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Abstract

This paper studies the practical pricing of Bermudan swap options, attempting
to find both lower and upper bounds for the option price. It uses the BGM
model with three driving factors and Monte Carlo simulation for determining
the evolution of forward interest rates. A discretisation proposed by Glasserman
is used, as an alternative to direct discretisation of the forward rates. Two sub-
optimal exercise strategies using exercise boundaries proposed by Andersen are
evaluated for finding the lower bound for the option price. A perfect foresight
strategy is evaluated for finding an upper bound. This paper also studies the
systematic errors in the forward rate evolution and discusses simple measures
for reducing their impact on the option pricing.

Keywords: Bermudan swap options, multi-factor BGM model, arbitrage-free
discretisation, exercise strategies
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1 Introduction

An interest rate swap is a contract between two parties of exchanging cash flows
at a fixed interest rate and cash flows at a floating interest rate. A Bermudan
swap option is an option to enter into an interest rate swap at a specified set of
dates, provided this option has not already been used. These Bermudan swap
options are useful for example for hedging callable bonds, i.e. bonds with built-
in options to cancel the contract before maturity. Pricing these Bermudan swap
options can be done in several ways using different models for the interest rates.

The BGM model (Brace, Gatarek, Musiela 1997) provides a model for the
evolution of market observable forward rates, the same forward rates that are
used for pricing swaps. It incorporates correlations between forward rates and
can be calibrated to price simple interest rate options like caps according to a
market standard Black-Scholes type formula. The main disadvantage is that
due to its large number of state variables it has to be implemented using Monte
Carlo simulation. The two main drawbacks of the Monte Carlo simulation are
slow convergence and the difficulty to incorporate early exercise.

At the time when the BGM model was proposed the mathematical frame-
work used was that of the HJM model (Heath, Jarrow, Morton 1992), but since
then the BGM model has been derived separately.

This paper considers practical aspects of pricing Bermudan swap options by
Monte Carlo simulation. The aim is to describe the logic from mathematical
assumptions to a product usable for interest rate traders. It incorporates a
refined discretisation of artificial simulation variables based on the forward rates
(Glasserman, Zhao 2000), and an exercise boundary based suboptimal exercise
strategy (Andersen 1999).

2 Framework

2.1 Complete arbitrage-free market

The notation that will be used for the functions of continuous time are 0 ≤ t ≤
T ≤ τ , where T is usually a stopping time for a stochastic variable, for example
exercise date for an option, and τ is the last date covered by the market defined
below.

Definition 1 (market) On a complete filtered probability space (Ω,Ft,Q), let
ε be the set of all continuous semi-martingales. Let ε+ = {Y ∈ ε|Y > 0} and let
εn = {Y |Y = (Y1, . . . , Yn), Yi ∈ ε}. Define a market as a price system B ∈ εn

Definition 2 (arbitrage) The market B ∈ εn is said to be arbitrage free if
there exists a ξ ∈ ε+ with ξ(0) = 1 such that ξBi are martingales for all 1 ≤
i ≤ n. The process ξ is called state price deflator.

Definition 3 (self-financing trading strategies) Let θ = (θ1, . . . , θn) be a
vector of adapted Bi-integrable processes θi on a market B ∈ εn. The pair (θ, B)
is called a self-financing trading strategy (SFTS) if θtBt = θ0B0 +

∫ t

0
θs dBs for

all t > 0.

Definition 4 (contingent claim) A contingent claim CT is an FT -adapted
stochastic variable.
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Definition 5 (complete market) The market B ∈ εn is called complete if
for any claim CT ∈ FT there exists an SFTS (θ,B) such that θT BT = CT .

Theorem 1 (completeness) An arbitrage free market B ∈ εn is complete if
and only if there exists exactly one ξ ∈ ε+ with ξ(0) = 1 such that ξBi are
martingales for all 1 ≤ i ≤ n.

Proof 1 The proof is not presented here but is covered by fundamental works,
for example by Harrison and Pliska [5].

Introducing a d-dimensional Wiener process as the only source of randomness
for the market variables and assuming they can be described in the form of
drifted geometric Brownian motions

dBi

Bi
= µi dt + σi dW, (1)

and
dξi

ξi
= −r dt− ϕdW, (2)

where µi(t, ω) and r(t, ω) are scalar processes and σi(t, ω) and ϕ(t, ω) are d-
dimensional vector processes, adapted to the filtration of the Wiener process.

