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Abstract. The purpose of this paper is to study stochastic control problems
with constraints on multiple time periods. The Bellman principle of optimality
is the core of this study and will be used to derive subproblems which are of a
standard stochastic control nature with constraints at the end time. A general
Linear Quadratic (LQ) control problem with constraints on multiple time periods
will also be solved.

As an application the paper deals with the financial problem of finding an
optimal portfolio for an investment strategy where different risk levels are given
during different periods of the investment horizon. This will be formulated as a
mean-variance control problem with variance constraints on the given periods of
time. Finally a closed form solution will be derived from the theory of LQ control.





Contents

Notations ii
1. Introduction and Preliminaries 1
1.1. Short Introduction to Dynamics Programing 1
1.2. Main contribution to Stochastic Optimal Control 4
2. Mathematical Preliminaries 5
2.1. General Stochastic Control by dynamic programming 5
2.2. Linear Quadratic Control 10
3. Trajectory planning with diffusion process 11
3.1. Problem formulation 11
3.2. Solutions to trajectory planning problems 12
3.3. Solutions of the Linear Quadratic Control problem 15
4. Financial Preliminaries 17
4.1. Market Model 17
4.2. Portfolio Optimization 18
5. Financial Problem Formulation 20
5.1. Financial Solutions 21
5.2. An example 24
6. Conclusion 25
References 25

i



Notations

, = defined to be...
Rn = n-dimensional real Euclidean space.

Rn×m = set of all n×m matrices.
Sn = set of all n× n symmetric matrices.

tr(A) = trace of the square matrix A.
x′ = transpose of the vector or matrix x.

〈·, ·〉 = inner product of a Hilbert space.
C(s, T ; Rn) = the set of all continuous funtions f : [s, T ] → Rn.
Lp(s, T ; Rn) = the set of all Lebesgue measurable funtions f : [s, T ] → Rn

such that
∫ T

s
| f(t) |p dt < ∞.

L∞(s, T ; Rn) = the set of all essentially bounded measurable funtions
f : [s, T ] → Rn.

(Ω,F , P) = probability space.
{Ft}t≥0 = filtration.

(Ω,F , {Ft}t≥0, P) = filtered probability space.
E{X} = expectation of the random variable X.

E{X | G} = conditional expectation of the random variable X given G.
V{X} = variance of the random variable X.

Lp
F(s, T ; Rn) = the set of all {F}t≥0-adapted Rn-valued processes X(·)

such that E{
∫ T

s
| X(t) |p dt} < ∞.

Lp
F(Ω; Rn) = the set of bounded Rn-valued F -measurable random variables.
U [s, T ] = the set of all {F}t≥0-adapted processes u : [s, T ] → U .
Uw[s, T ] = the set of stochastic weak admissible controls.
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1. Introduction and Preliminaries

The purpose of this paper is to solve a version of the trajectory planning problem
subject to dynamics with a diffusion process. It is based on the works done by
[3] where optimal trajectory trajectory planning under a multiplicative stochastic
uncertainty is studied and [6] where the continuous time mean-variance portfolio
selection problem is formulated and solved using LQ techniques.

The solution to our problem is derived by the Bellman optimal principle. The
Bellman principle states that for any point on an optimal trajectory, the remaining
trajectory is optimal for the corresponding problem initiated at that point [1]. This
is the corner stone of dynamic programming, a technique developed by R. Bellman in
the early 50’s. This principle allows us to build up solutions by processing backwards
in time which leads to a partial differential equation (PDE) called the Hamilton-
Bellman-Jacobi (HJB) equation.

A consequence of this principle is that an optimal control problem can be solved
recursively with terminal evolution which is often known. More precisely, suppose
ut is a control variable whose value is to be chosen at time t. Since this principle is
instrumental in solving the problem at hand, we give a self-contained presentation
here. For an easier exposition of the idea we illustrate it in discrete time.

1.1. Short Introduction to Dynamics Programing. Let Ut−1 = (u0, u1, . . . , ut−1)
denote the partial sequence of controls (or decisions) taken over the first t stages.
Suppose the cost up to the time horizon N is given by

c = G(UN−1) = G(u0, u1, . . . , uN−1).

Then the principle of optimality is expressed as follows. Define the function

G(t, Ut−1) = inf
ut,ut+1,...,uN−1

G(UN−1).

Then these obey the recursion

G(t, Ut−1) = inf
ut

G(t + 1, Ut) , t < N,

with terminal value G(UN−1, N) = G(UN−1).
Note that the control variable ut is chosen on the basis of knowing Ut−1 (which de-

termines everything else). But a more economical representation of the past history
is often sufficient.

For example, we may not need to know the entire path that has been followed up
to time t, but only the place to which it has taken us. The idea of a state variable
x ∈ Rn is that its value at t, xt, is computed from known quantities and obeys a
dynamical equation

xt+1 = f(t, xt, ut)
1



where f : Rn+m+1 → Rn. We wish to minimize a cost function of the form, or
cost-to-go function

c =
N−1∑
t=0

c(t, xt, ut) + cN(xN)

by choice of controls {u0, . . . , uN−1}. To use the optimality principle, we define the
cost from t onwards as

(1.1) cs =
N−1∑
t=s

c(t, xt, ut) + cN(xN)

and the minimal cost from time s onwards as an optimization over {us, . . . , uN−1}
conditional on xs = x

V (s, x) = inf
us,...,uN−1

cs,

which is the minimal future cost from time t onwards, given the state x at t. The
V (t, x) satisfies

(1.2) V (t, x) = inf
u

[c(t, x, u) + V (t + 1, f(t, x, u))] , t < N,

with V (N, x) = cN(x), x = xt. Note that the minimizing u in (1.2) is the optimal
control u(t, x) and values of x0, . . . , xt−1 are irrelevant.

The optimality equation (1.2) is also called dynamic programming (DP) equa-
tion or Bellman equation. The DP equation defines an optimal control problem in
what is called feedback (or closed loop form) with ut = u(t, x). This is in contrast to
the open loop formulation in which {us, . . . , uN−1} are to be determined all at once
at time 0. A policy (or strategy) is a rule for choosing the value of the control vari-
able under all possible circumstances as a function of the perceived circumstances.
Thus dynamic programming has the following properties:

• The optimal ut is a function only of xt and t, i.e. ut = u(t, xt).
• The DP equation yields the optimal ut in closed loop form. It is optimal

what ever the past control policy may have been.
• The DP equation is a backward recursion in time (from which we get the

optimum at N − 1 then N − 2, and so on). The later policy is decided first.

This is, in fact, much like the phylosophy ”Life must be lived forward and under-
stood backwards ” (Kierkegaard).

For our purpose of stochastic optimal control, we shall briefly describe the DP
approach in a stochastic setting. Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote
the x and u histories at t. As above, state structure is defined by a dynamical
system, that is, the evolution of the process is described by x, having value xt at
time t, with the following properties.

• Markov Dynamics:

P(xt+1 | Xt, Ut) = P(xt+1 | xt, ut).
2



• Decomposable cost: The cost function given by (1.1).
These assumptions define the state structures.

