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1 Introduction

This paper contains a survey of continuous-time term-structure models. The general

idea is introducing the reader (student) to the subject, so that he or she hopefully

will be able to read journal articles on the subject. The technical and mathematical

nature of this paper re
ects that objective.

It is (now) customary to divide term-structure models into two groups, called

arbitrage-free and equilibrium models, respectively. The former group contains mod-

els which �t the initial yield exactly, and prominent examples are the Heath, Jarrow

and Morton (1992) model and the Hull and White (1990) extended Vasicek model.

On the other hand, the equilibrium models do not (per construction) �t the yield

curve exactly. Sometimes, the models in equilibrium framework are called \classical"

models since this approach dates back earlier than the more recent arbitrage-free

models.1

To a large extent, the choice between arbitrage-free and equilibrium models is

dictated by the purpose of the analysis. If we are interested in identifying bonds that

are mispriced relative to other bonds, we can only use equilibrium models. On the

other hand, when pricing �xed-income derivatives it is generally preferable to use an

arbitrage-free model, see chapter 9 in Tuckman (1995) for an excellent discussion.

For this reason, our survey paper deals with both models. In Part I, we discuss

equilibrium models (classical models) with either a single or multiple factors, whereas

Part II (forthcoming) describes two types of arbitrage-free models: equilibrium-type

models with time-dependent parameters (calibrated models) and models in Heath,

Jarrow and Morton class.

The outline of part I is as follows: section 2 contains a brief summary of the

de�nition of the term structure using continuous compounding. Sections 3 presents

a general analysis of one-factor models, whereas section 4 describes three examples.

Finally, section 5 extends the modeling framework to multiple factors, including a

discussion of the exponential-a�ne class of models. Most multi-factor models with

known analytical solutions for the term structure belong to this class.

1Unfortunately, the literature is not consistent with respect to these de�nitions. In some papers,

especially pre-1990 papers, a model is only called an equilibrium model if derived from the utility

function of the representative agent. The Vasicek (1977) model is sometimes referred to as an

arbitrage-free (or partial equilibrium) model because an \absence of arbitrage" argument is used

in the model derivation, cf. also section 3 in the present paper. In summary, there is bound to be

some confusion, and the reader should be careful when encountering de�nitions along these lines in,

especially, the \older" literature.
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2 De�nitions

There are three di�erent ways to represent the term structure of interest rates:

P (t; T ) is the price, at time t, of a zero-coupon bond2 maturing at time T (the

maturity date). The time to maturity of this bond is � = T � t. It is

important to note the distinction between the maturity date and the time

to maturity | they are only identical when t = 0. In general, we assume

that P (t; T ) exists for all T > t.

R(t; T ) The yield-to-maturity with continuous compounding at time t, for a zero-

coupon bond maturing at time T .

f(t; T ) The instantaneous forward rate at time t, for a zero-coupon bond matur-

ing at time T .

The yield-to-maturity R(t; T ) and forward rate f(t; T ) are de�ned as follows:

R(t; T ) =
� logP (t; T )

T � t
(1)

f(t; T ) =
�@P (t; T )=@T

P (t; T )
=

�@ logP (t; T )
@T

: (2)

Note that log denotes the natural (base e) logarithm. The inverse relationship ex-

presses the bond price, P (t; T ), in terms of either R(t; T ) or f(t; T ):

P (t; T ) = e�R(t; T )(T � t) (3)

P (t; T ) = e�
R T
t f(t; s)ds: (4)

The �rst formula, (3), follows simply by rearranging the de�nition of R(t; T ) in (1).

To derive (4), �rst note that

logP (t; T )� logP (t; t) =

Z T

t

@ logP (t; s)

@s
ds = �

Z T

t
f(t; s)ds; (5)

and since P (t; t) = 1, we get (4).

Furthermore, by equating the terms in the exponents in (3) and (4), we get the

following relationship between yield-to-maturity and forward rates:

R(t; T ) =
1

T � t

Z T

t
f(t; s)ds; (6)

which may be interpreted as the average forward rate over the (remaining) time to

maturity of the bond.

2Unless we state otherwise in the text, all bonds are assumed to be zero-coupon bonds which

have a single payment of one \unit of account" at time T . Bonds with more than one remaining

payment, for example bullets, are called coupon bonds.
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3 A general one-factor model

In this section we carefully explain the common mathematical structure of term-

structure models with a single factor, a framework that encompasses the Merton

(1973), Vasicek (1977) and Cox, Ingersoll and Ross (CIR) (1985) models. The reader

is assumed to be familiar with stochastic di�erential equations (SDEs), including

Ito's lemma, at a level comparable to Hull (1997), Luenberger (1997), or a similar

(non-mathematically oriented) text.

We make the following assumptions:

A{1 The bond market is frictionless: no (distorting) taxes, no transactions costs,

no short-sale restrictions, and all bonds are in�nitely divisible.

A{2 Investors always prefer more wealth to less, i.e., the marginal utility of wealth

is positive at all levels of wealth. In e�ect, this assumption rules out that

arbitrage opportunities can exist.

A{3 All bond prices, i.e. P (t; T ) for all T > t, depend only on a single state

variable: the short rate rt (in addition to t and T ). By implication, changes

in the yield curve at di�erent maturities are perfectly correlated.3

A{4 The short rate (instantaneous interest rate) follows the general SDE:

drt = �(rt)dt+ �(rt)dWt; (7)

where �(r) and �(r) are the drift and volatility functions, respectively, and

Wt a Brownian motion (Wiener) process.

It is important to realize that we do not assume that the relationship between P (t; T )

and the short rate, rt, is known. On the contrary, the entire purpose of the following

is deriving that function endogenously from the above assumptions, especially from

the assumption about absence of arbitrage.

In the �rst step, we determine the stochastic process (SDE) for the bond price

P (t; T ). Note that T is �xed, and t denotes calendar time. By Ito's lemma we get:

dP (t; T ) = �P (t; T )P (t; T )dt + �P (t; T )P (t; T )dWt; (8)

where

�P (t; T )P (t; T ) =
@P

@r
�(r) +

@P

@t
+
1

2

@2P

@r2
�2(r) (9)

�P (t; T )P (t; T ) =
@P

@r
�(r): (10)

In equation (8), �P (t; T ) is the expected instantaneous return of the bond with ma-

turity date T , and �P (t; T ) is the volatility (standard deviation) of the bond return.

