T )

−
∫ t

0




∂m(s, T )
∂T︸ ︷︷ ︸

mT (s,T )

−v(s, T )
∂v(s, T )

∂T︸ ︷︷ ︸
vT (s,T )∗


 ds−

∫ t

0

∂v(s, T )
∂T

dW (s)

and from its differential form we finally get the result

df(t, T ) =


v(t, T )vT (t, T )∗ − mT (t, T )︸ ︷︷ ︸

α(t,T )


 dt − vT (t, T )︸ ︷︷ ︸

σ(t,T )

dW (t).

Exercise 20.5 Let {y(0, T ;T ≥ 0} denote the zero coupon yield curve.

(a) Then we have that

p(0, T ) = e−y(0,T )·T .

Using the definition of the instantaneous forward rate f(t, T ) = −∂ ln(p(t,T ))
∂T

and the expression above we get the result

f(0, T ) = − ∂ ln (p(0, T ))
∂T

= −
∂ ln

(
e−y(0,T )·T

)

∂T

=
∂ (y(0, T ) · T )

∂T

= y(0, T ) + T · ∂y(0, T )
∂T

.
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(b) If the zero coupon yield curve is an increasing function of T , then we

know that ∂y(0,T )
∂T ≥ 0, and using the result from (a) we have that

f(0, T ) ≥ y(0, T ) for any T > 0.

It remains to prove that yM (0, T ) ≤ y(0, T ). This will follow from the

price of a coupon bond is given by

pT (t) = Kp(t, Tn) +
n∑

i=1

cip(t, Ti).

So in particular we have that

pT (0) = K e−y(0,Tn)·Tn︸ ︷︷ ︸
p(0,Tn)

+
n∑

i=1

ci e−y(0,Ti)·Ti︸ ︷︷ ︸
p(0,Ti)

.

but it can also we given, since yM is the yield to maturity of a coupon

bond, by

pT (0) = Ke−yM (0,Tn)·Tn +
n∑

i=1

cie
−yM (0,Tn)·Ti .

So,

K e−y(0,Tn)·Tn

︸ ︷︷ ︸
p(0,Tn)

+
n∑

i=1

ci e−y(0,Ti)·Ti︸ ︷︷ ︸
p(0,Ti)

= Ke−yM (0,Tn)·Tn +
n∑

i=1

cie
−yM (0,Tn)·Ti

By comparing the LHS and the RHS and since ci ≥ 0, and y(0, Tn) ≥
y(0, Tn−1) ≥ · · · ≥ y(0, T1) (by assumption), we must have that y(0, Tn) ≥
yM(0, Tn) since it is valid for any Tn we can write that y(0, T ) ≥
yM(0, T ) for any T .
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21 Short Rate Models

Exercise 21.2 The object of the exercise is to connect the forward rates to

the risk neutral valuation of bond prices.

(a) Recall from the risk-neutral valuation of bond prices that

p(t, T ) = EQ
t

[
exp

{
−
∫ T

t
r(s)ds

}]

and hence, using the definition of a instantaneous forward rate (and

assuming that we can differentiate under the expectation sign) we get

f(t, T ) = − ∂ ln (p(t, T ))
∂T

= − ∂

∂T
ln

(
EQ

t

[
exp

{
−
∫ T

t
r(s)ds

}])

=
EQ

t

[
r(T ) exp

{
−
∫ T
t r(s)ds

}]

EQ
t

[
exp

{
−
∫ T
t r(s)ds

}] .

(b) To check that indeed we have f(t, t) = r(t) use the expression above

f(t, T ) =
EQ

t

[
r(T ) exp

{
−
∫ T
t r(s)ds

}]

EQ
t

[
exp

{
−
∫ T
t r(s)ds

}] ,

and set T = t:

f(t, t) =
EQ

t

[
r(t) exp

{
−
∫ t
t r(s)ds

}]

EQ
t

[
exp

{
−
∫ t
t r(s)ds

}]

=
EQ

t [r(t) exp {0}]
EQ

t [exp {0}]
= r(t).

Exercise 21.3 Recall that in a swap of a fixed rate vs. a short rate we

have:
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• A invests K at time 0 and let it grow at a fixed rate of interest R over

the time interval [0, T ]. A has thus an amount KA at time T and at

that time (T ) pays the surplus KA − K to B.

• B invests the principal at a stochastic short rate of interest over the

interval [0, T ]. B has thus an amount KB at time T and at that time

(T ) pays the surplus KB − K to A.

• The swap rate for this contract is defined as the value, R, of the fixed

rate which gives this contract value zero at t = 0.