For the moment we also require for simple exposition.

• Perfect State Observation:
The current value of the state is observable. That is known at the time at
which ut must be chosen. So, letting Wt denote the observed history at time
t, we assume Wt(Xt, Ut−1).

Note that c is determined by WN , so we might write c = c(WN). These assumptions
define what is known as a discrete-time Markov decision process. As above the cost
from time t onwards given by (1.1). Denote the minimal expected cost for the time
invariant problem from time t onwards by

V (Wt) = inf
π

Eπ[ct | Wt]

where π denotes a policy, i.e. a rule for choosing the controls u0, . . . , uN−1. We
assert the following theorem.

Theorem 1. V (Wt) is a function of xt and t alone, say V (t, xt). It obeys the DP
equation

(1.3) V (t, xt) = inf
ut

{c(t, xt, ut) + E[V (t + 1, xt+1) | xt, ut]}

and V (N, xN) = cN(xN). Moreover, a minimizing value of ut in (1.3)(which is also
only a function of xt and t) is optimal.

Proof: The value of V (WN) is cN(xN), so the asserted reduction of V is valid at
time N . Assume it is valid at time t + 1. The DP equation is then

(1.4) V (Wt) = inf
ut

{c(t, xt, ut) + E[V (t + 1, xt+1 | Xt, Ut]}.

But by assumption the right hand side of (1.4) reduces to the rigth hand side of
(1.3). All assertions then follow. �

Now we turn to the DP equation for controlled diffusion process. The description
here is for a scalar process, which will be extended to vector case later in the paper.

The Wiener process Wt is a scalar process for which W0 = 0, the increments in
W over disjoint time intervals are independent and Wt is normally distributed with
zero mean and variance t. (W is often called Brownian motion). This specification
is internally consistent since

Wt = Wt1 + (Wt −Wt1)

and for 0 ≤ t1 ≤ t the two terms on the right hand side are independent normal
variable of zero mean and with variance t1 and t − t1 respectively. If δW is the
increment of W in a time interval of length δt, then

E[δW ] = 0 , E[(δW )2] = δt
3



where the expectation is conditional on the past of the process. Note that since

E[(
δW

δt
)2] = O(δt−1) →∞

the formal derivative ε = δW
δt

(continuous time ”white noise”) does not exist in a
mean-square sense, but expectations such as

E[(

∫
α(t)ε(t)dt)2] = E[(

∫
α(t)dW (t))2] =

∫
α2(t)dt

make sense if the integral is convergent.
Now consider a stochastic differential equation

δx = a(x, u)δt + g(x, u)δW

which we formally write as

ẋ = a(x, u) + g(x, u)ε.

This, as a Markov process, has an infinitesimal generator with action

Aφ(x) = lim
δt↘0

E[
φ(x(t + δt))− φ(x(t))

δt
| x(t) = x, u(t) = u] = φxa +

1

2
φxxg

2.

The DP equation is thus

(1.5) inf
u

[c + Vt + Vxa +
1

2
g2Vxx] = 0.

1.2. Main contribution to Stochastic Optimal Control. We shall in this paper
apply DP to stochastic optimal control problems with multiple point constraint.
Assume the time interval I = [t0, tN ] is divided into t0 < t1 < · · · < tN , where ti are
constrained points. For each interval Ik = [tk−1, tk] we can formulate an optimization
problem which can be solved either by DP or by Pontryagin’s maximum principle.
The key idea for dealing with the intervals is to use dynamic programming, see
[3]. That is, we first solve an optimal control problem on IN−1 with terminal value
from IN , and so on. In other words, we solve the optimal control problem at hand
by solving N suboptimal problems backwards in time intervals. The object in our
current paper are stochastic dynamical systems where some technical treatments
are required. These treatments are based on standard stochastic optimal control
techniques, presented e.g. in [8].

The idea of solving subproblems can heuristically be depicted by supposing that
a control problem is subject to constraints on n different points of the time interval
on which it is defined. By a subproblem we mean the control problem defined on
the interval of time between each constraint. Hence each subproblem can be solved
using traditional methods of stochastic controls.

It turns out that the trajectory planning with stochastic dynamics studied in this
paper is a suitable model in a financial application. We assume an investor is able
to trade in continuous time and wishes to find an investment strategy that enables
him/her to specify different risk levels at different times of the investment horizon.

4



If the investor measures his/her risk level by the variance of the portfolio then the
investor optimal trading strategy will be the solution of the mean-variance portfolio
selection problem with variance constraints on different times.

H. Markowitz [2] studied the mean-variance portfolio optimization problem in a
single period. It awarded him the Nobel prize in economy 1997. It has become a
basis for mathematical finance. The mean-variance portfolio problem that will be
studied in this paper has some differences from the original Markowitz problem.
First, the possibility of continuous trading is assumed instead of one period trading.
Second, the portfolios in this formulation are not relatively weighted and a riskless
asset must be included in the strategy.

Since we assume continuous time trading the natural mathematical description
for the portfolio dynamics are continuous semimartingales. This means that the
market will be represented by a diffusion model. More specifically the diffusion that
will be used is linear and can be derived from the Black-Scholes model consisting
of one riskless asset and an arbitrary number of risky assets. The riskless asset is
normally thought of as a bank account while the risky assets are stocks.

From [6] we see that the mean-variance portfolio selection problem can be formu-
lated as a stochastic LQ control problem. Here we demonstrate how the risk con-
straints on the different time periods can be represented by simply adding variance
constraints to the formulation. Consequently the solution of the financial problem
can be derived in a straight forward way from the LQ multi period constraint frame-
work which in turn is derived from the general stochastic control theory with multi
period constraints developed in the paper.

The rest of the paper is organized as follows. We give some very brief mathemat-
ical preliminaries essential for the development of the theory. Basically the dynamic
programming principle for stochastic controls will be described and some fundamen-
tal results are stated. Then the problem formulation for trajectory planning with
diffusion process is given and the solution of the mathematical problem is described.
Finally we turn to the financial problem.

2. Mathematical Preliminaries

In this section we give a short review of stochastic control theory that will be used
in the sequel.

2.1. General Stochastic Control by dynamic programming.
There are two versions of the stochastic control problem called the strong and weak
formulations. In the strong formulation there is a given filtered probability space
(Ω,F , {Ft}t≥0, P) where {Ft}t≥0 is a filtration generated by an m-dimensional stan-
dard Brownian motion W (t) that satisfies the usual conditions of right continuity
and completeness. Let the dynamics of the problem be continuous {Ft}-adapted,
right continuous with left limits (also known as RCLL or CADLAG in french) and
strictly positive semimartingales represented by the nonlinear stochastic differential
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equations

(2.1)

{
dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t) t ∈ [0, T ]
x(0) = x0

along with the cost function

(2.2) J(u(·)) = E
{∫ T

0

f(τ, x(τ), u(τ))dτ + h(x(T ))

}
and the space of controls:

U [s, T ] , {u(·) : [0, T ] → U | u(·) is measurable and {Ft}t≥0-adapted}
where f(·, x(·), u(·)) ∈ L1

F(s, T ; R) , h(x(T )) ∈ L1
FT

(Ω; R) and u(·) ∈ U [s, T ].