3Of course, this is highly restrictive, but later we relax the assumption with the so-called multi-

factor models. Right now we want to keep things simple!
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The expected return and the volatility depend on the short rate, rt, but to simplify

the notation this dependence is suppressed here.

The problem is that equilibrium expected returns �P (t; T ) for di�erent T 's are

unknown, so a general expression for the bond price P (t; T ) cannot be determined

at this stage. The intermediate goal in the following is developing some form of

equilibrium model for the expected returns, �P (t; T ), for all T . Concretely, we use

the principle of no-arbitrage to reduce this problem to specifying a single market price

risk (preference) parameter.

Suppose we construct a portfolio consisting of w1 bonds with maturity date T1
and w2 bonds with maturity date T2.

4 We require T1 6= T2, but apart from that T1
and T2 can be arbitrary. The value of the resulting portfolio, at time t, is denoted by

�t = w1P (t; T1) + w2P (t; T2); (11)

and the value, �t, satis�es the SDE:

d�t = [w1�P (t; T1)P (t; T1) + w2�P (t; T2)P (t; T2)] dt +

[w1�P (t; T1)P (t; T1) + w2�P (t; T2)P (t; T2)] dWt : (12)

Since there are two bonds and only one source of risk, it must be possible to eliminate

the risk by choosing w1 and w2 such that

w1�P (t; T1)P (t; T1) + w2�P (t; T2)P (t; T2) = 0 : (13)

In general, this requires continuous adjustment of the portfolio (which can be done

costlessly since we have assumed away transactions costs). If w1 and w2 are continu-

ously readjusted according to (13), the portfolio SDE (12) reduces to:

d�t = [w1�P (t; T1)P (t; T1) + w2�P (t; T2)P (t; T2)] dt; (14)

which is locally deterministic (riskless). To prevent arbitrage opportunities, the excess

return above the short rate rt must be zero:

w1 (�P (t; T1)� rt)P (t; T1) + w2 (�P (t; T2)� rt)P (t; T2) = 0 : (15)

To summarize, we have now shown that if the 2 � 1 vector w = [w1 w2]
0 solves the

equation

h
�P (t; T1)P (t; T1) �P (t; T2)P (t; T2)

i " w1

w2

#
� A1w = 0 ; (16)

the same w is also a solution to the homogeneous system of equations:"
�P (t; T1)P (t; T1) �P (t; T2)P (t; T2)

(�P (t; T1)� rt)P (t; T1) (�P (t; T2)� rt)P (t; T2)

# "
w1

w2

#
� A2w = 0 : (17)

4Vasicek (1977) uses the same technique. It is very similar to the method used to derive the

Black-Scholes (stock) option-pricing formula, see Hull (1997).
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This is only possible if the rank of the matrix A2 is 1. To see this, note that if A2

has full rank, A�12 exists, and the solution of (17) is w = 0 | which is obviously a

contradiction. This argument proves that the rank of A2 must be 1.

Since A2 has less than full rank, it is possible to write the last (second) row as a

linear combination of the other rows | in this case a scalar (function) �(r) times the

�rst row. Hence, we get

�P (t; Tj) = rt + �(rt)�P (t; Tj); j = 1; 2 (18)

where �(rt) is the so-called market price of risk. Further, note that the particular

choices of T1 and T2 play no role in the above derivation, so (18) must hold for all

T , and �(r) must be independent of T . In summary, we have reduced the problem

of determining �P (t; T ), for all possible T , to that of specifying a single market price

of risk parameter, �(r), which is at most a function of the short rate r. Of course,

this requires an additional assumption about market preferences, and di�erent models

(Vasicek, Merton, CIR) use di�erent speci�cations of �(r).

Finally, we substitute (18) into (9), and after rearranging terms (and using the

de�nition of �P (t; T ) from equation (10)), we get the following (fundamental) partial

di�erential equation (PDE) for the bond price:

1

2

@2P

@r2
�2(r) +

@P

@r
[�(r)� �(r)�(r)] +

@P

@t
� rP = 0; (19)

with boundary condition P (T; T ) = 1. Analytical solutions to this PDE exist for sev-

eral one-factor models, including the Vasicek (1977), Merton (1973) and CIR (1985)

models. They are described in detail in section 4 below.

A general representation of the solution to (19) is furnished by the Feynman-Kac

formula:

P (t; T ) = EQ
t

�
e�

R T
t rsds

�
; (20)

where the expectation is taken under the probability measure (probability distribu-

tion) corresponding to the drift-adjusted stochastic process:

drt = f�(rt)� �(rt)�(rt)g dt + �(rt)dW
Q
t ; (21)

where W
Q
t is a Brownian motion under the Q-measure, or risk-neutral distribution.

Of course we still need to calculate (20) in order to get a closed-form expression for

the bond price P (t; T ), and in most cases it is actually simpler to solve the PDE

directly.

However, equation (20) o�ers a lot of intuition about the mechanics of arbitrage-

free term-structure models. The current price, P (t; T ), is obtained by discounting

the �nal payment of one unit of account back to the present (time t), and since the

future short-term interest rates are random, we take the expectation, conditional on

the current value of the short rate, rt. Among �nancial economists, the technique

is known as risk-neutral valuation, and consequently (21) is called the risk-neutral

stochastic process for the short rate. Note, however, that we are not assuming risk-

neutrality on behalf of the economic agents. On the contrary, investor preferences

enter the bond-pricing formula through the drift adjustment by �(rt)�(rt) in the

SDE (21).
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3.1 Fixed-income derivatives and risk-neutral valuation

Risk-neutral valuation is an extremely powerful technique for pricing �xed-income

derivatives, that is securities with uncertain (stochastic) cash 
ows. For example,

binomial models (trees) are based on this idea, as the tree in built with risk-neutral

probabilities, rather than the \true" probabilities, cf. Tuckman (1995, ch. 5{6).

