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One-Factor Models — 1

e Key features of one-factor (equilibrium) models:

— All bond prices are a function of a single state variable, the short rate.
— The short rate evolves according to the univariate SDE:
dry = p(ry)dt + o(ry)dWs . (1)

— Using the "“absence of arbitrage” assumption and Ito’s lemma, we derive a
PDE for bond prices:

197P , or oP _
5527 (1) + - [ulr) = A(n)e(n)] + — — rP =0, (2)

with boundary condition P(T,T7) = 1.

e Advantages of one-factor models:

— Simple model — with a limited number of parameters
— The state variable (short rate) is observable, at least in principle.

— Numerical solutions (e.g. binomial trees) can be implemented, if necessary.

One-Factor Models — 2

e Problems with one-factor models:

— Changes in the yield curve are perfectly correlated across different matu-
rities.

— Shape of the yield curve highly restricted (monotonic increasing and de-
creasing, and hump-shaped, but not inversely hump-shaped).

— Model unable to fit the actual yield curve (when the model parameters are
time-invariant, as they are supposed to be). Cause of concern for pricing
derivatives (e.g., mortgage-backed securities).

e Solutions:

— Calibrated one-factor models with time-dependent parameters (advocated
by Hull and White (1990) as modifications of the Vasicek and CIR models).

— Alternatively: HJM models which fit the initial yield curve per construction.

— Models with multiple factors (but still with time-invariant parameters).



Solution 1: Calibrated one-factor models

e For example, Vasicek with time-dependent drift

dry = K {0(t) — r¢} dt + cdW2, (3)
where 6(t) is chosen to fit the current yield curve exactly.
e Problems solved:

1. Perfect fit to the current yield curve (including any bond mispricing).
2. Any shape of the current yield curve can be accommodated.

e Problems remaining and new problems:

1. Still a one-factor model with perfect-correlation assumption. Inadequate
for certain derivatives, e.g. options on yield spreads [Canabarro (1995)].

2. The approach is (inherently) useless for detecting mispricing of bonds.
3. Model will not fit future yield curves, unless parameters are re-calibrated.

4. Hedging and risk-management applications are problematic — because of
the “perfect correlation” assumption.

Solution 2: Multi-Factor Models

e Main assumptions:

— All bond prices are a function of a m-dimensional state vector X;.
— The short rate is a known function of X;, that is ry = r(X}).
— The state variables in X; evolve according to the multivariate SDE
dX; = p(Xy)dt + o (Xz)dWr, (4)
where W, is an m-dimensional Brownian motion, and o(X;) diagonal.

e Problems with multi-factor models:

1. Changes in yield curve are no longer perfectly correlated, but they still lie
in an m-dimensional subspace (a great improvement, of course).

We may need “many” factors to fit the entire yield curve.
Factors are, in principle, unobservable. What is X; anyway?

Finding an analytical solution for bond prices may be difficult.
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Numerical solutions (for derivatives) can be computationally involved.



Multi-Factor Models — How?

e Without loss of generality, the short rate can be taken as one of
the m state variables, since ry = r(X4).

e Under no-arbitrage assumption all bond prices (still) satisfy:
T
P(t,T) = E? {e_ Ji ’“SdS] , (5)

where (Q denotes the risk-neutral distribution. Note: the risk-
neutral process for r; has yet to be determined.

e Using “traded assets’ as additional state variables?

— Examples: 30Y yield or the consol yield (Brennan-Schwartz model).
— We must specify how the state variables affect », under the @Q-measure.

— Parameter restrictions, since (5) must hold for these assets also.

Multivariate SDEs

e Multivariate SDE:

dXt = p(Xt)dt 4+ o (X¢)dWr, (6)
where X; = (Xq1¢4, ..., Xmt).
e The i'th row of (6) is a univariate SDE, whose drift and volatility
functions depend on all m state variables:
dX;e = pi(Xg)dt + 03 ( X)) dWiy. (7)
In this setup, the m univariate Brownian motions can be corre-

lated, with Corr(dWy, dWij) = pj;dt.

e Consider a scalar function, F(X,t), representing a mapping from
R™ x R to the real line, R. The dynamics of F(X,t) are obtained
by applying a multivariate version of Ito’s lemma.



Ito's lemma (multivariate)

If X; evolves according to the vector SDE (6), the function F,
given by F' = F(X,t) follows the univariate SDE:

m
dFy = a(Xy)dt + Y Bi(Xy)dWiy, (8)
i=1
The drift in (8) is given by:

N OF

a(X) =
z; 0X;

oOF 1™ ™
'(X)+E+§i§ ; XaX Uz(X)O'j(X)Pija (9)

where p;; = 1.
The ¢'th volatility coefficient in (8) is given by:

oOF

8Xi0i(X)° (10)

Bi(X) =

A General Multi-Factor Model — 1

As in the one-factor case, we determine (endogenously) the rela-
tionship between X; and bond prices, P(t,T).