Mainly the task of the strong problem can be formulated as:

Problem 1. Minimize (2.2) subject to (2.1) over U [0, T ].

Definition 1. We call (x̄(t), ū(t)) an optimal pair if the trajectory x̄(t) given by the
control ū(t) solves Problem 1.

For the weak formulation the filtered probability space (Ω,F , {Ft}t≥0, P) can vary
along with the Brownian motion W (t) that generates the filtration {Ft}t≥0. This
formulation gives a useful model that is applied in the solution of the strong formu-
lation when using the dynamic programming approach.

More precisely, if x(·) is state trajectory starting from x0 at time 0 in a probability
space (Ω,F , P) along with a filtration {Ft}t≥0 then for any t > 0, x(t) is a random
variable in (Ω,F , P) rather than a deterministic point in Rn. However, a feasible
control u(·) is {Ft}t-adapeted, i.e. at any time instant t the control knows about all
the relevant information of the system up to time t (as specified by {Ft}t) and in
particular about x(t).

This implies that x(t) is actually not uncertain for the control at time t. That
is, x(t) is almost surely deterministic under a different probability space P(· | Ft).
Thus the above idea requires us to vary the probability space as well in order to
apply dynamic programming. It is the reason we use the weak formulation of the
stochastic contorl as an auxiliary formulation. For T > 0, a metric space U, and
any (s, y) ∈ [0, T ]× Rn consider the state equation{

dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t) t ∈ [s, T ]
x(0) = x0

along with the cost functional

J(s, y, u(·)) = E
{∫ T

0

f(τ, x(τ), u(τ))dτ + h(x(T ))

}
.

We fix s ∈ [0, T ] and define the weak feasible control space Uw[s, T ] as all 5-tuples
(Ω,F , P, W (·), u(·)) satisfying

6



• (Ω,F , P) is complete.
• W (·) is an m-dimensional Brownian motion on (Ω,F , P) over [0, T ] (with

W(0) = 0 a.s.), F s
t = σ{W (r) : s ≤ r ≤ t} augmented by all the P-null sets

in F .
• u : [0, T ]× Ω → U is an Ft-adapted process on (Ω,F , P).
• under u(·), for any y ∈ Rn the dynamics above admits a unique solution x(·)

on (Ω,F , {Ft}t≥s, P).
• f(·, x(·), u(·)) ∈ L1

F (0, T ; Rn) and h(x(T )) ∈ L1
FT

(Ω; Rn) are defined on the
given filtered probability space (Ω,F , {Ft}t≥s, P) associated with the given
5-tuple.

The notation u(·) ∈ Uw[s, T ] will be used instead of (Ω,F , P, W (·), u(·)) ∈ Uw[s, T ]
if no confusion exists. Note also that we restrict {Ft}t≥s to be generated by the
Brownian motion above.

Problem 2. For given (s, y) ∈ [0, T ]×Rn find a 5-tuple ū(·) = (Ω̄,F , P, W̄ (·), ū(·)) ∈
Uw[s, T ] such that

J(s, y; ū(·)) = inf
u(·)∈Uw[s,T ]

J(s, y; u(·)).

Further assumptions must be made in order to ensure both the solvability and
the uniqueness of solution to the dynamics above, and the well-definedness of cost
functional.

(S1) (U,d) is a polish space (a separable metric space) and T > 0.
(S2) There exists a constant L > 0 such that{

| φ(t, x, u)− φ(t, x̂, u) | ≤ L | x− x̂ | , ∀ t ∈ [0, T ], x, x̂ ∈ R, u ∈ U
| φ(t, 0, u) | ≤ L , (t, u) ∈ [0, T ]× U

where the function φ(t, x, u) is either of the uniformly continuous functions

b(t, x, u), σ(t, x, u), f(t, x, u), h(x).

Note that the existence of weak solutions does not imply the existence of strong so-
lutions and weak uniqueness does not imply pathwise uniqueness not strong unique-
ness. Relations between the strong and weak solutions is that strong existence and
uniqueness are equivalent to weak existence and pathwise uniqueness which imply
weak uniqueness.

The following lemma will be used quite frequently in the derivation of subproblems
defined on time intervals related to the constraints. Basically what the lemma says
is how the cost function is defined on any time between the start and end. Notice

7



that the expectation changes to a conditional expectation over the filtration from s
to ŝ where ŝ ∈ [s, T ].

Lemma 1. Let (s, y) ∈ [0, T ) × Rn and (Ω,F , P, W (·), u(·)) ∈ Uw[s, T ]. Then, for
any ŝ ∈ [s, T ) and F s

ŝ -measurable random variable ξ,

(2.3) J(ŝ, ξ(ω); u(·)) = E
{∫ T

ŝ

f(τ, x(τ ; s, y, u(·)), u(τ))dτ + h(x(T ; ŝ, ξ, u(·))) | Fs
ŝ

}
(ω) , P − a.s.ω.

As pointed out earlier an essential concept in dynamic programming is the value
function which can be viewed as the optimal cost, and is defined as:

(2.4)

{
V (s, y) , infu(·)∈Uw[s,T ] J(s, y; u(·)), ∀ (s, y) ∈ [0, T )× Rn,
V (T, y) = h(y), ∀ y ∈ Rn.

The stochastic version of Bellman’s principle of optimality is stated below. It’s
proof together with all of the other proofs of this section can be found in [8].

Theorem 2 (Bellman’s Principle of optimality). Let (S1) and (S2) hold. Then for
∀ (s, y) ∈ [0, T ]× Rn,

(2.5) V (s, y) = inf
u(·)∈Uw [s,T ]

E
{∫ ŝ

s

f(τ, x(τ ; s, y, u(·)), u(τ))dτ + V (ŝ, x(ŝ; s, y, u(·)))
}

,

∀ 0 < s ≤ ŝ ≤ T.

This equation is the DP equation in vector case. The following theorem will be used
extensively in the proofs of the multiperiod constraint results.

Theorem 3. Let (S1) and (S2) hold. If (x̄(·), ū(·)) is optimal for Problem 2, then

(2.6) V (t, x̄(t)) = E
{∫ T

t

f(τ, x̄(τ), ū(τ))dτ + h(x̄(T )) | F s
t

}
, P-a.s, t ∈ [s, T ].

Hence dynamic programming solves the original control problem by solving the
DP equation, a PDE also called the Hamilton-Jacobi-Bellman equation. The solu-
tion of the HJB is the value function defined above. From this solution both the
optimal control and trajectory can be found. For historical comments on this equa-
tion see e.g.[8].

In order to gain some insight of the above theorem, we proceed a heuristic deriva-
tion of the HJB equations.

Heuristics 1 (Intuitive view on the derivation of the HJB equation).
Suppose we are in the end time of an optimal trajectory, then by taking an infini-
tesimal step backwards in time Bellman’s principle tells that we would still be on the
optimal trajectory. Defining this end point by

V (T, x̄(T )) = J(T, x̄(T ), ū(T )),
8



assuming differentiability of V and using the taylor formula, an infinitesimal step
back in time would place us on

V (T − δ, x̄(T − δ)) = J(T − δ, x(T − δ), ū(·)) = f(t, x̄(t), ū(t)) + V (T, x̄(T )).