To illustrate the scope of risk-neutral valuation, consider a general �xed income

claim, maturing (expiring) at time T , which o�ers the following payment stream to

the holder:

� For all t � s � T , the claim pays a continuous stream of payments proportional

to c(rs). That is, between time s and s + ds, we get c(rs)ds from the claim,

where ds is a small time interval.

� At maturity, t = T , we get a �nal (lump-sum) payment of C(rT ).

The value (price), Vt(r), of this claim at time t (today) is given by:

Vt(r) = EQ
t

"Z T

t
c(rs)e

� R st rududs
#
+ EQ

t

�
e�

R T
t rsdsC(rT )

�
: (22)

Examples of (22):

1. A zero-coupon bond, where C(rT ) = 1 and c(rs) = 0.

2. A call option, with exercise price K, on a zero-coupon bond, maturing at time

T1 > T . Here, c(rs) = 0, and the terminal payment is

C(rT ) = [P (rT ; T; T1)�K]
+
; (23)

where x+ = max(x; 0), and P (r; T; T1) is the price at time T of a zero-coupon

bond maturing at time T1.

3. An interest rate cap (on the short-rate itself), with a strike of L. Here, CT (r) = 0

and c(rs) = (rs � L)
+
.

If the short rate is governed by a one-factor SDE under the risk-neutral measure,

the price of the security, Vt(r), also satis�es the partial di�erential equation:

1

2

@2V

@r2
�2(r) +

@V

@r
[�(r)� �(r)�(r)] +

@V

@t
+ c(r) � rP = 0; (24)

subject to the boundary condition VT (r) = C(r). Compared to the PDE (19), the

boundary condition is modi�ed, and we have added a term c(r) to the left hand

side. Since the security has a continuous payout, or dividend, of c(rt) at time t, the

expected risk-neutral change in the price is rtP � c(rt), instead of rtP for a security

without \dividend" payments. Note that the expected return of the security (sum of

dividends and price change) is proportional to the short rate, rt, in both cases.
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4 Three examples of one-factor models

In this section we present the bond-pricing formula, i.e. the solution P (t; T ) of the

fundamental PDE (19) for three di�erent models: Vasicek (1977), Merton (1973) and

CIR (1985). The solution technique is very much the same (separation of variables),

so we only provide a detailed discussion for the Vasicek model.

4.1 Vasicek (1977) model

The short rate follows the mean-reverting Gaussian process (sometimes called the

Ornstein-Uhlenbeck process):

drt = �(�� rt)dt+ �dWt; (25)

where � measures the speed of mean reversion (the larger �, the faster the speed of

mean reversion), � is the unconditional mean, and � is the instantaneous volatility

of the short rate. The Vasicek process (25) is the continuous-time equivalent of a

�rst-order autoregressive process, or AR(1) model. With respect to the market price

of risk, we assume that it is a constant �(r) = �.

This results in the following PDE:

1

2

@2P

@r2
�2 +

@P

@r
[�(�� r)� ��] +

@P

@t
� rP = 0; (26)

with boundary condition P (T; T ) = 1.

First, we guess that the solution takes the so-called exponential-a�ne form:

P (t; T ) = exp [A(�) +B(�)rt] ; � = T � t : (27)

Second, we di�erentiate (27) with respect to r and t:

@P

@r
= B(�)P (t; T ) (28)

@2P

@r2
= B(�)2P (t; T ) (29)

@P

@t
= �@P

@�
= � [A0(�) +B0(�)r] � P (t; T ): (30)

Note that A0(�) = dA(�)

d �
, and B0(�) = dB(�)

d �
.

Third, we substitute (28){(30) into (26). Since all terms contain a factor P (t; T ),

we move this factor outside the parenthesis (braces) and get:�
1

2
B2(�)�2 + B(�)[�(�� r)� ��] � A0(�)�B0(�)r � r

�
� P = 0: (31)

Finally, we divide by P in (31), and collect the terms containing the factor r:�
1

2
B2(�)�2 +B(�)[��� ��]� A0(�)

�
� f�B(�) + 1 +B0(�)g r = 0: (32)
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The PDE (32) should be satis�ed for all values of r, and this can only hold if both

expressions in braces are zero. Equating each of the two terms in braces with zero,

results in two ordinary di�erential equations (ODEs),

A0(�) =
1

2
�2B2(�) + [��� ��]B(�) (33)

B0(�) = ��B(�)� 1: (34)

If we can �nd a solution to these ODEs, we have demonstrated that (27) is indeed the

solution to (26). As with PDEs, we need boundary conditions to solve ODEs. The

boundary condition from the PDE, that is P (T; T ) = 1, translates into two boundary

(initial) conditions for the ODE:5

A(0) = 0 and B(0) = 0 : (35)

Generally, a system of ODEs (as we have) needs to be solved simultaneously. In

the present case, however, the solution separates into two univariate ODEs with a

recursive structure since (34) only involves B(�). Therefore, we �rst solve (34), and

after substituting the solution B(�) into (33), we determine A(�).

In our e�ort to solve (34), we �rst rewrite it as:

B0(�) + �B(�) = �1 ; (36)

and multiply on both sides by exp(��):

B0(�)e�� + �B(�)e�� = �e�� : (37)

By the product rule for di�erentiation, the left hand side in (37) can also be written

as:

d

d�

n
e��B(�)

o
= �e�� : (38)

Since B(�) does not appear on the right hand side in (38), the solution can be obtained

by ordinary integration. By the standard relationship between di�erentiation and

integration

e��B(�) = B(0) +
Z �

0

d

ds

n
e�sB(s)

o
ds = �

Z �

0
e�sds; (39)

where the last equality is obtained by using the boundary condition B(0) = 0, as well

as equation (38). Finally, we arrive at the desired solution:

B(�) = �e���
Z �

0
e�sds = �

Z �

0
e��(� � s)ds

= �
�
1

�
e��(� � s)

��
0

=
e��� � 1

�
: (40)

5Note that � = 0 when t = T (the bond matures).
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Having found B(�), we turn to A(�). Again, since the function in question, i.e.

A(�) does not appear on the right hand side of the ODE (33), the solution can be

determined by ordinary integration:

A(�) = A(0) +
Z �

0
A0(s)ds =

1

2
�2
Z �

0
B2(s)ds+ [��� ��]

Z �

0
B(s)ds: (41)

Thus, we need to calculate the integral of B(s) and B2(s). To conserve on space, we

state the requisite results rather brie
y, leaving most of the details to the reader.