The solutions to the stochastic differential equations above are

Bi(t) = Bi(0) exp
(∫ t

0

(µi − 1
2
|σi|2) ds +

∫ t

0

σi dW

)
, (3)

and

ξ(t) = ξ(0) + exp
(∫ t

0

(−r − 1
2
|ϕ|2) ds +

∫ t

0

ϕ dW

)
. (4)

Multiplying (3) by (4) yields that ξBi is a martingale whenever − 1
2 |σi−ϕ|2 =

µi − r − 1
2 |σi|2 − 1

2 |ϕ|2. This can also be expressed as

µi = r − σiϕ, (5)

which produces a useful relation between drift and volatility of different assets,
namely µi + σiϕ = µj + σjϕ, or

ϕ =
µi − µj

σi − σj
, (6)

The market is arbitrage free if there exist r and ϕ such that µi and σi satisfy
(5) for every i.

2.2 Pricing numeraires

Assume claim CT ∈ FT such that there exists an SFTS (θ, B) where θT BT =
CT . As (θ, ξB) is also an SFTS then

ξT CT = θT · ξT BT = θ0 · ξ0B0 +
∫ T

0

θs · d(ξsBs). (7)
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Taking the expectations of both sides and using the martingale property of
the SFTS

E[ξT CT |Ft] = E[θ0 · ξ0B0 +
∫ T

0
θs · d(ξsBs)] =

θ0 · ξ0B0 +
∫ t

0
θs · d(ξsBs) = θt · ξtBt, (8)

thus
θt ·Bt = ξ−1

t E[ξT CT |Ft], (9)

which in a complete market becomes

Ct = ξ−1
t E[ξT CT |Ft]. (10)

Definition 6 (numeraire measure) Let ξA be a martingale, B ∈ εn the
usual market and ξ its state price deflator. Define the A numeraire measure
QA by dQA

dQ = ξA
A(0) .

Theorem 2 If ξA and ξY are martingales then Y/A is a QA martingale.

Proof 2 For s > 0

EA[
Y (t + s)
A(t + s)

|Ft] =
E[ ξ(t+s)A(t+s)

A(0) · Y (t+s)
A(t+s) |Ft]

E[ ξA
A(0) |Ft]

=
E[ξ(t + s) · Y (t+s)

A(0) |Ft]
ξ(t)A(t)

A(0)

=
Y (t)
A(t)

. (11)

The advantage of using a pricing numeraire is that there is no need to ex-
plicitly use a state price deflator ξ, as

Ct = ξ−1
t E[ξT CT |FT ] = Bi(t)EBi [

CT

Bi(T )
|FT ]. (12)

2.3 Interest rate market

The interest rate market considered has a tenor structure 0 ≤ T0 < . . . < TN

with Ti+1 − Ti = δ, pricing only instruments with cash flows on these dates.

Definition 7 (discount function) Define P (t, T ) as the price at time t of
one money unit at time T . It is known as the discount function, as it is used
for discounting a future cash flow (at time T ) into its present (time t) value.

The interest rate market on the given tenor structure is a market as described
earlier, with (P1, . . . , PN ) ∈ εN . The dynamics of Pi is described by

dPi

Pi
= µi dt + σi dW, (13)

with the solution

Pi(t) = Pi(0) exp
(∫ t

0

(µi − 1
2
|σi|2) ds +

∫ t

0

σi dW

)
, (14)
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Definition 8 (forward rate) The simple forward rate Fi(t) at time t for the
period Ti to Ti+1 is defined by

Fi(t) =
1
δ

(
Pi(t)

Pi+1(t)
− 1

)
. (15)

Definition (15) comes from the usual economic definition of a forward interest
rate, that

1 + δFi(t) =
Pi(t)

Pi+1(t)
.

Deriving the dynamics of the forward rate Fi from (14) and (15), using
relation (5) towards the end, yields that

dFi = 1
δ

Pi(0)
Pi+1(0)

d exp
(∫ t

0
(µi−µi+1− 1

2 |σi|2+ 1
2 |σi+1|2) ds+

∫ t

0
(σi−σi+1) dW

)
=

1
δ

Pi(0)
Pi+1(0)

exp
(∫ t

0
(µi − µi+1 − 1

2 |σi|2 + 1
2 |σi+1|2) ds +

∫ t

0
(σi − σi+1) dW

)
·

· ((µi − µi+1 − 1
2 |σi|2 + 1

2 |σi+1|2) + (σi − σi+1)
)
+

+ 1
2

1
δ

Pi(0)
Pi+1(0)

exp
(∫ t

0
(µi − µi+1 − 1

2 |σi|2 + 1
2 |σi+1|2) ds +

∫ t

0
(σi − σi+1) dW

)
·

· |σi − σi+1|2 dt =

1
δ (1 + δFi)

((
µi − µi+1 + σi+1(σi+1 − σi)