A simple change of variables t = T − δ results in

V (t, x̄(t)) = f(t, x̄(t), ū(t))+V (t+δ, x̄(t+δ)) = inf
u
{f(t, x(t), u(·))+V (t+δ, x(t+δ))}.

Now we come to the crucial part, since x(t) is a diffusion we can use the infinitesimal
generator to find a better expression for V (t+δ, x̄(t+δ)). From the study of Markov
processes in the introduction it is clear that the infinitesimal generator A can be
defined by:

Af(x(t)) = limh→0

Ex

{
f(x(t+h))−f(x(t))

}
h

=
∑

i bi(t, x(t), u(t))∂xi
f(x(t)) + 1

2

∑
i,j σi,j(t, x(t), u(t))∂xixj

f(x(t)).

So remembering that we are in a heuristic context we can write

V (t + δ, x̄(t + δ)) = V (t, x̄(t)) + ∂tV (t, x̄(t)) +AV (t, x̄(t)).

This means that

V (t, x̄(t)) = inf
u
{f(t, x(t), u(·)) + V (t, x̄(t)) + ∂tV (t, x̄(t)) +AV (t, x̄(t))}.

Consequently we arrive at the HJB partial differential equation:{
∂tV (t, x(t)) + infu{AV (t, x(t)) + f(t, x(t), u(·))} = 0 , t ∈ [0, T ),
V (T, x(T )) = h(x(T )).

The following proposition states the HJB in a formal way.

Proposition 1 (Hamilton-Jacobi-Bellman PDE). Let (S1) and (S2) hold. Then
V ∈ C1,2([0, T ]×Rn),continuously differentiable on t and twice continuously differ-
entiable on x, is a solution to the following terminal value problem:

(2.7)

{
−∂tv + supu∈U G(t, x, u,−∂xv,−∂x2v) = 0 , (t, x) ∈ [0, T )× Rn,
v |t=T = h(x) , x ∈ Rn,

where

(2.8) G(t, x, u, p, P ) ,
1

2
tr(σ′(t, x, u)Pσ(t, x, u)) + 〈p, b(t, x, u)〉 − f(t, x, u)〉,

∀ (t, x, u, p) ∈ [0, T ]× Rn × U × Rn.

Note that

G(t, x, u,−∂xv,−∂x2v) = −AV (t, x(t))− f(t, x(t), u(·))
where P ∈ Sn.
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2.2. Linear Quadratic Control.
Consider now the linear stochastic differential equation

(2.9)

{
dx(t) = [A(t)x(t) + B(t)u(t)]dt + σ(t)u(t)dW (t) t ∈ [s, T ]
x(s) = y

along with the quadratic cost function

(2.10) J(s, y; u(·)) = E
{∫ T

s

1

2
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt +

1

2
x′(T )P̂ x(T ) + x′(T )ĝ + r̂

}
where 0 ≤ s ≤ T , A(·) ∈ L∞(s, T ; Rn×n), B(·), σ(·) ∈ L∞(s, T ; Rn×m), Q(·) ∈
L∞(s, T ;Sn) , R(·) ∈ L∞(s, T ;Sm), P̂ ∈ Sn, ĝ ∈ Rn and r̂ ∈ R.
The formulation of the LQ control problem is:

Problem 3. Minimize (2.10) subject to (2.9).

Using dynamic programming we derive the Hamilton-Jacobi-Bellman equation

(2.11)

{
0 = ∂tV +

∑
i[(Ax + Bu)i∂xiV ] + 1

2

∑
ij(u

′σ)ij∂xixj V + 1
2
(x′Qx + u′Ru)

V (T, x(T )) = 1
2
x′(T )P̂ x(T ) + x′(T )ĝ + r̂.

It can be proved that the solution is

(2.12) V (t, x(t)) =
1

2
x′(t)P (t)x(t) + x′(t)g(t) + r(t).

By substitution of (2.12) into (2.11) the optimal control is found to be

(2.13) ū(t) = −K(t)−1B′(t)(P (t)x̄(t) + g(t))

where K(t) = σ(t)P (t)σ′(t)+R(t). We see that the Hamilton-Jacobi-Bellman equa-
tion becomes

0 = 1
2
x′Ṗ x + x′ġ + ṙ + x′A′Px + x′A′g − x′P ′BK−1B′Px − 2x′P ′BK−1B′g − g′BK−1B′g

+ 1
2
(x′P ′BK−1σPσ′K−1B′Px + 2x′P ′BK−1σPσ′K−1B′g + g′BK−1σPσ′K−1 + B′g)

+ 1
2
(x′Mx + x′P ′BK−1NK−1B′Px + 2x′P ′BK−1NK−1B′g + g′BK−1NK−1B′g),

where t has been suppressed from all terms for notational convenience. A solution
to this equation can be found by solving the following ordinary differential equations
matrix:

(2.14)
Ṗ (t) + A′(t)P (t) + P (t)A(t)− P ′(t)B(t)K(t)−1B′(t)P (t) + Q(t) = 0 , P (T ) = P̂ ,
ġ(t) + A′(t)g(t)− P ′(t)B(t)K(t)−1B′(t)g(t) = 0 , g(T ) = ĝ,
ṙ(t)− 1

2
g′(t)B(t)K(t)−1B′(t)g(t) = 0 , r(T ) = r̂,

The first equation is called the (stochastic) Riccati equation. since we now have
the optimal control ū(·) substituting it into the dynamics (2.9) yields the optimal
dynamics

(2.15)


dx̄(t) = [A(t)x̄(t)− B(t)(K(t)−1B′(t)(P (t)x̄(t) + g(t)))]dt

−(K(t)−1B′(t)(P (t)x̄(t) + g(t)))′σ(t)dW (t), t ∈ [s, T ],
x̄(s) = y

10



The main result is that if the Riccati equation has a solution then there is an optimal
solution. In the derivation above, it only required the inverse of K(t), ∀ t ∈ [s, T ].
Nevertheless, the constraint K > 0 is needed for the original LQ problem to have
an optimal control, see details in [8]. Local solvability of Riccati equations is always

true if K > 0 for all t. However it is not very useful. In case Q ≥ 0, P̂ ≥ 0 we can
prove that there is a unique solution to the Riccati equation over [0, T ] assuming
some regularity on parameters R, σ. It should also be noted that the solvability of
the Riccati equation P (t) in general remains an open question. Theory of Riccati
equations is itself an importnat issue. Even though P (t) might have a solution the
chances of having an analytic expression are pretty slim so the use of a numerical
method can be applied in a straight forward manner. An example of such a method
is the backward Euler method. In case of one dimensional state we are able to give a
close form solution which is the case in our financial application since we can indeed
find an analytic solution to its corresponding Riccati equation.

