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1 Introduction

Part II of the lecture notes \Review of Continuous-Time Term-Structure Models"
is about arbitrage-free models | de�ned here as models which �t the initial yield
curve exactly, cf. Tuckman (1995, ch. 9). We consider two types of models, namely
equilibrium-style models with time-dependent parameters, also called calibrated mod-
els, and the Heath, Jarrow and Morton (HJM) modeling framework. In both cases,
we focus on one-factor versions of the requisite models. Throughout, the reader
is assumed to be familiar with the theory covered in part I of the lecture notes
[Lund (1998)].

2 One-factor models and calibration

The wide-spread popularity of one-factor equilibrium models, such as the Vasicek
model, stems from their simplicity. At each date, today and in the future, the entire
yield curve is a function of a single state variable, the short rate. This feature is
very useful when implementing numerical solutions, e.g., when constructing binomial
trees to approximate the continuous-time model. However, equilibrium models do
not �t the current yield curve exactly, and this tends to limit their e�ectiveness for
pricing �xed-income derivatives. By introducing time-dependent parameters in the
model, we can match the current yield curve, while retaining the overall simplicity
of the term-structure model. This approach is advocated by, especially, Hull and
White (1990) who extend the Vasicek and CIR models with time-dependent param-
eters. Sometimes, these models are referred to as the extended Vasicek and CIR
models.

2.1 Vasicek model with time-dependent drift

Under the risk-neutral measure Q, the short rate in the ordinary Vasicek (1977) model
evolves according to the SDE

drt = �(� � rt)dt+ �dW
Q
t ; (1)

where � = �� ��=� is the risk-neutral mean. Prices of �xed-income derivatives only
depend on the distribution of rt under the Q-measure, so in the following we do not
care about the process under the original probability measure (and the true drift).

In general, the model (1) will not �t the current (t = 0) yield curve exactly.
Therefore, we augment the risk-neutral process with a time-dependent mean �(t),

drt = �(�(t)� rt)dt+ �dW
Q
t : (2)

The solution to the SDE (2) can be written as

rt = e��tr0 +
Z t

0

e��(t� s)��(s)ds+ �

Z t

0

e��(t � s)dWQ
s ; (3)
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see Arnold (1973) or �ksendal (1992). If we de�ne m(t) and xt by

m(t) = e��tr0 +
Z t

0

e��(t� s)��(s)ds (4)

and

dxt = ��xtdt+ �dW
Q
t ; with x0 = 0; (5)

respectively, we can write rt as

rt = m(t) + xt: (6)

Of course, the representations (3) and (6) are equivalent, but the calibration is more
straightforward in the latter case, so we use (6) in the sequel.

Absence of arbitrage implies that the price of a zero-coupon bond is given by the
risk-neutral expectation:

P (t; T ) = E
Q
t

�
e�

R T
t rsds

�

= e�
R T
t m(s)ds � EQ

t

�
e�

R T
t xsds

�

= exp

 
�
Z T

t
m(s)ds

!
� exp [A(T � t) +B(T � t)xt] ; (7)

where

B(�) =
e��� � 1

�
(8)

A(�) =
1

2
�2

Z �

0

B2(s)ds =
1

2

�
�

�

�
2

2
41� e�2�� � 4

�
1� e���

�
2�

+ �

3
5 : (9)

Note that P (t; T ) in (7) is written as the product of a deterministic factor and the
bond price in an ordinary Vasicek model with zero mean (under Q).

2.2 Calibration of the time-dependent parameters

We want to �t the initial (current) yield curve, represented by the discount function
d(T ). That is,

P (0; T ) = exp

"
�
Z T

0

m(s)ds+ A(T )

#
= d(T ); (10)

since x0 = 0 by the normalization above. From (10) we getZ T

0

m(s)ds = � log d(T ) + A(T ); (11)

and after di�erentiating with respect to T on both sides of the equation we arrive at

m(T ) = �d log d(T )
dT

+
dA(T )

dT
= f(0; T ) +

1

2
�2B2(T ): (12)
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This means that m(T ) is obtained from the initial forward curve, f(0; T ). The time-
invariant parameters, � and �, must, of course, be speci�ed prior to this calculation.
In principle, � and � can be backed out from market prices of, e.g., interest-rate caps,
but such calculations are outside the scope of the present paper.