(��� ��)
Z �

0
B(s)ds = (��� ��)

�
1� e���

�
=� � �

�

= � (�� ��=�)

"
� +

e��� � 1

�

#
(42)

and

1

2
�2
Z �

0
B2(s)ds =

1

2
�2

�
1� e�2��

�
=2� � 2

�
1� e���

�
=� + �

�2

=
1

2

�
�

�

�2 241� e�2�� � 4
�
1� e���

�
2�

+ �

3
5 (43)

This concludes the derivation of the Vasicek bond-pricing formula. For convenience,

we restate the entire formula below (after having worked a bit on the expressions):

R(1) = �� ��

�
� 1

2

�
�

�

�2
(44)

B(�) =
e��� � 1

�
(45)

A(�) = �R(1) (� +B(�)) � �2

4�
B2(�): (46)

This corresponds to equation (27) on page 185 of the Vasicek (1977) paper. Note,

though, that his notation is di�erent from ours. Among other things, he uses the

opposite sign for the market price of risk (which he calls q, instead of \our" �).

In (45), it straightforward to see that B(�) < 0, so an increase in rt lowers bond

prices. The reader is encouraged to investigate how di�erent parameter values for �,

�, � and � a�ect the shape of the term structure.

4.2 The Merton (1973) model

The short rate is governed by the SDE:

drt = �dt+ �dWt; (47)
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and the market price of risk is a constant �, as in the Vasicek model. It can be shown

that the bond price is given by (27) (see section 4.1) with the following de�nitions of

A(�) and B(�):

B(�) = �� (48)

A(�) = �1

2
(�� ��) � 2 +

1

6
�2� 3: (49)

The proof is left to the reader. Compared to the Vasicek model, it is actually quite

simple (and doing it is a very good exercise).

4.3 The CIR (1985) model

The famous CIR, or Cox, Ingersoll and Ross, model uses the so-called square-root

SDE (process) for the short rate:

drt = �(�� rt) dt + �
p
rtdWt: (50)

CIR speci�es the market price of risk as follows: �(r) = �
p
r=�. The scaling by � is

done only to simplify the subsequent derivations.

The derivations are considerably more tedious than in the Vasicek case, so we

simply state the result below, and refer to Ingersoll (1987, pp. 397-399) or Lund

(1993, pp. 37{41) for further details. Once again, the bond-pricing formula takes the

familiar exponential-a�ne form (27), with B(�) and A(�) being de�ned as follows:

B(�) =
�2

�
1� e�
�

�
2
 + (�+ �� 
)

�
1� e�
�

� (51)

A(�) =
2��

�2
log

2
4 2
e(�+ �� 
)�=2

2
 + (� + �� 
)
�
1� e�
�

�
3
5 (52)

where


 =
q
(�+ �)2 + 2�2: (53)

The main advantage over the Vasicek model is that rt is restricted to be non-

negative. However, for realistic parameter values, there is rarely much di�erence

between the yield curves obtained from the Vasicek and CIR models, respectively.

5 Multi-factor models

The main advantage of one-factor models is their simplicity as the entire yield curve

is a function of just one state variable. Moreover, this state variable is observable

| at least in principle (in practice, we use a short-term interest rate as a proxy).

However, there are several problems with one-factor models.
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First, the model assumes that changes in the yield curve, and hence bond returns,

are perfectly correlated across maturities, and not surprisingly this assumption is

easily contradicted by the empirical evidence. Apart from that, the assumption of

perfect correlation is highly problematic for several \practical" purposes, for example

Value-at-Risk calculations, and pricing derivatives on interest-rate spreads. The latter

case is discussed by Canabarro (1995). Second, the shape of the yield curve is severely

restricted. Speci�cally, the Vasicek and CIR models can only accommodate yield

curve that are monotonic increasing or decreasing and humped. An inversely humped

yield curve cannot be generated with these models. Moreover, with time-invariant

parameters one-factor models tend to provide a very poor �t to the actual yield curves

observed in the market.

The latter problem can be solved by calibration which is discussed in part II.

By making some parameters time-dependent, we obtain a perfect �t to the current

(initial) yield curve, and the calibrated model can only be used to price �xed-income

derivatives. If the modeling purpose is identifying bonds that are mispriced, the

calibration approach cannot be used. Moreover, since the model is extended with

deterministic parameters, yield changes are still perfectly correlated, so for some

securities a calibrated one-factor model may still be inadequate.

For these reasons, we discuss multi-factor models in the following. Speci�cally,

the short rate is still governed by stochastic process with time-invariant parameters,

but there are now, say, m sources of innovation, and not just one as in (7) and (21).

For practical purposes, this means that we get a better (but not perfect) �t to the

yield curve, and yield curve changes are no longer perfectly correlated.

5.1 A general framework for multi-factor models

The underlying assumptions of multi-factors models are very similar to the one-factor

case, and the modi�cations relate only to the stochastic process for the short rate and

the risk premia. For convenience, however, we restate the full list of assumptions:

1. The bond market is frictionless (no taxes, transactions costs, divisibility prob-

lems, etc.).

2. Investors prefers more wealth to less (implies absence of arbitrage opportunities

in the market).

3. All bond prices are a function of a m� 1 vector of state variables, denoted Xt.

Together with the next assumption, this implies that the market prices of risk

at time t, �(Xt), are functions of the m state variables.

4. The short rate is a known function of Xt, i.e. rt = r(Xt). In most case, rt is the

�rst element of the vector Xt, that is rt = w0Xt, where w is a vector with one

as the �rst element and zeros elsewhere.

5. The dynamics of the state variables are governed by:

dXt = �(Xt)dt+ �(Xt)dWt; (54)

11



where �(X) is a m � 1 drift vector, �(X) is a m � m matrix containing the

volatilities coe�cients, and Wt an m-dimensional Brownian motion. Unless

otherwise noted, we specify �(X) as a diagonal matrix and let the m univariate

Brownian motions in the vector Wt be correlated. The requisite correlation

coe�cients are denoted �ij.

