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Motivation

Consider a fixed-income derivative with payoff Vi a time T
The price today (¢t = 0) is given by

T
Vo = EY [e_ Jo TstVT] . (1)

Problem: we are calculating the expectation of the product of
two dependent random variables.

In general, it is easier to calculate Vp using the so-called forward-
risk adjusted measure technique.

This means that 1V, is given by

T
Vo= P(0,T)-E§ (Vr), (2)
where QT IS @ new probability measure.
Basic idea: change probabilities of different events (again).



Model setup

The general results are derived for a one-factor HJM model.
Risk-neutral forward-rate dynamics:

df (t,T) = —o(t, T)op(t, T)dt + o(t, T)dWS, (3)
where

T
op(t,T) = _/t o(t,u)du. (4)
Bond prices evolve according to the SDE
dP(t,T) = r,P(t, T)dt + op(t, T)P(t, T)dW . (5)

Thus, op(t,T) is the time t volatility of the zero-coupon bond
maturing at time T.

Forward-risk adjusted measure — 1

The price of the derivative at time t is denoted V4.

Under the risk-neutral distribution we have

dV; = rVidt + oy (D) VidW2. (6)

Note: we do not know V; or oy (t), but the only important thing
right now is the form of the SDE (6).

Define the relative (deflated) price of the derivative

F, = V;/ P(t,T), for t € [0,T]. (7)

SDE for F; can be obtained from Ito’'s lemma

dFy = op(op — oy) Fydt + (oy — Gp)FtthQ (8)

Shorthand notation: op = op(t,T) and oy = oy (t).



Forward-risk adjusted measure — 2

Define a new probability measure, denoted QT, such that
QT Q_ [
we = w —/Oap(u,T)du, t € [0,T), (9)
is a Brownian motion under Q7.
The differential form of (9) is

aw? = aw® — op(t, T)dt. (10)

If we substitute (9) into the SDE for F;, we obtain the process
for F; under the forward-risk adjusted measure,

T
dFy = —op(oy —op)Fdt+ (oy — op)Fy <thQ + det>

QT
= (oy —op)FdW,* . (11)

Forward-risk adjusted measure — 3

Key result: under the new measure (distribution) Q7, the relative
price F; is a martingale — since the drift is zero.

Step 1: because of the martingale property, we have
F,=EQ (Fp), fort<T. (12)
Step 2: since P(T,T) =1, we get Fp = Vp.
Step 3: the time ¢t = 0 price can be calculated as
Vo = P(O,T)Fy, = P(O,T)ESQT(FT)

= P(0,T)ES (Vr). (13)

Only remaining problem: determine distribution of payoff under
the forward-risk adjusted measure, QT.



Forward-risk adjusted measure — 4

Forward-rate dynamics under the new measure QT,
T
df(t,T) = —ot, T)op(t, T)dt + o(t,T) (thQ + ap(t,T)dt>

= a(t,T)thQT. (14)

Thus, the T-maturity forward rate is a martingale under QT.

Integrating (14) fromt=0to ¢t =T,
T QT
F(T,T) = £(0,T) + /O o (t, T)dW, (15)

Since the expectation of the second term in (15) is zero, and since
f(T,T) =rr, we get

£(0,7) =ES (rp). (16)

Options on zero-coupon bonds — 1

Notation:
K exercise price of the call option.
T maturity of the call option.
T4 maturity of the underlying zero-coupon bond.

C(T,T1,K) price of the call option at time t = 0.

For concreteness, we use the extended Vasicek model which cor-
responds to the HJM model with

o(t,T) = ge—®(T—1) (17)

G—H(T - t) -1
op(t,T) = o - . (18)

The following results apply to any Gaussian HJM model, however.
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Options on zero-coupon bonds — 2

The price of the option is given by:

C(T,Tl,K)zp(o,T)Eg?T max {P(T,T;) — K, 0} |. (19)

In order to calculate this expectation, we must determine the
distribution of P(T,Ty) under Q7.

Since P(T,T) = 1, the distribution of P(T,Ty) can be obtained
from the relative price

F(taT7 Tl) - P(taTl)/P(taT)' (20)
Note that (20) is the forward price of the Ty-maturity bond.
SDE under QT for F(t,T,Ty):

T
dF(t,T,T1) = {op(t,T1) —op(t,T)} F(t,T,T1)dW ]
T
= op(t,T,T1)F(t,T,T1)dWS . (21)
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Options on zero-coupon bonds — 3
An application of Ito’s lemma gives:
dlog F(t,T,Ty) = —%a%(t,T, Ty)dt + op(t, T, T1)dWC . (22)
For the extended Vasicek model:
op(t,T,T1) = g <6_H(T1 —t) _ e_K(T - t))
K

— 2.—rs(T-1) (e—l-@(Tl -T) _ 1) . (23)

K

It follows from (22) and (23) that log P(T,T7) = log F(T,T,Ty) is
normally distributed.

The mean of log P(T,T1) is given by:
T
,uF(T, Tl) = |Og F(OaT, Tl) B %/ J%(t’Ta Tl)dt
0

1
= log F(0,T,T1) — Ew%(T, T1). (24)
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Options on zero-coupon bonds — 4

e The variance of log P(T,T7) is given by:

T
wE(T,T1) = / o(t, T, T1)dt
0

—w(Ty —T 2 —2kT
_ (e (1R )—1) X<021_62K ) (25)

e After some lengthy algebra, the price of the call follows:

C(T,71,K) = P(0,T1)N(d1) — P(0,T)KN(d2) (26)
di = <Io I;((%’,?)) —log K + %w%) /wr (27)
dy = di— wp. (28)

e T his is the Black-Scholes formula with a different variance ...