In order to determine �(t), �rst note that the derivative of m(t) is given by:

m0(t) = ��e��tr0 + ��(t)� �

Z t

0

e��(t� s)��(s)ds

= ��(t)� �m(t): (13)

Using this result, and the de�nition of m(t) in (12) above, we have

��(t) = �m(t) +m0(t)

= �f(0; t) +
1

2
��2B2(t) +

@f(0; t)

@t
+ �2B(t)B0(t)

= �f(0; t) +
@f(0; t)

@t
+ �(t); (14)

where

�(t) =
1

2
��2B2(t) + �2B(t)B0(t)

=
�2

2�

�
1� e�2�t

�
= Var0 [rt] (15)

is the conditional variance of rt given r0 (the proof that the �rst line of (15) simpli�es
to the second line is somewhat lengthy and tedious, so it is left out here). Finally, we
can write the SDE for rt in the following way:

drt =

(
�(f(0; t)� rt) +

@f(0; t)

@t
+ �(t)

)
dt+ �dW

Q
t ; (16)

which illustrates how the time-dependent parameters of the SDE are obtained from
the initial yield curve, or rather forward curve f(0; t).

2.3 Distribution of future bond prices

The purpose of calibrating the drift �(t) to the initial yield curve is, of course, pricing
�xed-income derivatives at time t = 0. Consider a claim with a single payo�, de-
pending on the term structure at time t, for example a call option on a zero-coupon
bond maturing at time T , with exercise (strike) price K. Here, the uncertain payo�
is given by

C(rt) = max fP (rt; t; T )�K; 0g ;

and the current value (price) of the claim is

V0 = E
Q
0

�
e�

R t
0
rsdsC(rt)

�
: (17)
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Methods for calculating the price (17) in closed form (if possible), or implementing
appropriate numerical procedures, will be addressed later. For our present purposes,
it su�ces to note that we need the time t = 0 distribution of the future bond price,
P (t; T ), which again depends solely on rt (besides the deterministic parameters) be-
cause of the one-factor assumption.

From (7), the bond price at time t is given by

P (t; T ) = exp

"
�
Z T

t
m(s)ds+ A(T � t) +B(T � t)(rt �m(t))

#
; (18)

where m(s), t � s � T , is obtained from the calibration to the initial term structure.1

In the following, we rewrite this expression to something that is (hopefully) easier to
interpret. First, note that the forward price of the T -maturity bond is given by:

P (0; T )

P (0; t)
=

exp
h
� R T

0
m(s)ds+ A(T )

i
exp

h
� R t

0
m(s)ds+ A(t)

i

= exp

"
�
Z T

t
m(s)ds+ A(T )� A(t)

#
: (19)

Second, using (19) allows us to write (18) as

P (t; T ) =
P (0; T )

P (0; t)
exp [A�(t; T ) +B(T � t)(rt �m(t))] ; (20)

where A�(t; T ) = A(T � t)+A(t)�A(T ). After many lengthy calculations (literally),
we obtain the following formula for A�(t; T ):

A�(t; T ) = �1

2
B2(T � t)�(t) +

1

2
�2B(T � t)B2(t): (21)

Finally, since m(t) = f(0; t) + 1

2
�2B(t), we get

P (t; T ) =
P (0; T )

P (0; t)
exp

�
�1

2
B2(T � t)�(t) +B(T � t)(rt � f(0; t))

�
; (22)

which only involves the current forward curve, f(0; t). As a digression, this expression
for P (t; T ) will be useful when investigating the relationship between forward and
futures prices for zero-coupon bonds.2

1It is important to understand that we are looking at the distribution of the future bond price,

given the current (t = 0) information. Once we observe P (t; T ), we can re-calibrate the function

m(s), for s � t, and the new function will generally di�er from the one obtained from f(0; t). This

is the inherent inconsistency of the calibration approach, see Tuckman (1995, ch. 9) for further

discussion. However, we are only interested in prices of contingent claims at time t = 0, which leads

us to ignore the problem.
2It follows from, e.g., Cox et al. (1981) that the price of a futures contract is given by E

Q
0
[P (t; T )].

Since rt is normally distributed with mean m(t) = f(0; t) + 1

2
�2B2(t) and variance �(t), the futures

price reduces to

E
Q
0
[P (t; T )] =

P (0; T )

P (0; t)
exp

�
1

2
�2B(T � t)B2(t)

�
;

which is less than the corresponding forward price since B(�) < 0 for all � .

