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1 The problem

Consider a �xed-income derivative with a single payo� at time T which depends on

the term structure. In particular, we will look at options on zero-coupon bonds and

interest-rate caps. For a call option on a zero-coupon bond maturing at time T1, the

time T payo� | and hence value of the derivative | is given by

VT = max

�
P (T; T1)�K; 0

�
: (1)

By the no-arbitrage theorem, the price today (t = 0) is

V0 = E
Q
0

�
e�

R T
0 rsdsVT

�
; (2)

where the expectation is taken under the risk-neutral distribution (also called the

Q-measure). Thus, the price depends on the stochastic process for the short rate and

the contractual speci�cation of the security (i.e., how the payo� is linked to the term

structure).

The price V0 in equation (2) is given by the expectation of the product of two

dependent random variables, and calculating this expectation is often quite di�cult.

The purpose of this note is presenting a change-of-measure technique which consid-

erably simpli�es the evaluation of V0. Speci�cally, we are going to calculate V0 as

V0 = P (0; T )EQT

0 (VT ); (3)

where QT is a new probability measure (distribution), the so-called forward-risk ad-

justed measure. This technique was introduced in the �xed-income literature by

Jamshidian (1991).

2 Model setup and notation

Our term-structure model is a general one-factor HJM model, see Heath, Jarrow and

Morton (1992) or Lund (1998) for an exposition. Under the Q-measure, forward rates

are governed by

df(t; T ) = ��(t; T )�P (t; T )dt+ �(t; T )dWQ
t ; (4)

where

�P (t; T ) = �
Z T

t
�(t; u)du: (5)

Bond prices evolve according to the SDE

dP (t; T ) = rtP (t; T )dt+ �P (t; T )P (t; T )dW
Q
t ; (6)

so �P (t; T ) is the time t volatility of the zero maturing at time T .
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3 The forward-risk adjusted measure

Under certain regularity conditions, the price of the derivative security follows the

SDE

dVt = rtVtdt+ �V (t)VtdW
Q
t : (7)

This means that, under the risk-neutral distribution, the expected rate of return

equals the short rate (just like any other security), and the return volatility is �V (t).

So far, neither Vt nor �V (t) are known, but this is not essential for the following

arguments. In fact, the only thing that matters is that the price process has the form

(7) since this facilitates pricing by the forward-risk adjusted measure.

We begin by de�ning the de
ated price process

Ft � Vt = P (t; T ) (8)

for t 2 [0; T ]. We can interpret Ft as the price of Vt in units of the T -maturity bond

price (i.e., as a relative price). Using Ito's lemma, it can be shown that

dFt = �P (�P � �V )Ftdt+ (�V � �P )FtdW
Q
t (9)

where �P and �V are shorthand notation for �P (t; T ) and �V (t), respectively. The

proof of (9) is given in appendix A.

Furthermore, we de�ne a new probability measure, QT , such that

W
QT

t = W
Q
t �

Z t

0
�P (u; T )du; t 2 [0; T ]; (10)

is a Brownian motion under QT .1 In di�erential form the relationship between W
QT

t

and W
Q
t is

dW
QT

t = dW
Q
t � �P (t; T )dt = dW

Q
t � �Pdt: (12)

The new probability measure is known as the forward-risk adjusted measure. It is

very important to note that there is a di�erent measure for each T (payo� date).

If we substitute (12) into (9), we obtain the dynamics of Ft under the new prob-

ability measure QT . Straightforward calculations give

dFt = ��P (�V � �P )Ftdt+ (�V � �P )Ft
�
dW

QT

t + �Pdt
�

= (�V � �P )FtdW
QT

t ; (13)

1We have, implicitly, used a similar technique when de�ning the risk-neutral measure earlier.

Speci�cally, if Wt is a Brownian motion under the original (true) probability measure, we de�ne Q

such that

W
Q
t = W

Q
t +

Z t

0

�(u)du (11)

is a Brownian motion under Q. Note that �(u) is the market price.

2



as the two terms with dt cancel out. Thus under QT , the drift is zero and Ft is a

martingale. The new probability measure was de�ned in order to obtain this result

since the martingale property implies that

Ft = E
QT

t (FT ): (14)

Moreover, by de�nition P (T; T ) = 1, so at maturity we have FT = VT , and using

(14), the current (t = 0) price of the derivative security can now be calculated as

V0 = P (0; T )F0 = P (0; T )EQT

0 (FT )

= P (0; T )EQT

0 (VT ); (15)

which is P (0; T ) times the expected payo� under QT . Generally, the latter calculation

is a lot simpler than direct evaluation of the expectation under Q, as in equation (2)

above. With (15) at hand, the only remaining task is determining the distribution of

the payo� under the forward-risk adjusted measure.2

We conclude this section by noting that f(t; T ) is a martingale under QT . To see

this, substitute (12) into the forward-rate SDE (4),

df(t; T ) = ��(t; T )�P (t; T )dt+ �(t; T )
�
dW

QT

t + �P (t; T )dt
�

= �(t; T )dWQT

t : (16)

This property turns out be very useful when pricing at-the-money interest-rate caps,

cf. the second example in the next section.