Since P(t,T) is a function of X; and ¢,

m
dP(taT) — /J'P(taT)P(taT)dt + Z UPi(taT)P(taT)dWita (11)
i=1
and the drift and volatility coefficients are obtained from Ito’s
lemma.

Absence of arbitrage implies the APT restriction:

pp(t,T) =ri+ > N(X)op;(t,T). (12)
i=1

In equation (12), \;(X:) is the market price of risk for the i'th
factor, and it is independent of T.
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A General Multi-Factor Model — 2

e By Ito's lemma, up(t,T) and op;(t,T) can also be written as:

" P OP 1N~ 82P
t, T)P(t,T) = —— (X)) 4+ — 4= (X))o (X)pij
wEDPOT) = Y om0+ 5045303 e (070,
opi(t, T)P(t, T) = aapiai(X), 1=1,2,...,m

e After substituting these equations into the APT restriction (12),
we get the following PDE:

1 m m 82P
> 8Xi8Xj0'z( )Uj( )Pzg +

i=1j=1
o~ OP P B
; o (XD = Xi(X0ei (0] + Zr—r(X)P =0 (13)

with boundary condition P(T,T) = 1.
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A General Multi-Factor Model — 3

e Feynman-Kac solution:

P, T) = EQ [e= il (Xs)ds] (14)

e The expectation in (14) is taken under the probability measure
corresponding to the risk-neutral (drift-adjusted) process:

dX; = {u(Xy) — o(X)A(X)} dt + o (X)dW 2. (15)

e The i'th element of the SDE (15) is

dX5 = {pi(X) — N(X)oi(X)}dt + o(Xp)dWS.  (16)
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Four examples of multi-factor models

. Double-Decay (Central-Tendency) model:

dri = k1(ut —re)dt + o1dWhy (17)
dur = k2(0 — pe)dt + oodWoy (18)

. Fong-Vasicek stochastic volatility model:

dri = k1(p—re)dt + VVidWyy (19)
dV; = k2(a— Vp)dt + nvVVidWay (20)

. Brennan-Schwartz model:

dlogry = [a(li— 1) — alogp]dt+ oc1dW1s (21)
dl; = ﬂg(r, l)dt + o2l dWoy, (22)

where [; is the consol rate (annuity that never matures).

. Multi-factor CIR model:

T D im1Yit (23)
dy;t ki(pi — yie)dt + oin/yadWiy, 1=1,2,...,m (24)
where the m Brownian motions are independent.
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The Brennan and Schwartz (1979) model

State variables in the model:
r¢  the short rate (instantaneous interest rate).
It the vield-to-maturity on a consol bond with a *“continuous coupon’.
General stochastic process:
dri = B1(re, l)dt + n1(re, 1) dWey (25)
dly = Bo(re,ly)dt + no(re, 1p)dWoy. (26)
The particular process used in the paper:
dlogr; = [a(ly — 1) — alogp]dt + o1dW1y (27)
dly = Bo(r,l)dt + oolidWoy. (28)
For pricing purposes, we do not need to specify B>(l,r) as the

second state variable is a traded asset.
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BS consol price dynamics

e A consol is an annuity that never matures. If V; denotes the price
of the consol, we have the following relation:

00 1 oC 1
vV, = / e lsgs = |—Zemlts| =2 (29)
0 Lt 0 lt

e Note: the relationship between X; = (r4,1;) and V; is known.

e Consol price dynamics:

dV;
#:MV(Tt,lt)dt + 0 -dWy; + oy(r,l)dWa  (30)
where
Veouv(nl) = —128(7) + 13031, r) =1 =1 Ba(l,r) + 1 23(1,r)] (31)
Veoy(r,) = —172np(,r)=1"[-1" ()] (32)

since V} = lt_1 does not depend on ry.
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BS fundamental PDE — 1

e The bond price, P(t,T), satisfies the PDE:

19°%P 19%P , d°P
58—32771(7“,0 + Eﬁnz(r,l) + ﬁpm(r,l)nz(r,l) +
P
E {ﬂl(ra l) - )\]_(7’, 1)771(7’70} +
oP oP
= B20nD = Xo(r Dma(r, )} + T — rP=0. (33)

e Because the [; is a known function of a traded asset, we can
eliminate B>(r,1) and X»>(r,l) from the above PDE.

e First, we substitute the SDE for the consol price dynamics (30)
into the APT relationship used to derive the PDE:

py(r, ) +1 = r+ Xo(r, Doy (r,1) (34)
Why do we add [ on the LHS?
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BS fundamental PDE — 2

e Second, we substitute (31) and (32) into (34):

17180 ) H 17203 1) + 1 = = A (r, DI na(r D). (35)

e Third, after multiplying by [ on both sides of (35), we get

Bo(r, 1) — Ao(r, Dma(r, 1) = 17103 (r, 1) + 12 — ri (36)

e Finally, we substitute (36) into (33):

192P 182P 2P

252D+ 3D + 5 aem(n (D) +
oP
E{ﬁl(r, l) — >\1(T7 1)771(7’,1)} +
oP -1 2 2 opP =
E{l na(r, 1) +1 —rl} + ET rP=0, (37

which is the BS PDE.
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Assessment of the BS model

e Advantages of the Brennan-Schwartz model:

State variables are observable (in principle), and they can be interpreted as
short and long-run factors.