4



2.4 Calibration in other cases

In the above model, only the drift parameter �(t) is time-dependent, whereas � and �
are still time-invariant (constant) parameters. This suggests the following extension
of the model,

drt = �(t) f�(t)� rtg dt+ �(t)dWQ
t ; (23)

or an equivalent generalization of the CIR model

drt = �(t) f�(t)� rtg dt+ �(t)
p
rtdW

Q
t : (24)

One advantage of letting �(t) or �(t) be time-dependent is that the model can match
the current volatility structure, in addition to the current yield curve.3 Not surpris-
ingly, this additional generality comes at a cost, namely that the calibration of the
time-dependent parameters becomes much more complex. In particular, there is no
longer a simple relationship between �(t) and the initial forward curve f(0; t), as in
equation (14) above. We refer the interested reader to Hull and White (1990) who
analyze the models (23) and (24) and discuss di�erent approaches for calibration of
the time-dependent parameters.

In practice, however, the calibration is most often done within a binomial (or
trinomial) approximation to the continuous-time model (SDE), using the principle of
forward induction, see, e.g., Jakobsen (1992) and Hull and White (1993).

3 The Heath, Jarrow and Morton model

The Heath, Jarrow and Morton (HJM) (1992) framework is similar to the calibration
approach in the sense that we can match an arbitrary initial yield curve exactly. With
calibrated models (section 2), the starting point is a SDE for rt with time-dependent
parameters, and the yield curve and volatility structure are determined endogenously
from the time-dependent parameters. In HJM models, on the other hand, the initial
forward curve and volatility structure are speci�ed directly (exogenously). We use the
no-arbitrage assumption to derive restrictions on the future movements of the forward
curve, which facilitates using the HJM model for pricing �xed-income derivatives.

3.1 A general one-factor HJM model

Under the true probability measure, the forward curve f(t; T ) evolves according to

df(t; T ) = �(t; T )dt+ �(t; T )dWt; for all T � t; (25)

where �(t; T ) is the forward-rate volatility (volatility structure), and �(t; T ) the drift
of the forward curve. Note that all maturities are a�ected by the same Brownian

3There are several ways to de�ne the volatility structure, or term-structure of volatilities. Gener-

ally, we use the volatility of the forward or yield curve, and these volatilities can either be estimated

from historical data or backed out from prices of contingent claims, for example interest-rate caps.
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motion Wt, that is changes in the forward curve are perfectly correlated (one factor
model). The short rate rt is implicitly de�ned as the forward rate with T = t, that is

rt = f(t; t): (26)

From the de�nition of instantaneous forward rates, the logarithm of bond prices are
given by the expression

logP (t; T ) = �
Z T

t
f(t; u)du: (27)

In order to price �xed-income derivatives, we need the distribution of f(t; T ),
and hence bond prices, under the risk-neutral measure (Q-measure). This involves
imposing conditions on the forward-rate dynamics (under Q), so that they are consis-
tent with absence of arbitrage opportunities. We begin by determining the stochastic
di�erential equation for (log) bond prices under the true probability measure

d logP (t; T ) = f(t; t)dt�
Z T

t
df(t; u)du

= rtdt�
Z T

t
f�(t; u)dt+ �(t; u)dWtg du

=

(
rt �

Z T

t
�(t; u)du

)
dt�

(Z T

t
�(t; u)du

)
dWt: (28)

An application of Ito's lemma provides the SDE for P (t; T ),

dP (t; T ) = �P (t; T )P (t; T )dt+ �P (t; T )P (t; T )dWt; (29)

where

�P (t; T ) = �
Z T

t
�(t; u)du (30)

�P (t; T ) = rt �
Z T

t
�(t; u)du+

1

2
�P (t; T )

2: (31)

Since all bond prices are driven by the same Brownian motion (perfect correlation),
absence of arbitrage implies the APT restriction

�P (t; T ) = rt + �(t)�P (t; T ); for all T ; (32)

where �(t) is the market price of risk at time t. Using equations (30) and (31), the
no-arbitrage condition can be written as

Z T

t
�(t; u)du = �(t)

Z T

t
�(t; u)du+

1

2

 Z T

t
�(t; u)du

!
2

: (33)

If we di�erentiate with respect to T on both sides of the equation, we get

�(t; T ) = �(t)�(t; T ) + �(t; T )
Z T

t
�(t; u)du; (34)
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which means that the forward-rate drift must be a function of the volatility structure
and the market price of risk, �(t). Thus, under the true probability measure, the
SDE for forward rates is given by

df(t; T ) =

"
�(t)�(t; T ) + �(t; T )

