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The fundamental PDE for bond prices — 1

e Model building blocks (assumptions):

1. Absence of arbitrage opportunities (in a frictionless market).
2. One factor: the bond price, P(t,T), depends only the short rate, r;.
3. Stochastic process: r; follows the SDE dr; = u(r:)dt + o(ry)dWs.

e Based on these assumptions, we first derive the APT-restriction

pp(6T) = 1+ Aop(T)  op(LT) =2 (), (1)

where up(t,T) and op(t,T) are the instantaneous expected re-
turn and volatility of the T-maturity bond,

dP(ta T) /P(ta T) — /J'P(ta T)dt + GP(ta T)tha (2)

and \(r) is the so-called market price of risk.



The fundamental PDE for bond prices — 2

Using Ito’'s lemma, up(t,T) may also be written as:

oP OP 19°%P 2

pp(t P T) = Zu() + -+ 55202, (3)
From the APT restriction (1) we have
pp (e TYP(,T) = rP(T) + M) (1) (4)

By combining the two equations (3) and (4), we get the funda-
mental PDE which the bond price P(t,T) must satisfy:

2
EZ_PUQ(T) + —[,u(r) A(r)o(r)] + 8_P — rP =0, (5)

with boundary condition P(T,T) = 1.

Risk-neutral valuation — basics

Feynman-Kac representation of the solution to the PDE,
T
P(t,T) = EC le_ Ji ’“8] . (6)

The expectation is taken under a new probability measure () cor-
responding to the drift-adjusted SDE for the short rate

dry = {u(re) — A(re)o(r) } dt + o (re) dW,?, (7)
where WtQ is @ Brownian motion under the Q-measure.
We refer to this as risk-neutral valuation.

Risk-neutral valuation in two cases:

— SDE: risk adjustment done by modifying the drift of the short-rate process.

— Binomial: risk adjustment by modifying the probabilities of an up-move.
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Risk-neutral valuation — extensions

Consider a claim with the following payoff structure

— For t < s < T, there is a continuous annualized payment of c¢(r;). That is,
between s and s + ds, the payment from the claim is c(rs)ds.

— At maturity T, there is a final lump-sum payment of C(rr).

Using risk-neutral valuation, the price can be expression as:

Vi(r) = B9 { / e fts“d“c(rs)ds] + EC [e—ftTTstC(rT) . (8)

t
Note how the future payoffs of ¢(rs)ds and C(rp) are discounted.

By the Feynman-Kac duality, there is also a PDE representation:
10°V
2 Or2

5 ov ov _
?(1) + -1 = ADe() + S+ ) ~ rP=0,  (9)

subject to the boundary condition Vp(r) = C(r).

The Vasicek model — 1

The first paper about continuous-time term-structure models.

Vasicek (1977) assumes that the short rate follows the Ornstein-
Uhlenbeck process

dry = k(u — r¢)dt + ocdWs. (10)

The market price of risk is assumed to be a constant, A\(r) = \.
Main features of the Vasicek model:

— Mean reversion towards the unconditional mean u = E(r).

— Speed of mean reversion determined by « (a larger k means faster mean
reversion).

— The short rate is normally distributed (Gaussian model).

— Because of the normal distribution, we can obtain closed-form solutions for
interest-rate derivatives in many important cases.



The Vasicek model — 2

PDE for bond prices:

10°P ,  OP oP
——= — —7r)—A ~— —rP=0 11
55.2° T3, [k(p—71) = Aol + 55 " : (11)

with boundary condition P(T,T) = 1.

We guess that the solution to (11) takes the following form:
P(t,T) =exp[A(T) + B(r)ry, =T —t. (12)

In order to show that equation (12) is the solution to (11) and

to determine A(7) and B(7), we do the following:

— Calculate the requisite partial derivatives of (12), and substitute these ex-
pressions into the PDE (11).

— If the PDE reduces to two ordinary differential equations (ODEs), we have
verified that the solution is of the form (12).