11

Options on coupon bonds — 1

Coupon bond with payments {aj} at times T, 1 <j < M.
The price is at time t is

M

Po(t; re) = Y aj- P(t,Tj; m¢) (29)
j=1

In the extended Vasicek model, all bond prices depend on ry.

The price of a call option expiring at time T < T; (date of the
first payment) can be written as:

T M +
Cu(T,K) = P(0,T) - EY <Z aj- P(T,Tj; rp) — K) (30)
j=1

However, we are no longer taking the (truncated) expectation
over a log-normal random variate.
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Options on coupon bonds — 2

We use the Jamshidian decomposition.
Define r* such that

M
Y a; P(T,Tj; r*) —K =0 (31)
j=1

If P(T,T}; r) is monotonic in r (for all maturities), we can show
that:

M T M n
(Z aj-P(T,Tj; ’I“T)—K) = Z a; (P(T,Tj; TT)—Kj> (32)
j=1 =1

where K; = P(T,T}; r*).
This follows from monotonicity since ij‘il ajP(t,T'; r) > K, cor-
responding to » < r*, implies P(t,Tj; r) > K; for each j.
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Options on coupon bonds — 3

Interpretation: an option on a portfolio of payments, {a;}, is
equivalent to a portfolio of options.

This means that the price of an option on a coupon bond is given
by the expression:
M
Co(T,K) = > a; - C(T,T};,K;) (33)
J=1
This holds for the following models:
— Vasicek model — derived by Jamshidian (1989)

— CIR model — derived by Longstaff (1993)

The result does not generalize to multi-factor models, such as
the Gaussian double-decay model.

14



At-the-money interest-rate caps

Consider a derivative (ATM cap) with payoff
Vo = max(rp — f(0,T),0). (34)

Under the forward-risk adjusted measure:

ro— £(0,T) = /OTa(t,T)thQT. (35)

Under the extended Vasicek model, the RHS of (35) is normally
distributed with mean zero and variance

T 1 — 6_2K“T
v2(0,T) = / o2(t, T)dt = o2 (36)
0 2K
The time ¢t = 0 price of the ATM cap is:
T v(0,T)
C(T, £(0,T)) = P(0,T)ES (Vy) = P(0,T)—~2=". 37
(T, £(0,T)) (0, T)E5 (Vr) ()\/ﬂ (37)
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Forward and futures contracts

Agreement to deliver a financial asset on a future date ¢t for a
price which is fixed today (but paid upon delivery).

There are no payments when entering into the contract — the
initial value of the forward or futures contract is always zero.

Difference between forward and futures contract: the latter is
continuously marked to market to ensure zero value.

Pricing: consider a forward and future on a T-maturity zero.
Frot(t,T) = ES[P(t,T)]. (39)

See chapter 14 in Tuckman for proofs and further discussion.

When the underlying asset is a bond, futures prices are (generally)
below forward prices.
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Pricing a two-year callable bond — 1

Binomial tree for the short rate with annual time steps, 6(n,s) =
0.5, discrete compounding. The tree is calibrated to match a flat
initial term-structure of 10 percent.

11.11
10.00 <
8.91
A two-year non-callable bullet with a 10 percent coupon is trading
at par. To see this, calculate the bond price using the tree

109.00 = 10 + 110/1.1111 (101.00)
100.00 <

111.00 = 10 + 110/1.0891 (99.00)
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Pricing a two-year callable bond — 2

Does the price change if the borrower is allowed (but not obli-
gated) to pay back the entire principal after one year?

In other words: what is the price of a two-year callable bond?

After one year, the borrower can choose between continuing the
fixed-rate loan (bullet) with a 10% interest rate, or calling the
bullet and borrowing at the new short rate, r(1,s).

If r(1,s) is below 10%, the rational borrower will call the bond.

Price of the callable bond follows from the tree:

109.00 = 10 + 110/1.1111
99.55 <
110.00 = 10 + 100.00

The price (premium) of the call feature is 0.45 cents.
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Callable bonds in a multi-period setting

The callable bond contains an embedded option to purchase the
“otherwise identical” non-callable bond at par.

Option payoff: C(1,0) = 1 and C(1,1) = 0, which means that
the price is C(0,0) =0.5-[C(1,0)+ C(1,1)]/1.10 = 0.45.

We always have: Po(n,s) = Pyg(n,s) — C(n,s).

In a multi-period setting, the call feature is an American option.
Description of the optimal call strategy:

— Let K(n,s) denote the call price (could be greater than par).

— Let Pf(n,s) denote the price of the callable bond if it is not called at the
node (n,s).

Note: Pg(n,s) is calculated using the short-rate tree and the backward
equation.

— The optimal strategy is to call the bond if P¥(n,s) > K(n,s).
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Mortgage-backed bonds

Most mortgage-backed bonds (MBBs) in Denmark are callable.

The “otherwise identical” non-callable bond is annuity bond (sum
of interest and principal payments are constant over time).

Can we use the previous techniques to price the MBB?
No — MBB'’s are different in several respects:

— Empirical evidence shows that not all borrowers prepay at the same time.

— Possible explanation: transaction costs which differ across different bor-
rowers (borrower heterogeneity).

Instead, we will price the MBB using the so-called prepayment
function (with an more or less ad hoc specification).

This function is defined as the fraction of remaining borrowers
who prepay on a given node in the tree.
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