The purpose of the following analysis is deriving the functional relationship be-

tween the m state variables, Xt, and the prices of zero-coupon bonds, P (t; T ), for

all T . As in section 3, we start by deriving a stochastic process for bond prices,

including an expression for the expected returns on di�erent bonds. Next, we use the

economic theory (absence of arbitrage) to impose an APT-like restriction on bond re-

turns, which requires assumptions about the market prices of risk. Finally, we obtain

a PDE for bond prices, as well as a risk-neutral process for the short rate (through

the m state variables).

By an appropriate multivariate version of Ito's lemma, bond prices can be shown

to evolve according to

dP (t; T ) = �P (t; T )P (t; T )dt +
mX
i=1

�Pi(t; T )P (t; T )dWit; (55)

where drift is given by

�P (t; T )P (t; T ) =
mX
i=1

@P

@Xi

�i(X) +
@P

@t
+
1

2

mX
i=1

mX
j=1

@2P

@Xi@Xj

�i(X)�j(X)�ij; (56)

and the i'th bond volatility is given by

�Pi(t; T )P (t; T ) =
@P

@Xi

�i(X): (57)

Note that �ii = 1 in (56). The expected return and the bond volatilities depend on the

state variables, but to keep the notation manageable, this dependence is suppressed

here.

In order to derive the appropriate APT restriction on �(t; T ) for di�erent maturity

dates T , we construct a portfolio consisting of K = m + 1 with distinct maturities.

The number of bonds with maturity date Ti, i = 1; : : : ; K, is denoted by wi. The

instantaneous changes in the value of this portfolio, �t, can be written as:

d�t =
KX
k=1

wk � dP (t; Tk) =

"
KX
k=1

wk�P (t; Tk)P (t; Tk)

#
dt +

mX
i=1

"
KX
k=1

wk�Pi(t; Tk)P (t; Tk)

#
dWit; (58)

where we have interchanged the order of summation between i and k in the second

line of (58). Since there are more bonds than sources of risk, it must be possible to

12



choose non-zero portfolio weights, wk, which make the portfolio locally riskless. This

means that the weights must satisfy m restrictions of the form

KX
k=1

wk�Pi(t; Tk)P (t; Tk) = 0; i = 1; : : : ; m: (59)

By continuously readjusting the portfolio weights, we can ensure that the price dy-

namics of the portfolio are always riskless, or deterministic. Absence of arbitrage

requires that the expected (and realized) return is equal to the short rate rt | oth-

erwise there is a \free lunch" by either buying or selling the portfolio and taking

the opposite position in the money markets (both investments are locally riskless).

Stated otherwise, the expected excess return must be zero,

KX
k=1

wkP (t; Tk) � f�P (t; Tk)� rtg = 0 (60)

We have shown that, if the vector z = [P (t; T1)w1; : : : ; P (t; TK)wK]
0, with z 6= 0,

solves the system of equations:

2
6664
�P1(t; T1) : : : �P1(t; TK)

�P2(t; T1) : : : �P2(t; TK)

: : : : : : : : :

�Pm(t; T1) : : : �Pm(t; TK)

3
7775
2
6664
P (t; T1)w1

P (t; T2)w2

: : :

P (t; TK)wK

3
7775 � A1z = 0 ; (61)

the same K � 1 vector z also solves the larger system:2
6666664

�P1(t; T1) : : : �P1(t; TK)

�P2(t; T1) : : : �P2(t; TK)

: : : : : : : : :

�Pm(t; T1) : : : �Pm(t; TK)

�P (t; T1)� rt : : : �P (t; TK)� rt

3
7777775

2
6664
P (t; T1)w1

P (t; T2)w2

: : :

P (t; TK)wK

3
7775 � A2z = 0: (62)

Since (62) is a homogeneous system of equations and z 6= 0, this is only possible if the

rank of A2 is equal to m. If A2 is non-singular, the solution to (62) is z = A�12 �0 = 0,

which is obviously a contradiction.6 Since A2 has m + 1 rows but rank m, the last

row can be written as a linear combination of the other rows. Moreover, this result

does not depend on the speci�c maturities Tk, so for any T we have

�P (t; T ) = rt +
mX
i=1

�(Xt)�Pi(t; T ); (63)

where �i(X) is the market price of risk for the i'th state variable (factor). Note that

the risk premia can only depend on Xt and possibly calendar time t, but not on the

maturity dates T (or other characteristics of the K securities, for that matter).

6This line of reasoning depends on K being equal to m + 1. If K > m + 1, we can show that

absence of arbitrage implies rank(A
2
) = m by noting that A

1
and A

2
have the same nullspace.

This approach is used in proofs of the APT theory, see Ross (1976). Johnston (1984) contains an

introduction to nullspaces.
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To complete the derivation of bond prices, we substitute (63) into (56). After

rearranging terms and using the de�nition of �Pi(t; T ) in (57), we get the following

PDE for bond prices:

1

2

mX
i=1

mX
j=1

@2P

@Xi@Xj

�i(X)�j(X)�ij +

mX
i=1

@P

@Xi

f�i(X)� �i(X)�i(X)g +
@P

@t
� rP = 0; (64)

with boundary condition P (T; T ) = 1. As in the one-factor case, cf. section 3, we

can use the Feynman-Kac theorem to represent the solution of the PDE (64) as the

risk-neutral expectation

P (t; T ) = EQ
t

�
e�

R T
t r(Xs)ds

�
; (65)

where the Q-measure corresponds to the stochastic process (SDE)

dXt = f�(Xt)� �(Xt)�(Xt)g dt + �(Xt)dW
Q
t : (66)

Note that the drift and volatility functions of (66) are obtained from the coe�cients

of the �rst-order and second-order derivatives in (64), respectively.

5.2 The Brennan and Schwartz model

Thus far, our discussion of multi-factor models may appear somewhat abstract. For

example, we have not made any attempts to interpret the state vector, Xt, except

for being the driving force of changes in the yield curve. However, once we have

speci�ed a stochastic process for the state variables and made assumptions about the

risk premia, we can solve the bond-pricing equation and determine the functional

relationship between P (t; T ) and Xt, for any maturity date T . Given m di�erent

bond prices (i.e., points on the yield curve), we can invert the bond-pricing equation

and express the m state variables in terms of m zero-coupon yields. This approach is

useful in practical implementations of the models, but the interpretation of the state

variables may not be straightforward.