)
dt + (σi − σi + 1) dW

)
=

1
δ (1 + δFi)(σi − σi+1)

(
dW + (ϕ− σi+1) dt

)
. (16)

By introducing absolute forward rate volatilities

βi =
1
δ
(1 + δFi)(σi − σi+1) (17)

and drifted Brownian motions

dW j = dW +
(
ϕ− σj

)
dt (18)

the expression (16) simplifies to

dFi = βi dW i+1

= βi

(
dW + (ϕ− σn) dt−

n−1∑

j=i+1

(σj − σj+1) dt
)

= −
n−1∑

j=i+1

βi(σj − σj+1) dt + βi dWn

= −
n−1∑

j=i+1

δβiβj

(1 + δFj)
dt + βi dWn, (19)

where expression (19) directly relates forward rates to different numeraire mea-
sures.
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Using relative forward rate volatilities γi = βi/Fi the relations become

dFi = γiFi dW i+1

= −
n−1∑

j=i+1

δγiγjFiFj

(1 + δFj)
dt + γiFi dWn, (20)

or

dFi

Fi
= γi dW i+1

= −
n−1∑

j=i+1

δγiγjFj

(1 + δFj)
dt + γi dWn. (21)

2.4 The BGM model

The BGM model [3], also called the Libor market model, is the evolution model
for forward rates of the above type where the relative forward rate volatilities
γi are deterministic functions. The forward rates are said to have a lognormal
volatility structure as each of them are defined by a stochastic process of the
form

dFi(t)
Fi(t)

= . . . dt + γi dW, (22)

where W is a standard d-dimensional Wiener process.
Under terminal measure QPN

, using P (t, TN ) as pricing numeraire, the for-
ward rate processes are then governed by

dFi

Fi
= −

N−1∑

j=i+1

δγiγjFj

(1 + δFj)
dt + γi dWN . (23)

These equations can be turned into equations in discrete time suitable for
simulation. It is however not easy to do this without losing the arbitrage-free
properties [4]. Instead, introduce N − 1 state variables defined by

Xi(t) = Fi(t)
N−1∏

j=i+1

(1 + δFj(t)) , (24)

which, when found, can be returned to forward rates through

Fi(t) =
Xi(t)

1 +
∑N−1

k=i+1 δXk(t)
. (25)

We state the following result from Glasserman [4], lemma 1.

Theorem 3 Each Xi is a martingale that satisfies

dXi(t)
Xi(t)

=


γi(t) +

N−1∑

j=i+1

δγj(t)Xj(t)

1 +
∑N−1

k=j δXk(t)


 dWN . (26)
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The Euler discretisation of ln(Xi) with time step h is

X̂i((j + 1)h) = X̂i(jh) exp
(
−1

2
σX̂i

(jh)σX̂i
(jh)h +

√
hσX̂i

(jh)∆j+1

)
, (27)

where

σX̂i
(t) = γn(t) +

N−1∑

j=i+1

δX̂j(t)γj(t)

1 +
∑N−1

k=j δX̂k(t)
. (28)

and ∆i+1 is a d-dimensional vector of random samples from a standard nor-
mal distribution. These discrete variables were simulated, producing sufficient
information for pricing derivatives based on forward rate.

3 Market instruments

3.1 Swaps

An interest rate swap is a contract between two parties where the buyer pays a
contract specific fixed rate κ annually and receives a floating rate found in the
interest rate market at specified dates. The size of each payment is based on the
notional amount, the amount on which interest rate is calculated. The floating
rate is almost always based on a 3- or 6-month interbank rate in the currency
of the contract, paid at the end the period for which it is determined. For more
information on swaps, see Hull [7] chapter 5.

The 3-month STIBOR (Stockholm Interbank Offered Rate) is used as ref-
erence for the floating rate side of Swedish swaps, paid at the end of the three
months for which it is determined. The market considered will therefore be
assumed to have a constant δ = 1

4 for a quarterly tenor structure. The fixed
leg of the swap is changed from annual to quarterly payments in order to avoid
adjustments for swaps that do not start with one year before first fixed payment.