Z T

t
�(t; u)du

#
dt+ �(t; T )dWt: (35)

At this stage, two things are worth emphasizing. First, the SDE is still speci�ed
under the true (original) probability measure. Second, the drift of f(t; T ) depends on
�(t), that is investor preferences. If WQ

t is a Brownian motion under the Q-measure,
we have the following relationship to the true probability measure,

dW
Q
t = dWt + �(t)dt; (36)

and after substituting this into (35) we obtain the SDE under the Q-measure (risk-
neutral distribution),

df(t; T ) =

"
�(t; T )

Z T

t
�(t; u)du

#
dt+ �(t; T )dWQ

t

= ��(t; T )�P (t; T )dt+ �(t; T )dWQ
t ; (37)

where the second line follows from (30). Note that the drift of this SDE is independent
of �(t), so valuation of �xed-income derivatives is truly preference-free.4 The reason
for this independence is that we are pricing interest-rate derivatives relative to the
current yield curve (forward curve), and the yield curve re
ects all relevant investor
preferences.

There are two inputs to a HJM model: the initial forward curve, f(0; T ), and the
volatility structure, �(t; T ). The �rst is simply the current (t = 0) forward curve,
whereas the latter must be speci�ed somehow | either from historical estimates or
backed out from prices of interest-rate derivatives (like \implied volatility" in the
Black-Scholes model).

In any case, the purpose of using the HJM model is pricing (new) derivatives
whose payo� depend on the future term structure. Therefore, it is convenient to have
an expression like (22) for the HJM model. Starting from the initial forward curve,
f(0; s), and using the SDE under the Q-measure (37), we have that

logP (t; T ) = �
Z T

t
f(t; s)ds

=
Z T

t

�
�f(0; s)�

Z t

0

df(u; s)
�
ds

=
Z T

t

�
�f(0; s) +

Z t

0

�(u; s)�P (u; s)du�
Z t

0

�(u; s)dWQ
u

�
ds: (38)

Second, note that

�
Z T

t
f(0; s)ds = �

Z T

0

f(0; s)ds+
Z t

0

f(0; s)ds = log

"
P (0; T )

P (0; t)

#
: (39)

4We can compare this to the Black-Scholes model where the price of a call option is independent

of the drift of the stock price (expected return).
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Finally, by combining (38) and (39), we get

P (t; T ) =
P (0; T )

P (0; t)
�

exp

(Z T

t

Z t

0

�(u; s)�P (u; s)du ds�
Z T

t

�Z t

0

�(u; s)dWQ
u

�
ds

)
: (40)

As in (22), we can express P (t; T ) as the forward price multiplied by a random factor.
However, contrary to the Vasicek model with time-dependent drift, the random factor
involves the entire path of the Brownian motion, WQ

s , between 0 and t, not just a
single random variable, like the short rate at time t. This path-dependency can be
problematic, especially when implementing numerical approximations to the HJM
model. For example, binomial trees cannot be recombining (so the dimension grows
exponentially with the number of time steps), and when using Monte Carlo methods,
we must simulate the movements of the entire forward curve which is more time-
consuming that simulating the path of a single state variable.

3.2 Examples of HJM models

Our discussion of the HJM model thus far has been cast in general terms, and we have
not presented any speci�c models, that is parameterizations of the volatility structure,
�(t; T ). A thorough discussion of the pros and cons of di�erent speci�cations is outside
the scope of the present paper, so we just give a few examples. First, the Vasicek
model corresponds to

�(t; T ) = �e��(T � t); (41)

where the volatility structure is monotonically decaying unless � = 0 (which is the
Ho and Lee (1986) model in continuous time). Some empirical studies have found
that the volatility structure is humped (�rst increasing, then decreasing from some
point). This can be accommodated with the following speci�cation:

�(t; T ) = [�0 + �1(T � t)] e��(T � t)f(t; T )
: (42)

Moreover, if 
 6= 0, the forward-rate volatilities depend on the level of forward rates.
This is a form of conditional heteroskedasticity, similar to the CIR model where the
short-rate volatility is proportional to the square root of the short rate.

3.3 Markovian HJM models

Having noted the potential di�culties with path-dependencies in the general HJM
model in section 3.1, we turn to a special case of the HJM model where the term struc-
ture can always be expressed as a function of a �nite number of state variables. We
obtain this case, known as Markovian HJM models, by imposing certain restrictions
on the volatility structure. In any model, bond prices are given by

P (t; T ) = E
Q
t

�
e�

R T
t rsds

�
; (43)
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so a Markovian HJM model (as de�ned above) corresponds to a Markovian stochastic
process for the short rate (under Q). The bond price in (43) is given by a conditional
expectation, and if the conditional distribution of rs only depends on a �nite number
of state variables Xt (the Markov property), the bond price will be a function of these
state variables.

