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Stochastic processes — definitions

A stochastic process can be defined as an ordered sequence of
random variables {X;}, indexed by time ¢. In general, X;, and X,
are dependent random variables.

The AR(1) model (process) is an example of a stochastic process:

Xi=¢Xe_14+uw; w ~ N(O,02) (1)

The words ‘process’ and 'model’ are often used interchangeably.

The AR(1) model is a discrete-time model. We observe X; at
t=20,1,2,3,4,... — but not at ¢t = 1.5. Formally, the time index
is the set of natural numbers (integers).

For continuous-time processes, the time index is the set of real
numbers. In principle, we can observe the stochastic process X;
at all time points (that is, continuously).

The Brownian motion

The Brownian motion {W;} is a continuous-time stochastic pro-
cess with the following properties:

1. Wo =0.
2. For any times s >t, Wy — W; ~ NJ[O0,(s—t)].

3. For any times t1 < t2 < t3, the non-overlapping increments W (t3) — W (t2)
and W(t2) — W(t1) are independent.

4. Sample path of W; are continuous (the sample path can be drawn without
lifting the pen).

The third property of the Brownian motion implies that

Cov(Wy, Ws) = E(WWs) = min(i, s) (2)

By the third property, the Brownian motion is a martingale,

E[Ws|W¢] =Wy,  for all s > t. (3)



Stochastic differential equations

Stochastic differential equations (SDEs) are constructed from the
Brownian motion process.

Sample paths of SDEs are continuous (like the Brownian motion).

General form of a univariate (one-factor) stochastic differential
equation (SDE):

dXi = p(Xy)dt + o(X¢)dWy. (4)

This means that for a sufficiently small A

Xppn —Xp ~ N[u(X)A,0*(X)A], (5)

Strictly speaking, equation (5) is only an approximation of the
SDE (known as the Euler discretization).

I[Ito’'s lemma

Consider a function of X; and time ¢, denoted F; = F(X4,t).

Ito’s lemma gives us the stochastic process for Fi,

dFy = pp (X, t)dt + op (X, t)dWy (6)
where
_ OF(X,1) OF(X,t)  10%F(X,t) ,
pr(Xot) = — o u(X) + —— =+ o m o (X) (7)
_ OF(X,t)
op(X,t) = 59X o(X). (8)

Example: the logarithm of the GBM, dS; = uSidt + 0S¢ dWy, satis-
fies the SDE

1
dlog S; = (u — 50—2> dt + odW,. (9)



Why study continuous-time models?

e Arguments against continuous-time models

In the real world, price changes occur at discrete time intervals.
Binomial models are simpler to understand (or to learn, at least).

In some cases, we will use some discrete-time approximation (as a numerical
solution procedure), even if we start with a continuous-time model.

e Arguments in favor of continuous-time models

In any discrete-time model (not just binomial), there is a great deal of am-
biguity about the ‘“right” time interval. The continuous-time specification
may very well be the least arbitrary assumption!

In many important cases, we can find an analytical (closed-form) solution
for bond prices and fixed-income derivatives.

Therefore, understanding the structure and properties of the model is
easier in the continuous-time case.

The continuous-time specification generally makes it easier to find the best
discrete-time approximation and numerical solution procedure.

Equilibrium vs. arbitrage-free models — 1

e We use the classification in Tuckman (1995, ch. 9) — but note
that other (older) papers may use different definitions.

e Arbitrage-free models:

Per construction, arbitrage-free term-structure models fit the initial yield
curve (i.e., today’s yield curve) exactly.

Used for pricing fixed-income derivatives (not bonds).
The prices of these securities are often independent of investor preferences.

Model examples: HJM and Ho & Lee models, as well as equilibrium-
style models with time-dependent parameters (calibrated models), e.g.
the BDT model and the Hull-White extended Vasicek model.

In most cases, a single-factor model is used (with numerical solution).

Implementation issues: calibration to initial yield curve, and assumptions
about the volatility structure.

The models are not stable — the time-dependent parameters must be
re-calibrated over time (inconsistency).



Equilibrium vs. arbitrage-free models — 2

e Equilibrium (classical) models:

The original term-structure models belong to this group, hence the phrase
“classical models”.

Main building blocks: stochastic process for the short rate, and assumptions
about investor preferences (risk premia, or market prices of risk).