3. Trajectory planning with diffusion process

3.1. Problem formulation.
Given the same setting as above let the dynamics be

(3.1)


dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t) t ∈ [0, T ]
x(s) = y

E
{

ck(x(tk+1)) | Fs
tk

}
= αk+1 ∈ Rp k ∈ {1, 2, .., N − 1}

where 0 ≤ s = t0 < · · · < tk < tk+1 · · · < tN = T .

We formulate the main problem of this paper by

Problem 4. Minimize (2.2) subject to (3.1) over U [0, T ].

The main difference between Problem 1 and Problem 4 are the constraints

E
{

ck(x(tk+1)) | F s
tk

}
= αk+1.

Note that each ck(·) is a given function, meaning that if

ck(a) , (a− E{a})2

then the constraints are variance constraints.
Explicitly we wish to solve the problem

min
u(·)∈U [0,T ]

J(u(·)) = E
{∫ T

0

f(τ, x(τ), u(τ))dτ + h(x(T ))

}
subject to (3.1).

In the spirit of both the LQ and the general multiperiod constraint problem suitable
11



for dynamics programming it is natural to define the LQ multiperiod constraint
problem in the following way. Given the dynamics

(3.2)


dx(t) = [A(t)x(t) + B(t)u(t)]dt + σ(t)u(t)dW (t) t ∈ [0, T ]
x(s) = y

E
{

Ckx(tk+1) | Fs
tk

}
= αk+1 ∈ Rp k ∈ {0, 1, 2, .., N}

where 0 < s = t0 < · · · < tk < tk+1 · · · < tN = T .
Then the LQ control with multiperid constraints is

Problem 5. Minimize (2.10) subject to (3.2) over Uw[s, T ].

Explicitly we wish to solve the problem

min
u(·)∈Uw[s,T ]

J(u(·)) = E
{∫ T

s

1

2
[x′(t)Q(t)x(t)+u′(t)R(t)u(t)]dt+

1

2
x′(T )P̂ x(T )+x′(T )ĝ+r̂

}
subject to (3.2).

3.2. Solutions to trajectory planning problems. Control problems with bound-
ary constraints are defined in this paper as control problems with an additional
constraint on the terminal time. So given the dynamics

(3.3)


dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t) t ∈ [s, T ]
x(s) = y

E
{

c(x(T ))

}
= αT

the optimization problem is

Problem 6. Minimize (2.2) subject to (3.3) over Uw[s, T ].

From standard optimization theory we know that by using a lagrange multiplier λ
on problem 6 we can lift up the constraints into the cost function so (2.2) takes the
form

(3.4) J(s, y; u(·); λ) , E
{∫ T

s

f(τ, x(τ), u(τ))dτ + h(x(T )) + λ′(c(x(T ))− αT )

}
and the dynamics (3.3) take the form of (2.1). So Problem 6 is transformed into

Problem 7. Minimize over u(·) and maximize over λ ∈ Rp (3.4) subject to (2.1)
over Uw[s, T ].

Let λ̄ be such that supλ J(s, y; u(·); λ) is found and define the value function by:

(3.5)

{
V (s, y) = infu(·)∈Uw[s,T ] J(s, y; u(·); λ̄) ∀ (s, y) ∈ [0, T )× Rn

V (T, y) = h(y) + λ̄′(c(y)− αT ) ∀ y ∈ Rn.

12



Definition 2. The triple (x̄(·), ū(·), λ̄) is called optimal if it is a solution to Problem
7.

The following corollary to the Bellman principle theorem is simple but essential
for the multiperiod constraint theory.

Corollary 1. Let (S1) and (S2) hold. If (x̄(·), ū(·), λ̄) is optimal for Problem 7,
then
(3.6)

V (t, x̄(t)) = E
{∫ T

t

f(τ, x̄(τ), ū(τ))dτ+h(x̄(T ))+λ̄′(c(x̄(T ))−ᾱT ) | F s
t

}
, P-a.s, t ∈ [s, T ]

Proof: Let h(x̄(T ); λ̄) , h(x̄(T )) + λ̄′(c(x̄(T ))− ᾱT ). Then the cost function is

J(s, y; u(·); λ) , E
{∫ T

s

f(τ, x(τ), u(τ))dτ + h(x(T ); λ̄)

}
Hence the corollary follows from theorem 3. �
Finally we see that the Hamilton-Jacobi-Bellman equation for the boundary con-
straint problem becomes

(3.7)

{
−∂tv + supu∈U G(t, x, u,−∂xv,−∂x2v) = 0 , (t, x) ∈ [0, T )× Rn

v |t=T = h(x) + λ̄′(c(x)− αT ) , x ∈ Rn.

We now turn to the discussion of the main results in this paper. Defining a control
for each subinterval [tk, tk+1] by

uk(t) , u(t) , t ∈ [tk, tk+1).

Notice that the interval [tk, tk+1) is half open, the reason for this is best explained
by considering what happens at the terminal time T . At T there is no decision to
be made, but at time T − δ, when δ > 0, there is. Hence, decisions are made during
the time interval [0, T ). Since we consider tk+1 as the terminal time of interval
[tk, tk+1] the last decision taken during this interval is really taken during the half
open interval [tk, tk+1), i.e. u(tk+1) is the first decision of the interval [tk+1, tk+2] and
not the last of [tk, tk+1].

Assume
(S2’){

| φ(t, x, uk)− φ(t, x̂, uk) | ≤ L | x− x̂ | , ∀ t ∈ [tk, tk+1), x, x̂ ∈ R, uk ∈ U
| φ(t, 0, uk) | ≤ L , (t, uk) ∈ [tk, tk+1)× U

hold (instead of (S2)). The only difference from the theory already studied is the
definition of the time interval.

The main idea is to apply dynamic programming on the intervals [tk, tk+1], k =
0, 1, . . . , N − 1. To solve the problem, let us define the cost-to-go functions, for any
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s ∈ [tk, T ]

Jk(tk, y, u(·)) = E
{∫ T

tk
f(τ, x(τ ; x(τ, tk, y, u(·))), u(τ))dτ + h(x(T ; tk, y, u(·))) | F s

tk

}
= E

{∑N−1
i=k

∫ ti+1

ti
f(τ, x(τ), u(τ))dτ + h(x(T ; tk, x, u(·))) | F s

tk

}
and the minimal cost-to-go function

(3.8) Vk(tk, y) = inf
u(·)∈Uw[tk,T ]

Jk(tk, y, u(·))

subject to

dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t) t ∈ [ti, ti+1]
x(tk) = y

E
{

c(x(T )) | F ti
ti+1

}
= αi+1

JN(T, y) = h(y)
i = k, k + 1, . . . , N − 1.

Now we shall derive the dynamic programming recursion. Note that

Jk(tk, x, u(·)) = E
{∫ T

tk
f(τ, x(τ), u(τ))dτ + h(x(T ; tk, y, u(·))) | F s

tk

}
= E

{∫ tk+1

tk
f(τ, x(τ), u(τ))dτ

+E
[∫ T

tk+1
f(τ, x(τ), u(τ))dτ + h(x(T ; tk, y, u(·))) | F tk

tk+1

]
| F s

tk

}
= E

{∫ tk+1

tk
f(τ, x(τ), u(τ))dτ + Jk+1(tk+1, x(tk+1; tk, x, u(·)); u(·)) | F s

tk

}
.