A payer swap with a notional amount of one currency unit that starts at
time Ts, has the first payment at time Ts+1 and last payment at time Te, has
the time Ts value

SVs,e(Ts) =
e∑

j=s+1

Pj(Ts)EPj [δ(Fj−1(Ts)− κ)|FTs ] . (29)

The expectancy of the forward rates are simply

EPj [Fj−1(Ts)|FTs ] =
1
δ

(
Pj−1(Ts)
Pj(Ts)

− 1
)

, (30)

which inserted into (29) and using that P (t, t) = 1 leads to the swap value given
by

SVs,e(Ts) = 1− Pe(Ts)−
e∑

i=s+1

Pi(Ts)δκ. (31)

The swap rate can be determined from this relation, as the swap rate is
defined as the fixed rate Ss,e(t) that makes the swap have zero value. Replacing
κ with Ss,e(t), equation (31) becomes

0 = 1− Pe(Ts)−
e∑

i=s+1

Pi(Ts)δSs,e(t),
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so that

Ss,e(t) =
1− Pe(Ts)

δ
∑e

i=s+1 Pi(Ts)
. (32)

3.2 Caps

An interest rate cap is a simple series of interest rate options, caplets, each
paying the difference between the prevailing floating rate and a contract specific
cap rate when the floating rate is higher. The size of each payment is based
on the principal amount, the amount on which interest rate is calculated. As
for swaps, the cashflow occurs at the end of the period for which the floating
rate is determined. After the first period, however, most caps do not have any
cashflow. The 3-month STIBOR is used as reference for the floating rate side
of Swedish caps. For more information on caps, see Hull [7] pages 537-543.

A cap with a principal amount of one currency unit that starts at time Ts,
has the first payment at time Ts+2 and last payment at time Te, has the time
Ts value

CVs,e(Ts) =
e∑

j=s+2

Pj(Ts)EPj [max(δ(Fj−1(Ts)− κ), 0)|FTs ] . (33)

Assume that each forward rate is lognormal with a flat volatility σC , then
the price of the cap can be determined through the Black-Scholes type formula

CVs,e(Ts) =
e∑

j=s+2

Pj(Ts) [δ(Fj−1(Ts)N(d1)− κN(d2))] , (34)

where

d1 =
ln(Fj−1(Ts)/κ) + σ2

C(Tj − Ts)/2
σC

√
(Tj − Ts)

, (35)

d2 =
ln(Fj−1(Ts)/κ)− σ2

C(Tj − Ts)/2
σC

√
(Tj − Ts)

, (36)

Caps are quoted for indicative prices by the volatility σC for a κ equal to
the swap rate at the time Ts for a swap that excludes the first cashflow. The
formula (34) is used for calculating the corresponding price of the cap.

The lognormal assumption for the forward rates is identical to the lognor-
mal volatility structure used for the BGM model, which makes caps ideal for
calibrating the model.

3.3 European swap options

A European swap option is a standardised option on a swap. For more infor-
mation on swap options, see Hull [7] pages 543-547.

A European call option exercisable at Ts on a payer swap with a notional
amount of one currency unit, starting at time Ts with last payment at time Te,
has the time t ≤ Ts value

SOVs,e(t) = Ps(t)EPs







e∑

j=s+1

Pj(Ts)EPj [δ(Fj−1(Ts)− κ)|FTs ]




+

|Ft


 ,

(37)
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where κ is the strike swap rate and (·)+ is max(·, 0).
Using the martingale property of the above expression, it can be simplified

to

SOVs,e(t) = Ps(t)EPs







e∑

j=s+1

Pj(Ts)δ(Fj−1(Ts)− κ)




+

|Ft


 . (38)

Although equation (38) cannot be expressed through a Black-Scholes type
formula under the multi-factor BGM model, several single factor approximations
exist. The approximation suggested by Andersen [1] results in the formula

SOVs,e(t) =
e−1∑

k=s

δPk(t) [Ss,e(t)N(d1)− κN(d2))] , (39)

where

d1 =
ln(Ss,e(t)/κ) + vs/2√

vs
, (40)

d2 =
ln(Ss,e(t)/κ)− vs/2√

vs
, (41)

vs(t, Ts) =
∫ Ts

t

e−1∑

j=s

‖wj(t)γj(u)‖2 du, (42)

and

wj(t) =
Fj

Ss,e(t)

[
δS(t)

1 + δFj

(
Pe(t)

Ps(t)− Pe(t)
+

∑e−1
k=j δPk+1(t)∑e−1

k=s δPj(t)

)]
. (43)

This approximation is used during the Monte Carlo simulation for evaluating
whether option exercise is optimal. Note that equation (42) is slightly modified
from the equation in Andersen’s article as the original version gave quite strange
results.

3.4 Bermudan swap options

A Bermudan swap option is not a standardised option, but is here defined as
follows.

Definition 9 (Bermudan swap option) A Bermudan swap option is an op-
tion on a swap with ending payment at a set date Te and a variable starting
date Ts. The starting date is the date when the holder chooses to exercise the
option. Possible exercise dates range from a lock-out date, Tl, until one period
before the last payment of the underlying swap, Te−1.