At maturity party A has Φ(T ) = KB − KeR·T where KB = Ke
∫ T

0
r(s)ds.

Thus, the value of this contract at time 0 is given by

Π(0) = EQ
0,r


e−

∫ T

0
r(s)ds


Ke

∫ T

0
r(s)ds − KeR·T

︸ ︷︷ ︸
Φ(T )







= EQ
0,r

[
K − KeR·T−

∫ T

0
r(s)ds

]

= K · EQ
0,r

[
1 − eR·T e−

∫ T

0
r(s)ds

]

= K ·




1 − eR·T EQ
0,r

[
e−
∫ T

0
r(s)ds

]

︸ ︷︷ ︸
p(0,T )




Since we must have Π(0) = 0 we have

K ·
(
1 − eR·T p(t, T )

)
= 0

eR·T =
1

p(0, T )
R · T = − ln (p(0, T ))

R = − ln (p(0, T ))
T

.
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22 Martingale Models for the Short Rate

Exercise 22.1 In the Vasicek model we have

dr(t) = (b − ar(t))dt + σdW (t)

with a > 0.

(a) Using the SDE above and multiplying both sides by eat we have that

eatdr(t) + r(t)aeatdt = eatbdt + σeatdW (t)

d(eatr(t)) = eatbdt + σeatdW (t)

eatr(t) = r(0) +
∫ t

0
easbds + σ

∫ t

0
easdW (s)

r(t) = r(0)e−at +
b

a

[
1 − e−at

]
+ σe−at

∫ t

0
ea(s)dW (s).

Looking at the solution of the SDE it is immediate that r is Gaussian,

so it is enough to determine the mean and variance.

From the solution of the SDE we see that

E [r(t)] = r(0)e−at +
b

a

[
1 − e−at

]

and

V [r(t)] = σ2e−2at
∫ t

0
e2asds

=
σ2

2a

(
1 − e−2at

)
.

(b) As t → ∞ we have

lim
t→∞

E [r(t)] = r(0) lim
t→∞

e−at +
b

a

[
1 − lim

t→∞
e−at

]
=

b

a
,

and

lim
t→∞

V [r(t)] =
σ2

2a

(
1 − lim

t→∞
e−2at

)
=

σ2

2a
.

So, N
[

b
a , σ2

2a

]
is the limiting distribution of r.
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(c) The results in (a) and (b) are based on the assumption that the value

r(0) is known. If, instead we have that r(0) ∼ N
[

b
a , σ2

2a

]
, then for any

t we have that

E [r(t)] = E [r(0)] e−at +
b

a

[
1 − e−at

]
=

b

a
,

and

V [r(t)] = e−2atV [r(0)] +
σ2

2a

(
1 − e−2at

)

=
σ2e−2at

2a
+

σ2

2a

(
1 − e−2at

)
=

σ2

2a
.

Exercise 22.2 From Exercise 17.1 we know that for the Vasicek model, and

t < u we have

r(u) = r(t)e−a(u−t) +
b

a

[
1 − e−a(u−t)

]
+ σ

∫ u

t
e−a(u−s)dW (s).

By definition,

p(t, T ) = EQ
t,r

[
e−
∫ T

t
r(u)du

]
.

Let us define Z(t, T ) = −
∫ T
t r(u)du, from exercise 22.1 we know that r is

normally distributed, so Z is also normally distributed since

Z(t, T ) = −r(t)eat
∫ T

t
e−audu − b

a

[
1 − eat

∫ T

t
e−audu

]
+ σ

∫ T

t

∫ u

t
e−a(u−s)dW (s)du

= − r(t)
a

[
1 − e−a(T−t)

]
− b

a
(T − t) − b2

a

[
1 − e−a(T−t)

]
+ σ

∫ T

t

∫ u

t
e−a(u−s)dW (s)du

and has

EQ
t,r [Z(t, T )] =

(
− 1

a

[
1 − e−a(T−t)

])

︸ ︷︷ ︸
deterministic function of t and T

r(t) − b

a
(T − t) − b2

a

[
1 − e−a(T−t)

]

︸ ︷︷ ︸
deterministic function of t and T

and

V Q
t,r [Z(t, T )] = V

[
σ

∫ u

t

∫ T

t
e−a(u−s)dudW (s)

]

= σ

∫ u

t

(∫ T

t
e−a(u−s)du

)2

ds

︸ ︷︷ ︸
deterministic function of t and T

.
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Since Z(t, T ) is normally distributed ∀t,T (from the properties of the normal

distribution), we have that

p(t, T ) = EQ
t,r

[
eZ(t,T )

]
= eEQ

t,r[Z(t,T )]+ 1
2
V Q

t,r [Z(t,T )]

⇒

ln(p(t, T )) = EQ
t,r [Z(t, T )] +

1
2
V Q

t,r [Z(t, T )]

= − 1
a

[
1 − e−a(T−t)

]

︸ ︷︷ ︸
B(t,T )

r(t) +

+



− b

a
(T − t) − b2

a

[
1 − e−a(T−t)

]
+

1
2
σ

∫ u

t

(∫ T

t
e−a(u−s)du

)2

ds

︸ ︷︷ ︸
A(t,T )




.