4 Two examples

For concreteness, we use the extended Vasicek model which is a special case of the

one-factor HJM model with

�(t; T ) = �e��(T � t); (17)

and

�P (t; T ) = ��
Z T

t
�(t; u)du = �

e��(T � t) � 1

�
: (18)

The extended Vasicek model is a Markovian HJM model, cf. Lund (1998), but the

following pricing formulas for bond options [equation (30)] and interest-rate caps

[equation (40)] do not depend on the Markov property.

2Note that we are using the martingale property in the \opposite" direction (i.e., backwards) in

equations (14) and (15). Normally, we know Ft and use the martingale property to compute the

expected value at time T . This line of reasoning is implicit in the weak form of market e�ciency

[Fama (1970)] where we argue that the best forecast of the future stock price is the stock price

today. In the context of pricing derivatives, we use our knowledge about the QT -distribution of the

payo� VT , combined with the martingale property of Ft (the relative price), to compute the current

(relative) price of the derivative security.
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4.1 Call option on a zero-coupon bond

In the �rst example, the �xed-income derivative is a call option on a zero-coupon

bond maturity at time T1. The option expires (matures) at time T < T1 with the

following payo�:

CT = max

�
P (T; T1)�K; 0

�
; (19)

where K is the strike (exercise) price of the option.

In order to price this security, we need the distribution of CT under the forward-

risk adjusted measure. Since CT only depends P (T; T1) and since P (T; T ) = 1, we

can calculate the expectation of CT from the distribution of the relative price,

F (t; T; T1) = P (t; T1)=P (t; T ); (20)

which is also the forward price of the T1-maturity bond for delivery at time T . Using

the results of section 3, the SDE for F (t; T; T1) under Q
T is given by

dF (t; T; T1) = f�P (t; T1)� �P (t; T )gF (t; T; T1)dW
QT

t

� �F (t; T; T1)F (t; T; T1)dW
QT

t : (21)

Since bond prices are always strictly positive, the logarithm of F (t; T; T1) is well-

de�ned, and a simple application of Ito's lemma gives

d logF (t; T; T1) = �1

2
�2
F (t; T; T1)dt+ �F (t; T; T1)dW

QT

t : (22)

After integrating from t = 0 to t = T we have

logF (T; T; T1) = logP (T; T1) =

logF (0; T; T1)� 1

2

Z T

0
�2
F (t; T; T1)dt+

Z T

0
�F (t; T; T1)dW

QT

t : (23)

The �rst equality in (23) follows because P (T; T ) = 1. Moreover, if �F (t; T; T1) is

deterministic, i.e. if the model is Gaussian, it follows from (23) that logP (T; T1) is

conditionally normally distributed with variance

!2
F (T; T1) =

Z T

0
�2
F (t; T; T1)dt; (24)

and mean

�F (T; T1) = logF (0; T; T1)� 1

2

Z T

0
�2
F (t; T; T1)dt

= logF (0; T; T1)� 1

2
!2
F (T; T1): (25)

For the extended Vasicek model, �F (t; T; T1) is given by

�F (t; T; T1) =
�

�

�
e��(T1 � t) � e��(T � t)

�

=
�

�
e��(T � t)

�
e��(T1 � T ) � 1

�
; (26)
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cf. equation (18), and the variance !2
F (T; T1) can be calculated as

!2
F (T; T1) =

�2

�2

�
e��(T1 � T ) � 1

�2 Z T

0
e�2�(T � t)dt

=

0
@e��(T1 � T ) � 1

�

1
A

2

�
0
@�2 1� e�2�T

2�

1
A

= B2(T1 � T ) � VarQT

0 (rT ); (27)

since the last parenthesis in the second line can be recognized as the conditional

variance of rT , see equation (4) in Jamshidian (1989). The function B(�) is the

\factor loading" (stochastic duration) for the Vasicek model.3 Finally, the price of

the call option, denoted C(T;K), is given by:

C(T;K) = P (0; T )ET
0 (CT )

= P (0; T )
Z
1

logK

�
ex �K

� 1p
2�!F

e�(x � �F )
2=2!2

F dx

= P (0; T )
Z
1

logK
ex

1p
2�!F

e�(x� �F )
2=2!2

F dx

�P (0; T )K
Z
1

logK

1p
2�!F

e�(x� �F )
2=2!2

F dx

= P (0; T1)N(d1)� P (0; T )KN(d2); (30)

where N(�) is the cumulative normal distribution function, !F is shorthand notation

for !(T; T1), and

d1 =

 
log

P (0; T1)

P (0; T )
� logK +

1

2
!2
F

!
= !F (31)

d2 = d1 � !F : (32)

The calculation is completely analogous to the Black-Scholes model for call options

on stock prices, so we skip the intermediate steps leading to the �nal expression for

C(T;K) in equation (30).4

3An alternative derivation for the extended Vasicek model can be based on the formula

logP (T; T1) = A(T; T1) +B(T1 � T )rT ; (28)

cf. Lund (1998), and since A(T; T1) is deterministic, the variance of logP (T; T1) under Q
T is