The last problem suggests that we should use observable state variables when

building term-structure models. Using macroeconomic variables is an interesting

idea, and in
ation an obvious candidate for any nominal term-structure model, but

there are several problems. In particular, macroeconomic variables are observed rela-

tively infrequently (monthly, at most), and the data quality is often rather poor due

to measurement problems.7 Instead, we concentrate on modeling approaches that

directly identify the state variable with bond yields for speci�c maturities. The �rst

model in this vein is the Brennan and Schwartz (1979) model which is a two-factor

7We are not saying that macroeconomic variables, such as in
ation, play no role in the deter-

mination of the term structure. However, the relevant variables, e.g, expected future in
ation, are

not directly observable, and the best way to estimate (measure) these variables is probably to use

information in the yield curve itself. That makes the speci�cation problem circular.
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model with the short rate, rt, and the consol yield, lt, as state variables.
8 Under the

true (original) probability measure, the state variables Xt = (rt; lt) are governed by

the general stochastic process

drt = �1(rt; lt)dt+ �1(rt; lt)dW1t (67)

dlt = �2(rt; lt)dt+ �2(rt; lt)dW2t; (68)

and the price of a zero-coupon bond, P (t; T ), satis�es the PDE:

1

2

@2P

@r2
�21(r; l) +

1

2

@2P

@l2
�22(r; l) +

@2P

@r@l
��1(r; l)�2(r; l) +

@P

@r
f�1(r; l)� �1(r; l)�1(r; l)g +

@P

@l
f�2(r; l)� �2(r; l)�2(r; l)g +

@P

@t
� rP = 0; (69)

subject to the boundary condition P (T; T ) = 1. This PDE involves two risk premia,

�1(r; l) and �2(r; l). However, as we show in the following, it is possible to eliminate

�2(r; l) and �2(r; l) from the PDE, so only one market price of risk parameter must

be speci�ed.

If we normalize the continuous coupon of the consol to one, the price Vt of the

consol bond is given by:

Vt =
Z
1

0
e�ltsds =

�
� 1

lt
e�lts

�
1

0

=
1

lt
(70)

Of course, the consol price, Vt, must also satisfy the PDE (69). Contrary to the

normal case, the functional relationship between X = (r; l) and V is known, so we

can simply substitute the requisite partial derivatives into (69). Speci�cally, since

all partial derivatives with respect to r and t vanish, and since @V=@l = �l�2 and

@2V=@l2 = 2l�3, we have that

l�3�22(r; l)� l�2 f�2(r; l)� �2(r; l)�2(r; l)g+ 1� rl�1 = 0: (71)

Note that we have added one to the left hand side of the PDE in (71) because of the

\dividend" payments, cf. equation (24) in section 3.1. Finally, it follows from (71)

that the risk-neutral drift for the consol yield is given by:

�2(r; l)� �2(r; l)�2(r; l) = l�1�22(r; l) + l2 � rl: (72)

This eliminates �2 and �2 from the PDE, and the resulting bond-pricing formula only

depends on the parametric speci�cations of �1, �1, �2, �, and �1.

8A consol is an annuity (or bullet) which never matures, so there is no repayment of principal,

only interest rate payments (coupons). Concretely, Brennan and Schwartz (1979) assume that the

bond makes continuous payments at the annual rate c, and let lt be the continuously compounded

consol yield. In practice, this bond does not trade in the market, but good proxies can usually be

found, for example consol yields with discrete payments, or perhaps the yield-to-maturity of a (very)

long bullet.
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In fact, there are di�erent versions of the BS model, but in the following we focus

on the version in Brennan and Schwartz (1979), where

d log rt = [�(log lt � log rt)� � log p] dt+ �1dW1t (73)

d lt = �2(r; l)dt+ �2ltdW2t; (74)

where �, p, �1 and �2 are time-invariant parameters. Note that �2(r; l) deliberately

is left unspeci�ed. If the market price of risk is speci�ed as a constant, �1(�) = �1,

the PDE becomes (use Ito's lemma to determine the SDE for rt in (73))

1

2

@2P

@r2
�21r

2 +
1

2

@2P

@l2
�22 l

2 +
@2P

@r@l
��1�2rl +

@P

@r

�
r

�
� log(l=r)� � log(p) +

1

2
�21

�
� �1�1r

�
+

@P

@l

n
l�1�22(r; l) + l2 � rl

o
+

@P

@t
� rP = 0: (75)

Unfortunately, there is no closed-form solution for bond prices, and the PDE can only

solved numerically, e.g., by using �nite-di�erence approximations. Alternatively, bond

prices can computed with Monte Carlo simulations of the risk-neutral expectation

in (65). Numerical PDE solutions are used in the original paper by Brennan and

Schwartz (1979), whereas Schwartz and Torous (1989) rely on Monte Carlo simulation

when pricing mortgage-backed securities under the Brennan-Schwartz model. Both

techniques are very time-consuming, even with modern computing equipment.

5.3 The exponential-a�ne class of models

The lack of an analytical solution for bond prices is the main drawback of the Brennan

and Schwartz model. Moreover, the model requires the consol yield as input, and this

bond may not trade in all bond markets.9

In this section we consider a general class of models, called exponential-a�ne mod-

els, where a general analytical solution is available [Du�e and Kan (1996)]. For some

parametric speci�cations, we can obtain a closed-form expression like in the Vasicek

model, but in the worst case we will have to solve a system of ordinary di�erential

equations numerically, and this can be done very e�ciently with the Runge-Kutta

method. This is especially true for multi-factor models since the complexity of the

numerical solution only increases linearly in the number of state variables, whereas

the complexity of �nite-di�erence PDE solutions generally increases exponentially in

the number of state variables.