So, the Vasicek model has an affine term structure.

Alternative Solution

From Exercise 22.1 we know that for the Vasicek model, and t < u we have

r(u) = r(t) e−a(u−t)
︸ ︷︷ ︸

D(u)

+
b

a

[
1 − e−a(u−t)

]
+ σ

∫ u

t
e−a(u−s)dW (s)

︸ ︷︷ ︸
F (u)

.

where D(u) is deterministic and F (u) is stochastic and both are non depen-

dent on r.

By definition,

p(t, T ) = EQ
t,r

[
e−
∫ T

t
r(u)du

]

= EQ
t,r

[
e−
∫ T

t
[r(t)D(u)+F (u)du]

]

=


e

(
−
∫ T

t
D(u)du

)
r(t)

︸ ︷︷ ︸
B

EQ
t,r

[
e−
∫ T

t
F (u)du

]

︸ ︷︷ ︸
A


 .

In part A, since −
∫ T
t F (u)du is normally distributed (note it is a “sum” of
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Wiener increments), we know (from the properties of the normal distribu-

tion) that there exist a A(t, T ) such that

EQ
t,r

[
e−
∫ T

t
F (u)du

]
= eA(t,T ).

From part B we immediatelly see that B(t, T ) =
∫ T
t D(u)du.

So, the Vasicek model has an affine term structure.

Exercise 22.3 The problem with the Dothan’s model is that when r follows

a GBM, like

dr(t) = ar(t)dt + σr(t)dW (t),

the solution to the SDE is, for any t < u,

r(u) = r(t)e(a−
1
2
σ2)(u−t)+σ(W (u)−W (t)),

i.e., in the Dothan’s model r is lognormally distributed. Since,

p(t, T ) = EQ
t,r

[
e−
∫ T

t
r(u)du

]
,

to use the same procedure as in exercise 22.2 we would have to compute

the above expected value, i.e., the expected value of an integral (that is a

“sum”) of lognormally distributed variables, which is a mess!

Exercise 22.8 Take the follwoing CIR model

dY (t) =
(
2aY (t) + σ2

)
dt + 2σ

√
Y (t)dW (t), Y (0) = y0,

Then by Ito Z(t) =
√

Y (t) follows

dZ(t) =
1
2

(
Y (t)−

1
2

)
dY (t) +

1
2

(
− 1

4

(
Y (t)−

3
2

))
(dY (t))2

=
1
2

(
2aY (t)

1
2 + σ2Y (t)−

1
2

)
dt + σdW (t) − 1

2
σ2Y (t)−

1
2

= aY (t)
1
2

︸ ︷︷ ︸
Z(t)

dt + σdW (t),

which is a linear diffusion.
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23 Forward Rate Models

Exercise 23.1 We know that the Hull-White model

dr(t) = (Θ(t) − ar(t))dt + σdW (t)

has an affine term structure, i.e., that

p(t, T ) = eA(t,T )−B(t,T )r(t) ,

and that in this model we have in particular, B(t, T ) = 1
a

(
1 − e−a(T−t)

)
.

Furthermore, f(t, T ) = − ∂ ln p(t,T )
∂T = −∂A(t,T )

∂T + ∂B(t,T )
∂T r(t), so in this case

we have

f(t, T ) = −∂A(t, T )
∂T

+ e−a(T−t)r(t).

By Itô we have that the dynamics under Q of the forward rates is given by

df(t, T ) = − ∂

∂t

[
∂A(t, T )

∂T

]
dt + ae−a(T−t)r(t)dt + e−a(T−t)dr(t)

= − ∂

∂t

[
∂A(t, T )

∂T

]
dt + ae−a(T−t)r(t)dt + e−a(T−t) [(Θ(t) − ar(t))dt + σdW (t)]

= α(t, T )dt + e−a(T−t)σdW (t),

where α(t, T ) = − ∂
∂t

[
∂A(t,T )

∂T

]
+ e−a(T−t)Θ(t).

Exercise 23.2 Take as given an HJM model (under Q) of the form

df(t, T ) = α(t, T )dt + σ(t, T )dW (t),

where the volatility σ(t, T ) is a deterministic function of t and T .