The Bermudan swap option can be viewed as a max option, taking the best
value of European options on swaps with decreasing length. As soon as an
exercise strategy is devised, the BGM model can be used for pricing Bermudan
swap options.
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4 Optimal exercise

When exercised, the Bermudan and the European swap options are both worth
the difference between the values of a swap at strike rate and a swap at market
rate. The difficulty of the Bemudan swap option is determining the optimal
exercise time T̃ from the available possible exercise times Tl ≤ T̃ ≤ Te−1.

Let I(t) = {0, 1} be a Ft-adapted exercise indicator function, taking the
value 1 when exercise is optimal, otherwise 0. How should such a function be
designed?

4.1 Superoptimal exercise

In order to establish an upper bound for the premium of a Bermudan option
compared to a European option, it is possible to locate, for each simulation,
when the option had the highest value, or

BerSOVl,e(t) = max
(
0, Pl(t)SOVl,e(Tl), · · · , Pe−1(t)SOVe−1,e(Te−1)

)
. (44)

This is defined as the superoptimal exercise strategy, as the exercise decision
”looks into the future” and is clearly not adapted to the filtration of the Wiener
processes. Instead, with this strategy the option is more of a look-back option,
always taking the maximum value possible for the Bermudan swap option.

4.2 Suboptimal exercise

More important than finding the optimal exercise strategy is to find a simple
enough exercise strategy that can be used during simulation with low cost of
time. Two suboptimal strategies will be evaluated, one absolute and one relative
exercise strategy, corresponding to strategies I and III in Andersen [2]

Definition 10 (absolute exercise strategy) The absolute exercise strategy
is defined by the exercise indicator

I(Ti) =
{

1 if SVi,e(Ti) > H(Ti),
0 otherwise,

(45)

where H(t) is an absolute exercise boundary function.

Definition 11 (relative exercise strategy) The relative exercise strategy is
defined by the exercise indicator

I(Ti) =
{

1 if SVi,e(Ti) > H(Ti) + max(SOVj,e(Ti)) ∀j > i,
0 otherwise,

(46)

where H(t) is a relative exercise boundary function.

In both suboptimal exercise strategies the boundary function H(t) is calcu-
lated by running a set of simulations, called calibration simulations, and assign-
ing the value to each H(Ti) that maximises the option value. As the last possi-
ble exercise date is Te−1 the boundary function always ends with H(Te−1) = 0.
Looking backwards at the preceding exercise date, and assuming that the op-
tion has not yet been exercised, the boundary is found by linear search of a
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range starting at zero and ending above the largest swap value attained dur-
ing the simulations. This procedure is repeated until all exercise dates has a
corresponding value of the boundary function.

When H(t) has been determined, the calibration simulations are discarded
in order to avoid a perfect forsight bias [2]. A separate set of simulations are run,
pricing the option by use of the exercise strategy with the recently determined
boundary function.

5 Model calibration

The BGM model has several variables that must be calibrated before any simu-
lation can take place. As the market quotations used for calibration are always
divided into bid and ask, a mid value, calculated as halfway between the bid
and ask quotations, is used for each necessary value.

5.1 Forward rates

Initial values of the X martingale are calculated through equation (25) using
initial values of the forward rates. These in turn are calculated from an interest
rate curve based on instruments comparable in risk to STIBOR loans.

The instruments used here are deposits and swaps. Deposits are simple in-
struments with only one cashflow each, and need no further treatment. Swaps
have fixed annual cashflows, so all but one cashflow must be removed for cal-
culating the interest rate for the date of that cashflow. The Bootstrap method
is used for this, using the interest rate of a one year instrument to discount the
first year’s cashflow of a two year instrument, and so on. The resulting interest
rates, called zero coupon rates, reflect the market price of single cashflows on
given dates. Yearly effective interpolation of these zero coupon rates completes
the interest rate curve for all dates.

5.2 Volatility and correlation

The relative forward rate volatilities γ in equation (23) are calibrated in order
for the simulator to price caps correctly and to produce a model correlation
structure between forward rates that is close to the correlations in the interest
rate market. Using the method of Rebonato [8], these tasks can be performed
separately.

The relative forward rate volatility matrix is separated into two components,
γik = biksi, where si is a vector of volatilities for each forward rate Fi and bik

is a matrix designed to catch the correlation structure.
As there are quotatations for caps starting with one year, the first year’s

forward rate volatilities are set to the flat volatility of a one year cap. For
subsequent years, the volatility of forward rates are found by inverting formula
(34) for the last part of a cap, under the no arbitrage assumption that the first
part of the cap has the same value as the previous cap. The formula (34) has no
analytical inversion, so finding the volatility from the price is performed through
iteration.