Du�e and Kan (1996) propose a general class of term-structure models that in-

clude Gaussian models as a special case. Under the original (true) probability mea-

sure, the m state variables in the vector Xt are governed the process

dXt = K (��Xt) dt+ C�(Xt)dWt; (76)

9Actually, there are about 4{5 consol bonds in the Danish bond market, but they trade very

infrequently, i.e., the liquidity is extremely low.
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where �(Xt) is a m�m diagonal matrix whose i'th diagonal element given by

�ii(Xt) =
q
�i + � 0iXt: (77)

In this setup, the m univariate Brownian motions are independent, and the depen-

dence structure between the innovations to Xt is captured by the m �m matrix C.

Loosely speaking, this means that the m�m variance-covariance matrix for changes

in Xt is given by

Cov(dXt) = C�2(Xt)C
0 dt; (78)

with representative element (i; j)

[Cov(dXt)]ij = Cov(dXit; dXjt) =
mX
k=1

CikCjk�
2
kk(Xt)dt: (79)

We refer to Du�e and Kan (1996) for a thorough discussion of conditions ensuring

that (76) is a well-de�ned stochastic process. The short rate, or instantaneous interest

rate, rt, is speci�ed as an a�ne function of Xt:

rt = r(Xt) = w0 +
mX
i=1

wiXit = w0 + w0Xt: (80)

Generally, the vector w consists of either zeros or ones. Finally, to complete the model

speci�cation, we make the following assumptions about the market prices of risk:

�(Xt) = �(Xt)� (81)

With these assumptions, the fundamental PDE can be written as

1

2

mX
i=1

mX
j=1

@2P

@Xi@Xj

 
mX
k=1

CikCjk�
2
kk(Xt)

!
+

mX
i=1

@P

@Xi

"
mX
k=1

Kik(�k �Xk)�
mX
k=1

Cik�
2
kk(X)�k

#
+
@P

@t
� r(X)P = 0; (82)

or more compactly using matrix algebra and the trace operator,10

1

2
Tr

 
@2P

@X@X 0

C�2(X)C 0

!
+

@P

@X 0

h
K(��X)� C�2(X)�

i

+
@P

@t
� [w0 + w0X]P = 0: (83)

10If A and B are symmetric square (m�m) matrices,

Tr (AB) =

mX
i=1

fABgii =

mX
i=1

mX
j=1

AijBji =

mX
i=1

mX
j=1

AijBij ;

that is Tr (AB) is a convenient way to write the sum of the product of all m2 elements in A and B.
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Following the general idea of section 4, we guess that the solution takes the fol-

lowing form

P (�;X) = exp [A(�) +B(�)0X] ; (84)

where A(�) is a scalar function, and B(�) an m�1 vector. In order to verify whether

the solution is of the form (84), we compute the requisite partial derivatives of (84)

and substitute these expressions into the PDE (83). If we can obtain an ODE system

de�ning A(�) and B(�), we have demonstrated that the solution is of the form (84).

Moreover, by solving the ODE system, either analytically or by numerical methods

(Runge-Kutta), we obtain the bond-pricing formula.

First, we have after straightforward calculations

@P

@Xi

= Bi(�) � P (t; T ); i = 1; : : : ; m (85)

@2P

@Xi@Xj

= Bi(�)Bj(�) � P (t; T ); i = 1; : : : ; m j = 1; : : : ; m (86)

@P

@t
= �@P

@�
= �

"
dA(�)

d�
+
dB(�)0

d�
X

#
� P (t; T ): (87)

If we substitute these expressions into the PDE, and collect terms involving Xi,

for i = 1; : : : ; m and the constant (one), we obtain the following ODEs | after

rearranging several terms and using the property that Tr(ABC) = Tr(BCA):

dB(�)

d�
=

1

2

mX
i=1

[C 0B(�)]2i �i � K0B(�)�
mX
i=1

�i[C
0B(�)]i �i � w (88)

dA(�)

d�
=

1

2

mX
i=1

[C 0B(�)]2i �i +B(�)0K��
mX
i=1

�i[C
0B(�)]i �i � w0: (89)

Here, [C 0B(�)]i refers to the i'th element of the m � 1 vector C 0B(�). Finding a

general closed-form solution to this ODE system does not seem to be possible, but

many special cases (models) can be solved in closed form.

Having derived the ODEs, it is worth emphasizing the speci�c restrictions which

result in the exponential-a�ne bond price (84). Du�e and Kan (1996) show that we

obtain (84) if the following conditions hold:

� The short rate is an a�ne function of the state variables, that is rt = w0+w0Xt.

� The risk-neutral drift function (vector) is a�ne in Xt.

� The covariances between dXi and dXj for all i; j are a�ne functions of Xt. For

the SDE (76) this holds if �2(Xt) is a�ne in Xt, cf. equation (79).

The stochastic process (76) combined with the risk premia (81) is the most general

speci�cation satisfying the su�cient conditions in Du�e and Kan (1996). In appli-

cations, further restrictions are often needed to obtain a tractable model.

18



In the above setup, nothing is assumed about the state variables, and accordingly

they are taken as unobserved variables. As mentioned during the introductory re-

marks of section 5.2, we can always invert the bond-pricing formula and express the

m state variables in terms of m (distinct) zero-coupon yields. Still, the starting point

of the modeling e�ort is an unobserved stochastic process, and the identi�cation with

m bond yields is only made indirectly. Alternatively, Du�e and Kan (1996) propose

takingm \reference" yields as the state variables, that is specifying the stochastic pro-

cess (under the Q-measure) directly for these m yields. This approach | called yield

factor models | facilitates direct identi�cation with observable quantities (points on

the yield curve), but as the state variables are now traded assets, we need to impose

parameter restrictions on (76), such that the m bonds are priced correctly, see Du�e

and Kan (1996).11 Unfortunately, the requisite parameter restrictions are often quite

complex and therefore di�cult to impose. In essence, there is a tradeo� between

direct interpretation of the state variables and the time-invariant model parameters.

5.4 Examples of a�ne multi-factor models

The three one-factor models in section 4 belong to the exponential-a�ne class. For

models with multiple factors, there are a lot of di�erent speci�cations, and we cannot

provide an exhaustive list. Instead, we o�er a few examples from the multi-factor

literature.