The yield curve is determined endodgenously in the model — it is not
constrained to match the actual (market) yield curve.

Model parameters are constant over time (internal consistency), and typi-
cally there are at least two factors (multi-factor models).

Model examples: Vasicek, CIR and the Brennan-Schwartz model.

Used mainly for trading bonds (yield-curve strategies), less useful for fixed-
income derivatives (where we have two bets).

Other applications: risk management, where single-factor models (with
calibration) tend to be inappropriate.

Implementation issues: statistical estimation using historical data on the
term structure (note: these methods are not covered in this course).

Definition of vield and forward curves

Price at time t of a zero-coupon bond maturing at time T (ma-
turity date) is denoted by P(¢,T).

We always use continuous compounding when defining the yield
curve and forward rates, since this simplifies many formulas.

Yield-to-maturity, R(¢t,T), and forward rate, f(t,T):
—log P(t,T)
R(t,T) = 10
(&, 1) T_t (10)
—0log P(t,T)
t, 1) = 11
£t 1) o (11)
Inverse relationships:
P, T) = e B&GTIT —1) (12)
T
P, T) = e Ji f(ts)ds (13)
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Basic idea of equilibrium models

e The purpose is deriving an expression for P(t,T).

e We start by making assumptions about the number of factors
(state variables) determining the yield curve, and the stochastic
processes governing these factors.

e With these assumptions — and Ito’s lemma — we find an expres-
sion for the expected bond return and risk exposure (volatility)
for different maturity dates Tj.

e Suppose that we know the expected return at each time (instant)
between t (today) and T (maturity) ...

e Then, using this knowledge and the terminal value of P(T,T) = 1,
we can work backwards and calculate the price today, P(t,T).

e We use the APT (arbitrage price theory) to determine the ex-
pected return as a function of some preference parameters.
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A general one-factor model — 1

e Modeling assumptions:
1. Frictionless bond market (no taxes, transactions costs, bid-ask spreads,
divisibility problems, short-sale constraints, etc.).

2. Investors prefers more wealth to less (implies absence of arbitrage oppor-
tunities in the bond market).

3. All bond prices are a function of a single state variable, which we take as
the short rate r; (definition: continuously compounded interest rate on a
money market account over a small horizon).

4. The dynamics of the short rate are governed by the SDE:
dry = p(re)dt + o(re)dWy. (14)

e Our problem: determine the relationship between r; and the price
of the bond maturing at time T, P(¢,T).

e Limitation implicit in the third assumption: bond returns for dif-
ferent maturities are perfectly correlated.

12



A general one-factor model — 2

The zero-coupon bond price, P(t,T), is a function of r» and ¢.

By Ito's lemma, P(t,T) evolves according to the SDE:

where
2
pp DIPGT) = D)+ + 20202 (16)
op(t, T)P(t,T) = 50(7“)- (17)

Consider a portfolio, consisting of w; bonds with maturity 77 and
wo bonds with maturity 7o (where Ty #= T5).

Value of the portfolio: My = w1 P(t,Ty) + woP(t,T5).
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A general one-factor model — 3

The instantaneous movement of I, at time ¢, is given by:

dMNy = wy -d P(t,T1) +wop - d P(t,T5) (18)

Using (15), this can also be written as:

dMy = {wipp(t, T1)P(t,T1) + woup(t,To)P(t, To)} dt +
{w1op(t,T1)P(t,T1) + woop(t,To) P(t, 1)} dWy. (19)

Since there are two bonds and only one source of risk, it must be
possible to choose wy and wo such that the portfolio is riskless,

wiop(t, T1)P(t,T1) + woop(t, To)P(t,To) = 0. (20)

Note: this requires continuous adjustment of wy and ws.
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A general one-factor model — 4

By the ‘“absence of arbitrage” assumption, the expected return
of the portfolio must equal the riskless rate ry:

dnt - {’lU]_,U,P(t,T]_)P(t,Tl) +w2:U'P(taT2)P(taT2)}dt
ri 1 dt, (21)

Alternatively, the excess return must be zero:
wy {pp(t, T1) —re} P(t,T1) + wo{up(t,T2) — ri} P(t,T2) = 0. (22)