(a) By the HJM drift condition, α(t, T ) = σ(t, T )
∫ T
t σ′(t, u)du ∀t, T ,

which for deterministic σ(t, T ), means that α(t, T ) is also determinis-

tic.
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To see the distribution of the forward rates note that

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds +

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +
∫ t

0
σ(s, T )

∫ T

s
σ′(s, u)duds

︸ ︷︷ ︸
µ(t,T )

+
∫ t

0
σ(s, T )dW (s).

Note that f(0, T ) is observable and that the double integral is deter-

ministic, so the only stochastic part is
∫ t
0 σ(s, T )dW (s).

Hence f(t, T ) ∼ N
[
µ(t, T ),

∫ t
0 σ2(s, T )ds

]
.

Since r(t) = f(t, t) we immediately have that r(t) is also normally

distributed.

(b) Since we have p(t, T ) = exp
{
−
∫ T
t f(t, s)ds

}
, and in (a) we have al-

ready shown that f(t, s) is normally distributed, then p(t, T ) is log-

normally distributed.

Exercise 23.3 Recall that in between the vectors of market-price of risks of

the domestic market and the foreign market there is the following relation:

λf (t) = λd(t) − σ′
x(t).

where, σx(t) is the vector of volatilities of in the SDE for the exchange-rate

X(denoted in units of domestic currency per unit of foreign currency).

We also know that any process, so in particular forward rates, has under Q

(the domestic martingale measure), the drift term equal to (µ(t, T ) − σ(t, T )λd(t)),

where µ(t, T ) is the drift term under the objective probability measure and

that the volatility term remains the same. So, in particular, for the foreign

forward rates must have under the domestic martingale measure, Q,

dff (t, T ) = (µf (t, T ) − σf (t, T )λd(t)) dt + σf (t, T )dW (t),

hence, αf (t, T ) = µf (t, T ) − σf (t, T )λd(t).
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Likewise, any process, under Qf (the foreign martingale measure),has a drift

term equal to (µ(t, T ) − σ(t, T )λf (t)).

So, in particular, for the foreign forward rates we have under Qf

dff (t, T ) = (µf (t, T ) − σf (t, T )λf (t))︸ ︷︷ ︸
α̃f (t,T )

dt + σf (t, T )dW f (t).

So, using the relation between λd and λf we can also establish a relation

between αf and α̃f ,

α̃f (t, T ) = µf (t, T ) − σf (t, T )λf (t)

= µf (t, T ) − σf (t, T )
[
λd(t) − σ′

x(t)
]

= µf (t, T ) − σf (t, T )λd(t)︸ ︷︷ ︸
αf (t,T )

+σf (t, T )σ′
x(t).

We also have that, under the foreign martingale measure, Qf , the coeffi-

cients of the foreign martingale measure must satisfy the standard HJM

drift condition so:

α̃f (t, T ) = σf (t, T )
∫ T

t
σ′

f (t, s)ds.

Using teh relation found between αf and α̃f and using the drift condition

above we get

α̃f (t, T ) = σf (t, T )
∫ T

t
σ′

f (t, s)ds

αf (t, T ) + σf (t, T )σ′
x(t) = σf (t, T )

∫ T

t
σ′

f (t, s)ds

αf (t, T ) = σf (t, T )

[∫ T

t
σ′

f (t, s)ds − σ′
x(t)

]
.
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24 Change of Numeraire

Exercise 24.1 In the Ho-Lee model we have under Q

dr(t) = Θ(t)r(t)dt + σdW (t)

And we know that on this model we have an affine term structure for bond-

prices

p(t, T ) = eA(t,T )−B(t,T )r(t)

with B(t, T ) = T − t.

If the Q-dynamics of p(t, T ) are given by

dp(t, T ) = r(t)p(t, T )dt + v(t, T )p(t, T )dW (t)

then by Ito we have

v(t, T ) = −σB(t, T ) = −σ(T − t).

The project is to price an European call option with:

• date of maturity T1

• strike price K

• where the underlying is a zero-coupon bond with date of maturity T2

and T1 < T2.

Note that our Z-claim is given by

Z = max [p(T1, T2) − K; 0] ,

Hence, we have using a change of measure on the standard arbitrage pricing

formula that

Π(t;Z) = EQ
t

[
e−
∫ T1

t
r(s)ds max [p(T1, T2) − K; 0]

]
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= p(t, T1)ET1
t [max [p(T1, T2) − K; 0]]

= p(t, T1)ET1
t



max




p(T1, T2)
p(T1, T1)︸ ︷︷ ︸

Z(T1)

−K; 0







.