5.4.1 Gaussian central tendency model

This model has been proposes by, among others, Beaglehole and Tenney (1991) and

Jegadeesh and Pennacchi (1996). The short rate is governed by the two-factor Gaus-

sian process

drt = �1(�t � rt)dt+ �1dW1t (90)

d�t = �2(� � �t)dt+ �2dW2t; (91)

and the two Brownian motions may be correlated with correlation coe�cient �. The

market prices of risks are speci�ed as constants, �1 and �2. The central tendency

models generalized the Vasicek model by letting the short rate revert towards a time-

varying (stochastic) mean which is governed by a separate process. Sometimes this

feature is referred to as a \double decay" model.

The PDE is given by:

1

2

@2P

@r2
�21 +

1

2

@2P

@�2
�22 +

@2P

@r@�
��1�2 +

@P

@r
[ �1(�� r)� �1�1]

+
@P

@�
[�2(� � �)� �2�2] +

@P

@t
� rP = 0; (92)

11We note, in passing that the same problem applies to the Brennan and Schwartz (1979) model.

In section 5.2, we assumed that the price formula for the consol was Vt = l�1
t
, but we did not

provide a proof, and, in general, the result requires further restrictions on the parameters in (73){

(74). Apparently, this problem seems to be ignored by Brennan and Schwartz (1979).
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subject to the boundary condition P (T; T ) = 1: It is straightforward to verify that

this model is exponential-a�ne (since the model is Gaussian). Therefore,

P (t; t+ �) = exp [A(�) +B1(�)rt +B2(�)�t] : (93)

If we substitute the requisite partial derivatives into (92) and divide by P on both

sides of the equation, get

1

2
B2

1(�)�
2
1 +

1

2
B2

2(�)�
2
2 +B1(�)B2(�)��1�2 +B1(�) [ �1(�� r)� �1�1]

+B2(�) [ �2(� � �)� �2�2]� A0(�)�B0

1(�)r � B0

2(�)�� r = 0: (94)

Since (94) must hold for all values of r and �, we obtain the following ODE systems

after collecting terms:

B0

1(�) = ��1B1(�)� 1 (95)

B0

2(�) = �1B1(�)� �2B2(�) (96)

A01(�) =
1

2
�21B

2
1(�) +

1

2
�22B

2
2(�) + ��1�2B1(�)B2(�)

��1�1B1(�) + (�2� � �2�2)B2(�); (97)

with boundary (initial) conditions B1(0) = 0, B2(0) = 0, and A(0) = 0 as P (T; T ) = 1

for all rt and �T . It is possible to solve the entire ODE system in closed form, but

for reasons of space we concentrate on B1(�) and B2(�). First, note that the ODE

de�ning B1(�) is exactly the same as in the Vasicek model. This means that

B1(�) =
e��1� � 1

�1
(98)

If we substitute (98) into (96), we get another linear ODE, which can be solved by

the same technique as we used in section 4.1:

B2(�) =
e��2� � 1

�2
� e��1� � e��2�

�1 � �2
: (99)

Finally, we can substitute (98) and (99) into (97), and A(�) can be calculated by

ordinary integration. Since the expression for A(�) is rather length, it is omitted

here.

5.4.2 Fong-Vasicek stochastic volatility model

Fong and Vasicek (1991) propose another extension of the Vasicek model, where the

Ornstein-Uhlenbeck process is augmented with a stochastic volatility factor:

drt = �1(�� rt)dt+
q
VtdW1t (100)

dVt = �2(�� Vt)dt+ �
q
VtdW2t (101)
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The correlation coe�cient between two Brownian motions is denoted �. Fong and

Vasicek (1991) specify the market prices of risk as

�i(�) = �i
p
V ; i = 1; 2 (102)

since this is the only speci�cation which preserves the a�ne property under the Q-

measure. With these assumptions, the PDE becomes

1

2

@2P

@r2
V +

1

2

@2P

@V 2
�2V +

@2P

@r@V
��V +

@P

@V
[ �1(�� r)� �1V ]

+
@P

@V
[�2(�� V )� �2�V ] +

@P

@t
� rP = 0: (103)

The solution is of the form

P (t; t+ �) = exp [A(�) +B1(�)r +B2(�)V ] : (104)

After substituting the requisite partial derivatives of (104) into the PDE and collecting

terms, we get the following ODE system de�ning the functions A(�), B1(�) and B2(�):

B0

1(�) = ��1B1(�)� 1 (105)

B0

2(�) =
1

2
B2

1(�) +
1

2
�2B2

2(�) + ��B1(�)B2(�)

��1B1(�)� (�2 + �2�)B2(�) (106)

A0(�) = �1�B1(�) + �2�B2(�): (107)

The solution for B1(�) is the same as in the Vasicek model. Closed-form expressions

for B2(�) and A(�) are presented in Selby and Strickland (1995). The expressions

are quite complicated | involving in�nite-order series expansions | so it might be

worthwhile to consider solving the ODEs numerically instead.

5.4.3 Multi-factor CIR models

Neither the Gaussian central-tendency model nor the Fong-Vasicek stochastic volatil-

ity model restrict the short rate to be non-negative. A popular multi-factor model

with this property is the m-factor CIR model which is obtained by adding m inde-

pendent square root processes,

drt =
mX
i=1

yit (108)

dyit = �i(�i � yit)dt+ �i
p
yitdWit; (109)

and the market price of risk for the i'th factor is speci�ed as in the one-factor CIR

model, that is

�i(�) = (�i=�i)
p
yit: (110)
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The easiest way to derive an expression for bond prices is using risk-neutral expecta-

tions

P (t; T ) = EQ
t

�
e�

R T
t (
Pm

i=1 yis) ds
�
; (111)

where yit evolves according to

dyit = f�i(�i � yit)� �iyitg dt+ �i
p
yitdW

Q
it (112)

under the Q-measure. By interchanging the order of integration and summation,

equation (111) may be rewritten as

P (t; T ) = EQ
t

"
e
�Pm

i=1

�R T
t yisds

�#

= EQ
t

"
mY
i=1

e�
R T
t yisds

#

=
mY
i=1

EQ
t

�
e�

R T
t yisds

�
(113)

=
mY
i=1

Pi(t; T ); (114)

where Pi(t; T ) is the price formula for a one-factor CIR model with parameters �i,

�i, �i and �i, as well as \short rate" yit. Note that the third line follows because of

independence between the m square-root processes.
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