As for the market correlation, there are no traded instruments that pro-
duce an implicit correlation structure. Instead, historical correlation is calcu-
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lated through basic time series analysis of the forward rate movements the last
months. This produces an NxN market correlation matrix Corrmarket used for
estimating the future correlation between forward rates.

A general description of the (bik) matrix is, according to Rebonato [8]

bik = cos(θik)
k−1∏

j=1

sin(θij), k = 1, s− 1,

bik =
k−1∏

j=1

sin(θij), k = s, (47)

where θij are angles to be determined. The aim is to minimise the difference
between the model correlation,

Corrmod = BBt,

and the market correlation matrix. Equations (47) ensures that

s∑

k=1

b2
ik = 1, ∀i,

producing the vital property of a diagonal of ones in the model correlation ma-
trix. For determining the other matrix elements, a fitting error is defined as the
sum of square discrepancies between the model and market correlation matrices.
The Levenberg-Marquardt optimising algorithm is used to find optimal angles.

6 Numerical results

Interest rate market data was sampled from values of Swedish deposits, swaps
and caps from 2002-04-08 to 2003-04-08. Specifically, the options pricing is
performed for 2003-04-08. The results obtained are here graphically presented.
For actual values, see appendix.

The Mersenne Twister is used for generating pseudorandom numbers used
for the Monte Carlo simulation.

6.1 Calibration tests

The parameters of the evolution equation (27) are calibrated to market forward
rates and the caplet prices calculated from market date. A perfect model would
recover these data after simulation.

Comparing the market forward rates with average forward rates of 10000,
100000, 1000000 and 5000000 simulation trials, figure 1 shows a systematic error
of up to 5 basis points (0.05 percentage points).

This phenomenon has been observed in other studies [4] and and can be
altered but not removed with a different choice of measure for relating forward
rates in the model. The terminal measure used here imposes an error free final
forward rate. Due to the size of the systematic errors a compensation sceme
must be devised, see the discussion. More important at this stage, practically
no additional information is added after 100000 simulations.
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Figure 1: Absolute difference between forward rates up to 5 years

Comparing the caplet prices calculated from market data with average caplet
prices of 10000, 100000, 1000000 and 5000000 simulation trials, figure 2 shows a
systematic error of up to 6% for the BGM model under terminal measure. The
error is quite large, but seems heavily correlated with the systematic error in
simulated forward rates. Again, practically no additional information is added
after 100000 simulations.
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Figure 2: Relative price difference of caplets up to 5 years

The conclusion of the calibration tests is that at least 100000 simulation trials
must be performed for pricing a claim with sufficiently small non-systematic
errors.
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6.2 Approximation test

Figure 3 compares the time zero European swap option prices of different ma-
turities on a swap ending after five years, calculated using the approximation
(39) or from 100000 simulations. It shows that in general the approximation
yields a lower price than the simulation. This is good news, as the boundary
function with its current design only adds to the maximum option price of future
European swap options.

The approximation error is defined as the difference between the simulated
price and the approximation.
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Figure 3: Prices of European options on a swap ending after five years

6.3 Determining the boundary function

Figure 4 shows the boundary functions for a five year Bermudan swap option
using the two exercise strategies (45) and (46), found through 10000 calibration
simulations. As it is rarely optimal to exercise this Bermudan swap option
until after at least a year, the first part of both exercise boundaries is slightly
erratic while the latter part behaves nicely. The relative boundary function only
contains small values. The strategy almost entirely relies on the approximate
values of future European options.

Comparing the time zero approximation error with the relative boundary
function, figure 5 shows that the boundary function partly compensates for
the error. Note that this comparison is rather rough as the approximation is
calculated at time zero while the relative boundary is optimised to yield the
highest option price at time of exercise. The aim of this comparison is merely
to highlight the sign of the approximation error.

6.4 Option pricing

Options on swaps ending after two, tree, four and five years were priced, each
in a series of ten independent runs. Each option pricing started with 10000
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Figure 4: Boundary functions for different strategies
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Figure 5: Comparison between the relative boundary function and the approx-
imation error

calibration simulations that were used for finding the optimal boundary function
(either absolute or relative). The calibration simulations were discarded and
the boundary function kept. The option price was determined through 100000
simulations, using the exercise strategy determined by the boundary function.

Figure 6 shows the average value of the best European option, and then the
Bermudan option value using the three different exercise strategies: subopti-
mal absolute exercise (45), suboptimal relative exercise (46) and superoptimal
exercise (44). Figure 7 shows the corresponding standard deviation.