Next we state as a proposition the dynamic programming recursion

Proposition 2. The optimal cost-to-go functions satisfies the recursion

Vk(tk, xk) = inf
u(·)∈Uw [tk,T ]

E
{∫ tk+1

tk

f(τ, x(τ ; tk, xk, u(·)), u(τ))dτ + Vk+1(tk+1, x(tk+1; tk, xk, u(·))) | Fs
tk

}
.

Proof: Clearly the first iteration

VN−1(tN−1, x) = infu(·)∈Uw[tN−1,T ] E
{∫ tN

tN−1
f(τ, x(τ ; t0, x0, u(·)); u(·)), u(τ))dτ

+VN(tN , x(tN ; tN−1, x, u(·))) | F s
tN−1

}
14



holds by the definition of the value function. Note that VN(tN , x(tN−1; tN−1, x, u(·)) =
h(x(T )). Further more the second iteration

VN−2(tN−2, x) = infu(·)∈Uw[tN−2,T ] E
{∫ tN−1

tN−2
f(τ, x(τ ; t0, x0, u(·)); u(·)), u(τ))dτ

+VN−1(tN−1, x(tN−1; tN−2, x, u(·))) | F s
tN−2

}
holds by the Bellman Principle of optimality. By induction the proposition follows.
�

By this proposition, we can solve N optimal control problem of type Problem
6 on the intervals [tk, tk+1], k = 0, 1, . . . , N − 1. Thus the solutions of Problem 4
can be found by solving the minimal cost-to-go function backwards in time periods
[tN−1, T ], [tN−2, tN−1], . . . , [t0, t1]. Note that the solutions Problem 6 can be found by
Lagrange relaxation. We shall show later how to find an explicit Lagrange multiplier
for a special type of optimal control problem, LQ control.

3.3. Solutions of the Linear Quadratic Control problem.
Consider now the linear system with a terminal constraint

(3.9)


dx(t) = [A(t)x(t) + B(t)u(t)]dt + σ(t)u(t)dW (t) t ∈ [s, T ]
x(s) = y

E
{

x(T )

}
= αT

we wish to

Problem 8. Minimize (2.10) subject to (3.9).

Lagrange relaxation gives a cost function of the form

J(s, y; u(·)) =

E
{∫ T

s

1

2
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt +

1

2
x′(T )P̂ x(T ) + x′(T )ĝ + r̂ + λ′(Cx(T )− αT )

}
.

This is equal to

(3.10) J(s, y; u(·)) =

E
{∫ T

s

1

2
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt +

1

2
x′(T )P̂ x(T ) + x′(T )(ĝ + C′λ) + r̂ − λ′αT

}
.

Now problem 8 can be reformulated as

Problem 9. Minimize u(·) and Maximize λ on (2.10) subject to (2.9).

Our aim is to find a closed form solution to this problem. The equations (2.14)
become

(3.11)
Ṗ (t) = −A′(t)P (t)− P (t)A(t) + P ′(t)B(t)K(t)−1B′(t)P (t)− M(t) , P (T ) = P̂
ġ(t) = −A′(t)g(t) + P ′(t)B(t)K(t)−1B′(t)g(t) , g(T ) = ĝ + C′λ
ṙ(t) = 1

2
g′(t)B(t)K(t)−1B′(t)g(t) , r(T ) = r̂ − α′

T λ
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and notice that ġ(t) is a linear homogeneous ordinary differential equation so we can
use its state-transition matrix to express both g(t) and r(t) as:

g(t) = Φ′(T, t)g(T ) = Φ′(T, t)(ĝ + C ′λ) = Φ′(T, t)ĝ + Φ′(T, t)C ′λ

r(t) = r̂ − α′T λ−
∫ T

t
g′(τ)B(τ)K(τ)−1B′(τ)g(τ)dτ

= r̂ − α′T λ−
∫ T

t
g′(T )Φ(T, τ)B(τ)K(τ)−1B′(τ)Φ′(T, τ)g(T )dτ

= r̂ − α′T λ− g′(T )[
∫ T

t
Φ(T, τ)B(τ)K(τ)−1B′(τ)Φ′(T, τ)dτ ]g(T )

Ψ(T, t) = 2
∫ T

t
Φ(T, τ)B(τ)K(τ)−1B′(τ)Φ′(T, τ)dτ

r(t) = r̂ − α′T λ− 1
2
g′(T )Ψ(T, t)g(T )

= r̂ − α′T λ− 1
2
(ĝ + C ′λ)′Ψ(T, t)(ĝ + C ′λ).

Note that the state-transition matrix is given by the expression

Φ(T, t) = e
∫ T

t (A′(s)g(s)−P ′(s)B(s)K(s)−1B′(s))ds.

Inserting these into the value function (2.12) which is equal to the value function
of this problem we get

(3.12) V (s, x(s)) =
1

2
x′(s)P (s)x(s) + x′(s)Φ′(T, s)(ĝ + C ′λ)

+ r̂ − α′T λ− 1

2
(ĝ + C ′λ)′Ψ(T, s)(ĝ + C ′λ).

Now we can optimize λ from (3.12)

0 = ∂λ(x
′(s)Φ′(T, s)C ′λ− α′T λ− ĝ′Ψ(T, s)C ′λ− 1

2
λ′CΨ(T, s)C ′λ)

= CΦ(T, s)x(s)− αT − CΨ(T, s)ĝ − 1

2
(CΨ(T, s)C ′ + CΨ′(T, s)C ′)λ

to get the a suitable λ for the lagrange relaxation

(3.13) λ̄ = (CΨ(T, s)C ′)−1(C(Φ(T, s)y −Ψ(T, s)ĝ)− αT ).

The optimal control derived from 2.13 in terms of λ̄ is

(3.14) ū(t) = −K(t)−1B′(t)[P (t)x(t)+

Φ′(T, t)(ĝ + C ′(CΨ(T, s)C ′)−1(C(Φ(T, s)y −Ψ(T, s)ĝ)− αT ))]

meaning that we now have an optimal control for a problem defined on a time
interval where both end points are subject to constraints. In conclusion, we state
above discussion as a theorem.

Theorem 4. The optimal control for Problem 8 is given by (3.14). �
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In case of multiperiod constraints, we apply the above theorem on each [tk, tk+1].
Just as before we find the Riccati equations:

Ṗk(t) = −A′(t)Pk(t)− Pk(t)A(t) + P ′
k(t)B(t)Kk(t)−1B′(t)Pk(t)− M(t) , Pk(Tk) = P̂k

ġk(t) = −A′(t)gk(t) + P ′
k(t)B(t)Kk(t)−1B′(t)gk(t) , gk(Tk) = ĝk + C′

kλk

ṙk(t) = 1
2
g′k(t)B(t)Kk(t)−1B′(t)gk(t) , rk(Tk) = r̂k − α′

kλk

where
P̂k = Pk+1(tk+1) , ĝk = gk+1(tk+1) , r̂k = rk+1(tk+1)

if k 6= n and
P̂n = P̂ , ĝn = ĝ , r̂n = r̂.