Only one market price of risk (preference) parameter in the model.

e Problems with the Brennan-Schwartz model:

No analytical solution for bond prices. The PDE can only be solved with
numerical methods — either by finite-difference PDE solutions or Monte
Carlo evaluation of the Feynman-Kac formula.

In most bond markets, there are no actively traded consol bonds.
Technical problems with the BS model: by the definition of I,

Vi = 171 = / P(t,s)ds = F(rsly), (38)
t

but the requisite parameter constraint(s) are not imposed in the BS model.

This problem is, in fact, an argument against using traded assets (yields)
as state variables (not just in the BS model).
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Exponential-affine models — 1

Fundamental PDE for a general multi-factor model:

e~ 92P
—ZZaX o, oi(X)o;(X)pij +

=1 j57=1

> 2 (%) -2 (0m(0] + X (x)P =0 (39)
i=1 ¢

The Brennan and Schwartz model with X; = (r¢,[;) does not lead
to an analytical solution of (39) for bond prices.

There are several term-structure models with an analytical solu-
tion for P(t,T), and for most of these models we get

P(t,t+7) = exp [A(T) + B(T)’Xt] . (40)

Models with bond prices of the form (40) are called exponential-
affine models [Duffie and Kan (1996)].
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Exponential-affine models — 2

What are the sufficient conditions for obtaining (40) as the solu-
tion to (39)7

All bond prices, solutions to (39), depend on:

1. The mapping from X; to r;, given by r; = r(X3).
2. m risk-neutral drifts:
i (X) = pi(X) — Xi(X)oi(X) (41)

3. m(m 4 1)/2 variance-covariance terms: o;(X)o;(X)pij.

Sufficient conditions for exponential-affine models:

r(X) = wo+wiX (42)
p(X) = ai+bX, i=1,...,m (43)

That is, all “coefficients” in the PDE are linear in X.
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Exponential-affine models — 3

e The function A(7) and the mx 1 vector (of functions) B(r) depend
on the specific model.

e A(7) and B(7) are obtained as the solution to an ODE system
with dimension (m 4+ 1).

e Same procedure as with one-factor models:

— First, we guess that the solution is of the form (40).
— Second, we substitute the requisite partial derivatives in to the PDE.

— Finally, we collect terms with the factor X; (¢ = 1,2,...,m) and a constant
(remaining terms).

— This provides the m + 1 ODEs which must be solved somehow (perhaps
numerically, using Runge-Kutta integration)

— Boundary conditions for the ODE: A(0) = 0 and B(0) = Opyx1-

21

Gaussian central-tendency model — 1

Stochastic process for the short rate:

dry k1(ue — re)dt + o1dWyy (45)
dur = ko(0 — pp)dt + opdWoy, (46)

e The Brownian motions are dependent, Corr(dWis, dWoy) = pdt,
and the market prices of risk are constants, A1 and X».
e PDE:
10°P ,  10%°P ,  0°P

oP
poi102 + B [k1(p — 1) — A101]

29,271 5 ou? o ordu
oP oP
+ 20 a0 — 1) — daoa] - 22 —rP =0, (47)
o or

We guess that

P(t,t +7) =exp | A(T) + B1(7)rt + Bo (1)t - (48)
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Gaussian central-tendency model — 2

e Substitution of the partial derivatives of the function (48) into
the PDE (47) gives

{%B%mo—% + SB3(1)03 + Bi(1) Ba(r)po102 + Bi(r) [k — 1) ~ Mio]

+Bo(7) [k2(0 — p) — A202] — A'(1) — Bi(7)r — By()p —r } P =0 (49)
e After dividing by P and collecting terms we get
1 1
{EJ%B%(T) + 50533(7’) + po102B1(7)B(1)

—X101B1(7) + (k262 — X202)Ba (1) — A'T) }

- {mBl(T) + Bi(r) + 1} r
+ {/@131(7') — koBo (1) — BIQ(T)} uw = 0 (50)
23
Gaussian central-tendency model — 3
e Since (50) must hold for all values of r and u, we have
Bi(tr) = —-rk1Bi(r) -1 (51)
B5(t) = k1Bi1(7) — k2Ba(1) (52)
Al(r) = %O’%B%(T) + %O’%B%(T) + po1o2B1(7)Ba(1)
—X101B1(7) 4+ (k20 — A2o2) Ba(1). (53)
e ODE solutions:
Bi(r) = * (54)
e—RK2T _ 1 e~ R1T _ o—RK2T
Bx(r) = — (55)
K2 K1 — k2

A(r) = /0 A'(s)ds.  where A'(s) is the RHS of (53). (56)
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