Note that dividing p(T1, T1) in the last step of the equation “changes noth-

ing”(since p(T, T ) = 1 for all T ) but has the advantage of seeing our claim

as a claim on the process Z, which we know is a martingale under QT1 , and

as long as it has deterministic volatility the Black-Scholes formula can help

us. To check this note that

Z(t) =
p(t, T2)
p(t, T1)

can also be written as (just using the fact that we have an ATS)

Z(t) = exp {A(t, T2) − A(t, T1) − [B(t, T2) − B(t, T1)] r(t)} ,

and, therefore, has the following dynamics under Q(applying Ito formula)

dZ(t) = {· · ·}Z(t)dt + Z(t)σz(t)dW (t)

where σz(t) = −σ [B(t, T2) − B(t, T1)] = −σ (T2 − T1), will be the same as

under QT1 , and is deterministic.

Since under QT1 ,

Z(T1) = Z(t) − σ (T2 − T1)
∫ T1

t
dW (s)

The conditional (on information at time t) distribution of Z is Z(T1) ∼
N
[
Z(t), σ2 (T2 − T1)2 (T1 − t)

]
.

So, (from the BS formula)

Π(t) = p(t, T1) {Z(t)N [d1(t, T1)] − KN [d2(t, T1]}

= p(t, T2)N [d1(t, T1)] − p(t, T1)KN [d2(t, T1]
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where

d1(t, T1) =
ln Z(t)

K + 1
2σ2 (T2 − T1)

2 (T1 − t)√
σ2 (T2 − T1)

2 (T1 − t)
=

ln p(t,T2)
Kp(t,T1)

+ 1
2σ2 (T2 − T1)

2 (T1 − t)
√

σ2 (T2 − T1)
2 (T1 − t)

and d2(t, T1) = d1(t, T1) −
√

σ2 (T2 − T1)
2 (T1 − t).

Exercise 24.2 Take as given an HJM model of the form

df(t, T ) = α(t, T ) + σ(t, T )dW (t) + σ2e
−a(T−t)dW2(t)

where σ(t, T ) = [σ1(T − t) σ2e
−a(T−t) ], W (t) =

[
W1(t)

W2(t)

]
and we have W1

and W2 independent Wiener processes and σ1 and σ2 constants.

(a) From the relation between the dynamics of bond prices and forward

rates we know that

dp(t, T ) = r(t)p(t, T )dt + p(t, T )S(t, T )dW (t)

with S(t, T ) = −
∫ T
t σ(t, s)ds.

In this case we have then

S(t, T ) = −
∫ T

t
[ σ1(s − t) σ2e

−a(s−t) ] ds

=

[
−σ1

2
(T − t)2

︸ ︷︷ ︸
σp
1 (t,T )

−σ2

a

(
1 − e−a(T−t)

)

︸ ︷︷ ︸
σp
2(t,T )

]

So,

dp(t, T ) = r(t)p(t, T )dt + p(t, T )S(t, T )dW (t)

= r(t)p(t, T )dt + p(t, T ) [−σ1
2 (T − t)2 −σ2

a

(
1 − e−a(T−t)

)
]

[
dW1(t)

dW2(t)

]

= r(t)p(t, T )dt + p(t, T ) [ σp
1(t, T ) σp

2(t, T ) ]

[
dW1(t)

dW2(t)

]
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(b) We will use exactly the same technique as in exercise 24.1 to price an

European call option with maturity T0 on a T1-bond.

Note that in this model the Z process Z(t) = p(t,T1)
p(t,T0) is a martingale

under QT0 and its dynamics has deterministic volatility given by

σT1,T0(t) = S(t, T1) − S(t, T0) = −
∫ T1

T0

[σ1(s − t) σ2e
−a(s−t) ] ds

Hence (by the same arguments as in exercise 24.1)

Z(T0) ∼ N



Z(t),

∫ T0

t
||σT1,T0(s)||2ds

︸ ︷︷ ︸
Σ2

T0,T1




and the pricing formula is given by

Π(t) = p(t, T0) {Z(t)N [d1(t, T0)] − KN [d2(t, T0]}

= {p(t, T1)N [d1(t, T0)] − p(t, T0)KN [d2(t, T0]}

where

d1(t, T0) =
ln Z(t)

K + 1
2Σ2

T0,T1√
Σ2

T0,T1

=
ln p(t,T2)

Kp(t,T1)
+ 1

2Σ2
T0,T1√

Σ2
T0,T1

and d2(t, T1) = d1(t, T1) −
√

Σ2
T0,T1

.
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