The optimal λk from the value function is

(3.15) λ̄k = (CkΨ(Tk, tk)C
′
k)
−1(Ck(Φ(Tk, tk)x̄(tk)−Ψ(Tk, tk)ĝk)− αk)

and the optimal control depending on λ̄k is

(3.16) ūk(t) = −Kk(t)
−1B′(t)[Pk(t)x̄(t)+

Φ′(Tk, tk)(ĝk + C ′
k(CkΨ(Tk, tk)C

′
k)
−1(Ck(Φ(Tk, tk)x̄(tk)−Ψ(Tk, tk)ĝk)− αk))].

When solving a problem with multiperiod constraints one is to insert the optimal
control ūk(·) into the dynamics (2.9) during the time interval [tk, tk+1]. When the
trajectory has passed this interval into the next [tk+1, tk+2] simply use the next
control ūk+1(·) and the trajectory will keep its optimality property.

4. Financial Preliminaries

4.1. Market Model.
Let M denote a financial market consisting of n + 1 assets that are traded continu-
ously. The first of these is a riskless asset called a bond whose price process has the
following equation

(4.1)

{
dB(t) = a(t)B(t)dt
B(s) = 1

where a(t) can be interpreted as the interest rate of the bond.
The remaining n assest are subject ro risk, we shall call them stocks and model asset
i with the linear stochastic differential equation

(4.2)

{
dPi(t) = Pi(t)[µi(t)dt +

∑n
j=1 σij(t)dWj(t)]

Pi(s) = pi.

M’s uncertainty is modelled by the independent components of a n-dimentional
Brownian motion W (t) meaning that the market that we are dealing with is com-
plete. This gives the coefficient σij(t) of (4.2) the financial interpretation of the
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instantaneous intensity with which the Brownian motion influences the stock. The
coefficient µi(t) becomes then the expected rate of return of the stock.
Some assumptions made on the coefficients a(t), µ(t) and σ(t) are that σ(t) be
invertible ∀ t, that they should be {Ft}t≥0-adapted and satisfy the condition∫ T

s

(| a(t) | + || µ(t) || + || σ(t) ||2)dt < ∞, a.s.

These assumption preclude anticipation of the future and allow for dependence on
the past of the driving brownian motion.

Let x(t) denote the wealth of a portfolio consisting of n stocks and the bond at
time t. Call this the wealth-process and model it with

x(t) = u0(t)B(t) +
n∑

i=1

ui(t)Pi(t)

where ui(t) are the number of the ith asset held in the portfolio. In differential form
this is equal to

(4.3)

{
dx(t) = [a(t)x(t) + b(t)u(t)]dt + u′(t)σ(t)dW (t) t ∈ [s, T ]
x(s) = y

where b(t) = µ′(t)− a(t) and y is the initial capital invested in the portfolio.
It should me noted that the portfolios must always be held by small investors, by

this we mean that the decisions he/she makes will not influence the market.

4.2. Portfolio Optimization.
The mean-variance portfolio optimization problem can be stated as a multi-objective
optimization problem with two criteria in conflict as show in [6]. From a control
theoretic perspective we can denote the multi-objective cost function

(4.4) (J1(s, y; u(·), J2(s, y; u(·)) = (−E{x(T )}, V{x(T )})
and formulate the mean-variance portfolio selection problem as

Problem 10 (Mean-Variance Optimization). Minimize (4.4) subject to (4.3).

Using the auxiliary method from [6] it can be shown that the solution of the
following problem is equal to the solution of problem 10. Let the cost function be

(4.5) J(s, y; u(·) = E{µ̂x(T )2 − ηx(T )}
and

Problem 11 (LQ Mean-Variance Optimization). Minimize (4.5) subject to (4.3).

With the following variable substitutions A(t) = a(t) , B(t) = b(t) = b̂′(t)− a(t),

C = 1, f(t) = 0, M(t) = N(t) = r̂ = 0, P̂ = µ = 2µ̂ and ĝ = −η we see that (4.5) is
a special case of (2.10). So we proceed in the normal fashion and derive the solution
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from LQ control theory.

From (2.14) the riccati equations to this problem become

Ṗ (t) = (ρ(t)− 2a(t))P (t) , P (T ) = µ
ġ(t) = (ρ(t)− a(t))g(t) , g(T ) = −η

ṙ(t) = 1
2
ρ(t)g(t)2

P (t)
, r(T ) = 0

where ρ(t) = b(t)(σ(t)σ′(t))−1b′(t). Since they are homogeneous linear ordinary
differential equations we can solve them and get

P (t) = µe−
∫ T

t (ρ(τ)−2a(τ))dτ

g(t) = −ηe−
∫ T

t (ρ(τ)−a(τ))dτ .

Substitution of P (t) and g(t) into (2.13) gives us the optimal control:

ū(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t) + g(t)
P (t)

)

h(t) , g(t)
P (t)

= − η
µ
e−

∫ T
t a(τ)dτ

γ , η
µ

(4.6) ū(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t)− γe−
∫ T

t a(τ)dτ ).

Lets proceed now with the derivation of the efficiet frontier for the mean-variance
problem 11. The wealth process (4.3) under the optimal control (4.6) follows the
equation

(4.7)

 dx̄(t) = [(a(t)− ρ(t))x̄(t) + γρ(t)e−
∫ T

t a(s)ds]dt

+b(t)σ(t)−1(γe−
∫ T

t a(s)ds − x̄(t))]dWt

x̄(s) = y.

Moreover, using the Ito’s formula on x(t)2 gives

(4.8)

 dx̄(t)2 = [(2a(t)− ρ(t))x̄(t)2 + γ2ρ(t)e−2
∫ T

t a(s)ds]dt

+2x̄(t)b(t)σ(t)−1(γe−
∫ T

t a(s)ds − x̄(t))]dWt

x̄2(s) = y2.

Taking the expectation of both (4.7) and (4.8) results in the nonhomogeneous
linear ordinary differential equations

(4.9)

{
dE{x̄(t)} = [(a(t)− ρ(t))E{x̄(t)}+ γρ(t)e−

∫ T
t a(s)ds]dt

Ex̄(s) = y
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and

(4.10)

{
dE{x̄(t)2} = [(2a(t)− ρ(t))E{x̄(t)2}+ γ2ρ(t)e−2

∫ T
t a(s)ds]dt

Ex̄2(s) = y2.

Solving these we get

E{x̄(T )} = κy + βγ = αT

E{x̄(T )2} = δy2 + βγ2

where

κ , e
∫ T

s (a(t)−ρ(t))dt

β , 1− e−
∫ T

s ρ(t)dt

δ , e
∫ T

s (2a(t)−ρ(t))dt

(4.11) γ =
E{x̄(T )} − κy

β
.

By finding an expression of γ we have now completed the solution of problem 11.
The interseting property of γ is that it remains constant over the whole investment
horizon. We also notice that the only arbitrary components that γ depends on are
the initial wealth y and the terminal expected wealth E{x̄(T )}.
The well known equality V{x̄(T )} = E{x̄(T )2}−E{x̄(T )}2 is crucial for the formu-
lation of the main financial problem studied in this paper. The following calculation
gives us the possibility of expressing the variance of the wealth process in forms of
an expected value combined with the given parameters y, a(t) and ρ(t).