We will show (next slide) that this implies the APT restriction

,Up(t, T) =7+ )\(’I’t)O’P(t, T)’ for all T, (23)

where A(r) is the market price of risk (risk premium).
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A general one-factor model — 5
Proof of equation (23)

We have shown that, if the vector w = (w1, wo) solves the system
of equations

[ op(t, T1)P(t,T1) op(t,T2)P(t,T2) | [ z; ] = Aiw =0, (24)
the same vector w also solves the larger system

op(t,T1)P(¢t,T1) op(t, To)P(t, T») wy | _
{,UP(]; Tl)l— ’I”t}P(lt,Tl) {/Lp(ltD, TQ)Q— ’I“t}P(Qt,TQ) :| |: w; :| = Aw=0. (25)

Since w # 0, the 2 x 2 matrix A, must be singular (why?).

Specifically, the rank of A5 is 1, so the last row can be written as
a linear combination of the first. This gives us (23).

Note that A(r) cannot depend on the maturities Ty and T5.

16



A general one-factor model — 6

The next step is combining the two different expressions for the
expected bond return.

First, from Ito’'s lemma and (16) we have

oP 19%P 2

pp TIPWT) =2 u(r) + 5 + 50 507 (26)

Second, the APT restriction (23) can be written as
pp(t, TP, T) = rPR,T)+ AX(r)op(t, T)P(t,T)

= rP(t,T) +Z—fx<r>a<r> (27)

Finally, we equate the right hand sides of (26) and (27) in order
to obtain the fundamental PDE for P(t,T).

17

Fundamental PDE for bond prices

Fundamental PDE (partial differential equation)

192P OP

5527 (™ + “C ) - A+ 5 - rP=0,  (28)
with boundary condltlon P(T,T) = 1.

Feynman-Kac representation:
T
P(t,T) = E¥ {e— Ji Tsds] , (29)

where the expectation is taken under the probability measure cor-
responding to the risk-neutral short-rate process:

dry = {,LL(Tt) — )\(Tt)U(Tt)} dt + o(ry)dWs. (30)

Note how the drift and volatility of the SDE (30) are constructed
from the coefficients of the PDE (28).

18



A simple one-factor model — 1

The short-rate is governed by the random-walk process

dry = odW; (31)

The market price of risk is zero (investors are risk-neutral).
Fundamental PDE

We guess that the solution is of the following form

P(t,Y) =exp[A(T) + B(r)ry], =T —t. (33)

In order to check whether equation (33) — our “educated” guess
— is the solution of the PDE, we calculate the requisite partial
derivatives of (33) and substitute them into (32).
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A simple one-factor model — 2

Partial derivatives:

oP oP , /

= - = |A'(7) 4+ B'(1)r| P(t,t+ 1) (34)
d%P

oo = BANPt+). (35)

We substitute (34) and (35) into (32),

1

5BQ(T)UQP —|[A'(D) + B'(r)r| P—rP =0 (36)
After dividing by P > 0 on both sides of (36), and collecting terms

we get

{%B%)o—? - A’(r)} —{B@™+1jr =0 (37)
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A simple one-factor model — 3

Since (36) must hold for all values of r, both expression in braces
must be zero.

Hence, we obtain two ordinary differential equations (ODESs)

Al(r) = 30232(7) (38)

B'(r) = -1 (39)

Boundary conditions: B(0) =0 and A(0) = 0.

e The final solution is obtained by integration,
B(r) = B(O)—i—/TB'(s)ds = —/Tds = —7 (40)
0 0
A(r) = A(O)+/TA/(8)ds = /T l0232d5; = 1027*3. (41)
0 0o 2 6
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Three one-factor models

1. Merton (1973) model:

e Short-rate process: dr; = pdt 4+ odW;.
e Market price of risk: A(r) = .
e Comments: negative interest rates possible, no mean reversion.

2. Vasicek (1977) model:

e Short-rate process: dry = k(u — r)dt + odW;.
e Market price of risk: A(r) = .

e Comments: mean reversion towards the unconditional mean u, but still
possibility of negative rates.

3. Cox, Ingersoll and Ross (CIR) (1985) model:
e Short-rate process: dr; = k(p — 7¢)dt + o/TidW.

e Market price of risk: A(r) = (A\/o)+/T.

¢ Comments: mean reversion as in the VVasicek model, and r; is always positive
(i.e., rt > 0) — because of the continuity of SDE sample paths.
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