— Solve the ODEs, subject to the boundary condition A(0) = 0 and B(0) = 0.
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The Vasicek model — 3

Partial derivatives of (12),

P 2p
OF _ gtoypew, 1), L = B(r)2pPe,1)
or or2
oP 0P

—_ / /
= = - [A'(r) + B'(r)r| - P(t,T).
Next, we substitute these expressions into the PDE:
{%32(7)02 4+ B(™)[k(p—1)—Ao] — A'(r) — B (r)r — r}-P=O. (13)
After dividing by P and collecting terms with the factor r, we get
{%32(7)02 + B(7)[rkp — Ao] — A'(T)} — {K,B(T) + B'(7) + l} r=0. (14)

Both terms in brackets must be zero (our two ODES).



The Vasicek model — 4

System of ODEs for the Vasicek model

Al(r) = 102(r)B?(7) + {ku — Ao} B(7) (15)
B'(r) = —kB(r) -1 (16)

The PDE boundary condition
P(T,T) = exp [A(0) + B(O)rp] =1  for all rp, (17)
means that A(0) = 0 and B(0) = 0 — ODE initial conditions.

The ODE system has a recursive structure — the ODE equation
for B'(r), i.e. (16), does not involve A(7).

This means that the function B(7) only depends on « and .
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The Vasicek model — 5

Four steps in finding the solution for B(71)

. Multiply all terms by exp(k7) and rearrange,
B'(1)ef*T 4+ kB(1)e"T = —elT . (18)

. By the product rule for differentiation the LHS may be written as
d

. {em-B('r)} = "7, (19)

. Since, for any function, h(7) = h(0) + J§ K/ (s)ds,
T d T
T B(r) = B(0) +/0 E{eﬂsB(s)} ds = —/0 eSds,  (20)

. Finally, multiply by exp(—«x7), and calculate the integral

—RT _ 1
€ . (21)
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B(r) = —e_’W/OTeHSdS =

K



The Vasicek model — 6
Finding the solution for A(7)

The ODE is A'(r) = %02(7)32(7’) + {ku — Ao} B(71).
No special “tricks” are needed here since A(7) is not on the RHS.

We calculate A(7) by straightforward integration of the RHS
T
A(r) = A(0) +/0 Al(s)ds

_ 1o /(" 0 !
= 5 /OB (s)ds—l—[fw—)\o]/o B(s)ds. (22)

We know B(1), and after a lot of calculations we get

2
A(r) = —R(o0) (7 + B(r)) — Z—HBQ(T), where
g o 2
e = w3
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The CIR model — 1

Similar to the Vasicek model — except that the short rate is
restricted to be positive (non-negative).

Stochastic process for the short rate:
dri = k(u — r¢)dt + o+/redWy (24)

This process has a reflecting barrier at 0, hence r > 0.
Market price of risk: A(r) = (\/o)+/T.
PDE for bond prices:

19°P , | OP oP
Eﬁa T+E[H(M—T)—)\T]+E—TP=O, (25)

with boundary condition P(T,T) = 1.
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The CIR model — 2

Again we guess that P(t,t + 7) = exp [A(7) + B(7)r¢] .
We substitute the partial derivatives into the PDE (25),

{%BQ(T)O'QT + B()[k(p—171)—-Ar] — A'(r) - B'(r)r — T‘} -P=0. (26)

After dividing by P and collecting terms with the factor r, we get

{%32(7')0'2 — B(r)(k+ A) — B'(1) — 1} r + {B(r)sp—A'(r)} =0. (27)

From the two brackets, we get the ODE system:
A' (1) kuB(T) (28)
B'(r) = L0°B*(r) — (k+A)B(r) — 1, (29)
with initial conditions A(0) =0 and B(0) = 0.
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Does equation (12) always work?

Q: Do we always get P(t,t +7) = exp[A(7) + B(7)r¢] 7
A: No — as counter-example let A\(r) = 0 and

dry = k(pu — re)dt + or] dWy. (30)
If the above guess is correct, the PDE becomes

{%32(7)0%% + B(Mr(u—r) — Al(r) - B(r)r — r}-P:O. (31)

After dividing by P and collecting terms we have,

{%B2(7)02} r? {B(T)K, + B'(t) + l} r + {B(T)K,/J, — A/(T)} =0. (32)

The three expressions in brackets cannot be zero at the same time
(unless y =0 or v = 1/2), SO our guess is wrong.
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