The first notable result in figure 6 is the significant difference between the su-
peroptimal strategy and the suboptimal strategies. As the suboptimal strategies
represent a more realistic valuation, we conclude that the superoptimal strat-
egy was greatly overpricing the Bermudan swap option. A better superoptimal
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Figure 6: Option prices for different exercise strategies
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Figure 7: Standard deviation of the option prices

strategy is needed.
Looking at the prices of figure 6 and the standard deviations of figure 7,

both the price difference between the best European option and the Bermudan
options and the price difference between any of the suboptimal strategies and
the superoptimal strategy can be considered statistically significant. The only
prices that cannot be separated are the prices using the two different suboptimal
exercise strategies on a swap with the same length. None of the two strategies
can therefore be said to outperform the other.

Each pricing run of an option on a five year swap in my calculations on
an ordinary PC (1 GHz processor) took about half an hour, the time roughly
increasing with the square of the swap length.

Analysing the exercise pattern of the studied Bermudan options, figure 8
shows the price of an option on a five year swap divided according to exercise
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quarter. More than 60% of the option price stems from the five quarters centred
on the quarter with the best European option, quarter 6.
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Figure 8: Option price from different exercise times on a five year swap

7 Discussion

This study has found that practical pricing of Bermudan swap options is feasible.
Already at 100000 pricing simulations interesting results can be obtained. The
half an hour of simulation time needed for pricing a five year claim, can be
reduced to a few minutes through optimised code, variance reduction techniques
and parallel computing if the need arises. This time is not good enough for real-
time trading but enough for selling options over-the-counter.

In line with the conclusion of Andersen [2], the relative exercise strategy,
using the approximate future European swap option values, is found not to
be better than the absolute exercise strategy. This, together with the higher
complexity of the relative strategy, makes the absolute strategy the exercise
strategy of choice. This does not, however, rule out the possibility that the
relative strategy can be improved. The relative strategy is highly dependant on
the precision of the approximation, a precision that unfortunately is not very
high (figure 3). It also cannot in its current form compensate for instances when
the approximation yields a higher price than the simulation (figure 5).

In order to find a superoptimal exercise value that is closer to the theoretical
optimal value of the Bermudan option a strategy using a more realistic forecast
than the whole swap duration must be devised. A suggested strategy for further
analysis is a strategy based on a single period perfect forecast.

The systematic error in the forward rates due to the choice of the terminal
measure (figure 1) leads to an unknown systematic error in the swap option
pricing. As the market price of European swap options are often available to
traders, these can be used as control variates to improve the reliability of the
Bermudan option prices and remove some of the systematic errors. This is
accomplished by taking the simulation price difference between, the best Euro-
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pean and the Bermudan swap option and adding this to the market price of the
European swap option. Figure 8 supports this view as the exercised Bermudan
options are more often than not priced using nearly the same forward rates as
the best European option. Another alternative could be using a basket of known
European options for comparison.
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A Appendix: Numerical values

Quarter Forward rate Simulation rate difference (bp)
10k 100k 1M 5M

1 4.1450% 0 0 0 0
2 4.7557% -0.65 -0.63 -0.74 -0.75
3 5.0520% -1.02 -1.08 -1.43 -1.50
4 5.3946% -1.91 -1.71 -2.16 -2.19
5 5.5305% -2.75 -2.66 -3.04 -3.13
6 5.8073% -2.80 -3.25 -3.68 -3.85
7 6.0837% -3.77 -3.99 -4.44 -4.47
8 6.3597% -4.76 -4.65 -4.98 -4.97
9 5.9528% -3.72 -3.73 -4.02 -4.02
10 6.0775% -3.53 -4.07 -4.29 -4.26
11 6.2021% -2.96 -4.58 -4.45 -4.41
12 6.3266% -3.09 -4.36 -4.44 -4.45
13 6.1671% -2.38 -4.55 -4.48 -4.43
14 6.2480% -2.47 -4.23 -4.28 -4.26
15 6.3289% -0.99 -3.80 -3.91 -3.92
16 6.4098% 0.01 -3.18 -3.39 -3.39
17 6.3283% 0.33 -2.37 -2.45 -2.50
18 6.3900% 0.55 -1.86 -1.83 -1.87
19 6.4518% 0.94 -1.06 -1.04 -1.05
20 6.5135% 2.32 -0.33 -0.17 -0.11

Table 1: Comparison between true and simulated forward rates in figure 1
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Quarter Caplet price Simulation rate difference (bp)
10k 100k 1M 5M