Var
QT

0
(logP (T; T1)) = B2(T1 � T ) � VarQ

T

0
(rT ): (29)

Of course, with this approach we would still need to determine the variance of rT .
4Hint for your own derivation: if x is N (�; �), the truncated mean of exp(x) isZ

1

L

ex
1

p
2��

e�(x� �)2=2�2dx

5



4.2 Interest-rate caps

Consider a derivative with the following payo� at time T :

CT = max(rT �K; 0): (34)

This corresponds to a simple interest-rate cap.5 The price (today) of the cap is given

by:

C(T;K) = P (0; T )E
QT

0 (CT ) = P (0; T )E
QT

0 [max(rT �K; 0)] : (35)

In order to calculate (35) we must determine the distribution of rT under QT (the

forward-risk adjusted measure). First, note that

rT = f(T; T ); (36)

so we can obtain the distribution of rT from f(T; T ).

Second, under QT the T -maturity forward rate is a martingale, as shown in equa-

tion (16) in section 3. This means that

rT = f(T; T ) = f(0; T ) +
Z T

0
�(t; T )dWQT

t : (37)

If �(t; T ) is deterministic, rT is conditionally normally distributed (at time t = 0)

with mean f(0; T ) and variance

VarQ
T

0 (rT ) =
Z T

0
�2(t; T )dt � v2(0; T ): (38)

For the extended Vasicek model, this becomes

v2(0; T ) = �2

Z T

0
e�2�(T � t)dt = �21� e�2�T

2�
: (39)

=

Z
1

L

1
p
2��

e�+ 1

2
�2 � (x� �� �2)2=2�2dx

= exp

�
�+

1

2
�2
�
N

�
�L+ (�+ �2)

�

�
; (33)

since the integrand in the second line equals exp
�
�+ 1

2
�2
�
times the density function of a normal

distribution with mean �+ �2 and variance �2.
5In the real world, caps are more complicated. The underlying interest rate is not the short

rate, but (say) the three-month (LIBOR) interest rate. Moreover, a cap contract for T years on

the three-month rate is a portfolio of 4T so-called caplets (single-payment caps), and the payment

of the i'th caplet is 0:25max[R3M ((i � 1)=4) � K; 0)], where R3M (t) is the three-month interest

rate at time t. The payments are made in arrear, which means that the i'th payment is made at

time t = i=4 (three months after the �xing date). Of course, the \real world" cap can be priced by

the same principles as the simple cap described in this section, that is by a suitable application of

the the forward-risk adjusted measure for each caplet. Needless to say, the algebra become more

involved, but that is the only real di�erence.
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Finally, we compute the expected payo� under QT and hence the price of the cap.

For reason of space, we concentrate on the at-the-money cap6 where K = f(0; T ),

and

C(T; f(0; T )) = P (0; T )EQT

0 [max(rT � f(0; T ); 0)]

= P (0; T )
v(0; T )p

2�
; (40)

where v(0; T ) is de�ned in (38) for any Gaussian one-factor HJM model, and in (39)

for the extended Vasicek model. The second line in (40) follows by noting that the

payo� can be written as

max(rT � f(0; T ); 0) = max

 Z T

0
�(t; T )dWQT

t ; 0

!
(41)

which has the same distribution assZ T

0
�2(t; T )dt � max(x; 0) = v(0; T )max(x; 0); (42)

where x is N (0; 1), that is normally distributed with zero mean and unit variance.

The expected value of max(x; 0) is given by

E[max(x; 0)] =
Z
1

0

xp
2�

e�1
2
x2dx

=
Z
1

0

1p
2�

e�udu

=
1p
2�

: (43)

The second line follows by a change of variables from x to u = 1
2
x2. This completes

the proof of (40).

6The price formula for a cap with arbitrary exercise price, K, (in the extended Vasicek model)

can be found in Longsta� (1995).
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Appendix A: proof of equation (9)

To simplify the notation, we write the SDE for Vt and P (t; T ) without the time

subscripts,

dV = rV dt+ �V V dW
Q (44)

dP = rPdt+ �PPdW
Q: (45)

Note that since V and P are driven by the same Brownian motion, changes in V and

P are perfectly correlated.

The objective is to determine the SDE for the function F (V; P ) = V=P . First, we

compute the requisite partial derivatives of F with respect to V and P .

@F (V; P )

@V
=

1

P
(46)

@F (V; P )

@P
=

�V
P 2

(47)

@2F (V; P )

@V 2
= 0 (48)

@2F (V; P )

@P 2
=

2V

P 3
(49)

@2F (V; P )

@P@V
=

�1
P 2

: (50)

Second, an application of Ito's lemma gives us

dF =

�
1

P
rV � V

P 2
rP +

V

P 3
�2
PP

2 � 1

P 2
�V V �PP

�
dt +

�
1

P
�V V � V

P 2
�PP

�
dWQ (51)

=
�
�2
PF � �V �PF

�
dt+ (�V F � �PF ) dW

Q (52)

= �P (�P � �V )Fdt+ (�V � �P )FdW
Q (53)

which is equation (9) in section 3. This completes the proof.
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