We start by writing the short rate of the general HJM model in di�erential form.
The short rate is given by

rt = f(t; t) = f(0; t)�
Z t

0

�(s; t)�P (s; t)ds+
Z t

0

�(s; t)dWQ
s ; (44)

and the di�erential form with respect to t is

drt =

"
@f(0; t)

@t
� �(t; t)�P (t; t)�

Z t

0

@�(s; t)

@t
�P (s; t)ds

�
Z t

0

�(s; t)
@�P (s; t)

@t
ds+

Z t

0

@�(s; t)

@t
dWQ

s

#
dt+ �(t; t)dWQ

t : (45)

Since �P (t; t) = 0 and @�P (s; t)=@t = ��(s; t), this reduces to

drt =

"
@f(0; t)

@t
�
Z t

0

@�(s; t)

@t
�P (s; t)ds+

Z t

0

@�(s; t)

@t
dWQ

s

+
Z t

0

�2(s; t)ds
�
dt+ �(t; t)dWQ

t : (46)

Note how the drift is path-dependent since it involves the entire path of the Brow-
nian motion WQ

s between 0 and t. However, if the volatility structure satis�es the
restriction

@�(s; t)

@t
= ��(t)�(s; t) (47)

for some �(t), the di�erential form (46) simpli�es to

drt =

"
@f(0; t)

@t
+ �(t)

Z t

0

�(s; t)�P (s; t)ds� �(t)
Z t

0

�(s; t)dWQ
s

+
Z t

0

�2(s; t)ds
�
dt+ �(t; t)dWQ

t ; (48)

which in light of the identity

rt � f(0; t) = �
Z t

0

�(s; t)�P (s; t)ds+
Z t

0

�(s; t)dWQ
s ;

can be written as

drt =

(
@f(0; t)

@t
+ �(t)(f(0; t)� rt) + �t

)
dt+ �(t; t)dWQ

t ; (49)

with

�t =
Z t

0

�2(s; t)ds: (50)
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The di�erential form of �t is

d�t =

 
�2(t; t) + 2

Z t

0

�(s; t)
@�(s; t)

@t
ds

!
dt

=
�
�2(t; t)� 2�(t)�t

�
dt; (51)

and there are no path-dependencies in the drift of either (49) and (51).
In summary, if the volatility structure �(s; t) obeys the restriction (47), the short

rate is governed by a bivariate Markovian SDE consisting of equations (49) and (51),
respectively. The mean reversion parameter �(t) in (49) is time-varying, and the coef-
�cient is obtained from the volatility structure. Moreover, if �(s; t) is non-stochastic,
�t in (50) reduces to a time-dependent function, and the short-rate dynamics become
equivalent to the extended Vasicek process (23), cf. Hull and White (1993).

The Markov restriction on the volatility structure (47) has the form of an ordinary
di�erential equation. Speci�cally,

@�(s; u)=@u

�(s; u)
=

@ log�(s; u)

@u
= ��(u); for u � s: (52)

Integrating from u = s to u = t in (52) yields

log�(s; t)� log �(s; s) = �
Z t

s
�(u)du;

which can be written as

�(s; t) = �(s; s)e�
R t
s �(u)du; (53)

where �(s; s) is the short-rate volatility at time s, cf. (49). Thus, the volatility
structure has to be of the form (53) in order to obtain a Markovian HJM model.
Note that �(s; s) can depend on the short rate at time s, so it does not have to be a
deterministic function. For example, the following speci�cation can be used

�(s; t) = �r
s e
��(t� s); (54)

which reduces to the Vasicek volatility structure if 
 = 0. On the other hand, a
speci�cation like (42), where the forward-rate volatility depend on the level of the
forward rate itself, is not consistent with a Markovian HJM model.

To complete this section, we turn to the distribution of future (time t) bond prices.
If the volatility structure is of the form (53), it can be shown that (40) simpli�es to

P (t; T ) =
P (0; T )

P (0; t)
exp

�
�1

2
�2(t; T )�t + �(t; T ) [f(0; t)� rt]

�
; (55)

where

�(t; T ) = ��P (t; T )
�(t; t)

=
Z T

t
e�

R s
t �(u)duds; (56)

and �t is de�ned above. See Ritchken and Sankarasubramanian (1995) for a proof.
If �(u) is constant, we get a closed-form expression for (56),

�(t; T ) =
Z T

t
e��(s� t)ds =

1� e��(T � t)

�
; (57)

which, apart from the sign, is the factor loading in the Vasicek model.
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