2 0.000427 -3.2911% -2.0253% -2.5316% -2.5316%
3 0.000641 -2.4823% -2.4823% -3.1915% -3.3688%
4 0.000838 -5.0562% -3.2303% -4.0730% -4.0730%
5 0.001165 -5.0921% -3.9003% -4.4420% -4.5504%
6 0.001367 -4.3478% -4.2553% -4.7179% -4.9029%
7 0.001567 -5.5780% -4.6079% -5.0121% -5.0121%
8 0.001769 -6.4609% -4.8816% -5.0969% -4.9533%
9 0.001611 -6.1419% -5.0173% -5.1038% -5.0173%
10 0.001744 -5.0834% -5.1628% -5.0834% -4.9245%
11 0.001875 -4.7759% -5.4372% -4.8494% -4.7759%
12 0.002006 -4.4460% -4.8564% -4.4460% -4.4460%
13 0.002083 -2.5773% -4.6392% -4.2526% -4.2526%
14 0.002196 -2.5408% -4.1137% -3.8717% -3.8717%
15 0.002307 -1.3683% -3.5348% -3.3067% -3.3637%
16 0.002418 -0.3772% -2.9634% -2.7478% -2.7478%
17 0.002274 -0.6857% -2.4571% -2.2286% -2.2286%
18 0.002366 -0.4899% -2.0686% -1.6331% -1.6331%
19 0.002457 0.1559% -1.3514% -0.8836% -0.8836%
20 0.002548 1.0443% -0.7459% -0.1492% -0.0497%

Table 2: Comparison between true and simulated caplet prices in figure 2

Quarter Simulation Approximation
1 0.008441 0.004671
2 0.012238 0.007347
3 0.015009 0.009641
4 0.017100 0.011621
5 0.018248 0.012811
6 0.018756 0.013568
7 0.018737 0.013901
8 0.018287 0.013817
9 0.018102 0.014022
10 0.017546 0.013978
11 0.016812 0.013691
12 0.015744 0.013166
13 0.014475 0.012438
14 0.012929 0.011481
15 0.011137 0.010293
16 0.009074 0.008859
17 0.007108 0.007499
18 0.004948 0.005873
19 0.002573 0.003837

Table 3: Comparison between simulated and approximated European option
values in figure 3

24



Quarter Absolute Relative Approx. error
1 0.0756 0.0018 0.003770.
2 0.0493 0.0017 0.004891.
3 0.0576 0.0032 0.005368.
4 0.0465 0.0015 0.005479.
5 0.0378 0.0014 0.005437.
6 0.0273 0.0013 0.005188.
7 0.0252 0.0012 0.004836.
8 0.0264 0.0011 0.004470.
9 0.0200 0.0010 0.004080.
10 0.0171 0.0009 0.003568.
11 0.0152 0.0008 0.003121.
12 0.0119 0.0007 0.002578.
13 0.0090 0.0006 0.002037.
14 0.0055 0.0005 0.001448.
15 0.0048 0.0000 0.000844.
16 0.0027 0.0003 0.000215.
17 0.0012 0.0000 -0.000391.
18 0.0007 0.0000 -0.000925.
19 0.0000 0.0000 -0.001264.

Table 4: Boundary functions for different strategies and approximation error in
figure 4 (columns 2 and 3) and figure 5 (columns 3 and 4)

2 years swap
max European suboptimal (abs) suboptimal (rel) superoptimal

Average 0.005603 0.006625 0.006629 0.008869
Std dev 0.000025 0.000024 0.000023 0.000031

3 years swap
max European suboptimal (abs) suboptimal (rel) superoptimal

Average 0.009657 0.011692 0.011690 0.016357
Std dev 0.000035 0.000028 0.000027 0.000037

4 years swap
max European suboptimal (abs) suboptimal (rel) superoptimal

Average 0.014264 0.017708 0.017714 0.025698
Std dev 0.000057 0.000048 0.000066 0.000068

5 years swap
max European suboptimal (abs) suboptimal (rel) superoptimal

Average 0.018732 0.023823 0.023817 0.035501
Std dev 0.000069 0.000081 0.000071 0.000081

Table 5: Comparison between different exercise strategies in figure 6 and figure 7
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Quarter Absolute Relative
1 0.1% 0.0%
2 11.4% 10.9%
3 7.5% 2.9%
4 17.2% 18.8%
5 16.5% 17.0%
6 15.8% 13.9%
7 7.8% 10.8%
8 4.0% 3.6%
9 5.7% 5.4%
10 3.8% 4.7%
11 2.7% 3.7%
12 2.3% 3.0%
13 1.8% 2.0%
14 1.5% 1.3%
15 0.7% 0.6%
16 0.6% 0.6%
17 0.3% 0.4%
18 0.1% 0.2%
19 0.1% 0.1%

Table 6: Exercise price weights in figure 8
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