V{x̄(T )} = E{x̄(T )2} − E{x̄(T )}2

= β(1− β)γ2 − 2κβγy + (δ − κ2)α2
s

=
e−

∫ T
s ρ(t)dt

1− e−
∫ T

s ρ(t)dt
(E{x(T )} − ye

∫ T
s a(t)dt)2

(4.12) E{x̄(T )} = ye
∫ T

s a(t)dt +

√
1− e

∫ T
s ρ(t)dt

e−
∫ T

s ρ(t)dt
V{x̄(T )}.

5. Financial Problem Formulation

Consider a small investor with an initial amount of money which he/she wishes to
invest on the market. After specifying an investment horizon say, that the he/she
wants to specify different risk levels on the portfolio during different period.
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An example could be a pension plan where the capital is invested on the market.
One idea could be to minimize the risk as the person gets older. One way to do
so is to give different risk levels for each five year period of the persons life after a
certain age. Say that during the ages 50-55 the risk level should be 5 while during
the ages 55-60 the risk level should be 4 and so on.

Another example could be a company that has much of its capital invested on
the market. Suppose that the share holders are very concerned with the companies
budget. Then the company might want to minimize its risk exposure a number of
times before the yearly report is due.

If the investor measures the risk exposure of his/her portfilio with the variance
this problem can be formulated in the following way. Given the wealth process of
the portfolio

(5.1)

 dx(t) = [a(t)x(t) + b(t)u(t)]dt + u′(t)σ(t)dW (t) t ∈ [s, T ]
x(s) = y

V{x(Tk)} = ϑk k ∈ {1, 2, .., n}

0 < s = t1 < · · · < tk < tk+1 · · · < tN = T.

Problem 12. Minimize (4.5) subject to (5.1).

Note that the constraints V{x(Tk)} = ϑk can be reformulated using (4.12) to
E{x(Tk)} = αk giving us the usual LQ multiconstraint form.

5.1. Financial Solutions.

5.1.1. Boundary Constraints.
The following results will be stated in a very short and simple manner since they
are derived directly from the LQ boundary constraint theory. Let the dynamics be
the same as in the previous section with an additional constraint at the end point

(5.2)

 dx(t) = [a(t)x(t) + b(t)u(t)]dt + u′(t)σ(t)dW (t) t ∈ [s, T ]
x(s) = y

E{x(T )} = αT

and let the problem be

Problem 13. Minimize (4.5) subject to (5.2).

We derive the riccati equations from (3.11)

Ṗ (t) = (ρ(t)− 2a(t))P (t) , P (T ) = µ
ġ(t) = (ρ(t)− a(t))g(t) , g(T ) = λ− η

ṙ(t) = 1
2
ρ(t)g(t)2

P (t)
, r(T ) = −λαT .
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The solutions to these equations are

P (t) = µe−
∫ T

t (ρ(τ)−2a(τ))dτ

g(t) = (λ− η)Φ(T, t)
r(t) = −λαT − (1

2
λ2 − λη + 1

2
η2)Ψ(T, t)

where

Φ(T, t) = e−
∫ T

t (ρ(τ)−a(τ))dτ

Ψ(T, t) =

∫ T

t

ρ(τ)
Φ(T, τ)2

P (τ)
dτ.

From (3.13) the optimal λ becomes

(5.3) λ̄ =
Φ(T, s)y − αT

Ψ(T, s)
+ η

and finally we arrive at the optimal control

ū(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t) +
g(t)

P (t)
)

h(t) ,
g(t)

P (t)

=
λ̄− η

µ
e−

∫ T
t a(τ)dτ

=
Φ(T, s)y − αT

Ψ(T, s)µ
e−

∫ T
t a(τ)dτ

γ , −Φ(T, s)y − αT

Ψ(T, s)µ

(5.4) ū(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t)− γe−
∫ T

t a(τ)dτ ).

The γ in this last equation can be computed using the expression from (4.11).
Notice that both the γs from the initial and boundary constraint problem are equal.
This is natural since the contextual interpretion of both problem is the same.

5.1.2. Multiperiod Constraints.
We have now arrived at the final and main result from a financial perspective of this
paper. Fortunately all of the necessery calculation have been done in the previous
sections. So the only thing we need to keep in mind is that we have to separate
the time intervals on which the constraints are defined and simply apply the results
from boundary constraint section.
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For each period t ∈ [tk, Tk] we have:

Riccati Equations:

Ṗk(t) = (ρ(t)− 2a(t))Pk(t) , Pk(Tk) = P̂k

ġk(t) = (ρ(t)− a(t))gk(t) , gk(Tk) = ĝk + λk

ṙk(t) = 1
2
ρ(t)gk(t)2

Pk(t)
, rk(Tk) = r̂k − αkλk

where
P̂k = Pk+1(tk+1) , ĝk = gk+1(tk+1) , r̂k = rk+1(tk+1)

if k 6= n and

P̂n = µ , ĝn = −η , r̂n = 0.

Solutions to the riccati equations:

Pk(t) = P̂ke
−

∫ Tk
t (ρ(τ)−2a(τ))dτ

gk(t) = (ĝk + λk)e
−

∫ Tk
t (ρ(τ)−a(τ))dτ

where

Φ(Tk, tk) = e−
∫ Tk

tk
(ρ(τ)−a(τ))dτ

Ψ(Tk, tk) =

∫ Tk

tk

ρ(τ)
Φ(Tk, τ)2

Pk(τ)
dτ.

The optimal λk

(5.5) λ̄k =
Φ(Tk, tk)x(tk)− αk

Ψ(Tk, tk)
− ĝk

and there by we obtain the optimal control

ūk(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t) +
gk(t)

Pk(t)
)

hk(t) ,
gk(t)

Pk(t)

=
ĝk + λ̄k

P̂k

e−
∫ Tk

tk
a(τ)dτ

=
Φ(Tk, tk)x(tk)− αk

Ψ(Tk, tk)P̂k

e−
∫ Tk

tk
a(τ)dτ

γk , −Φ(Tk, tk)x(tk)− αk

Ψ(Tk, tk)P̂k

(5.6) ūk(t) = −(σ(t)σ′(t))−1b′(t)(x̄(t)− γke
−

∫ Tk
tk

a(τ)dτ ).
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From the efficient frontier of the initial wealth portfolio optimization section we
derive γk from (4.11)

(5.7) γk =
αk − κkx(tk)

βk

where

κk , e
∫ Tk

tk
(a(t)−ρ(t))dt

βk , 1− e−
∫ Tk

tk
ρ(t)dt.

Hence we have arrived at an analytic expression for the portfolio controls of each
period.

5.2. An example. Lets consider an example where an investor decides he/she
wants to invest on two assets. The first asset is a bond with a nominal anual interest
rate of 1 percent. The second asset is a stock with a nominal appreciation rate of 12
percent and a standard deviation of 15 percent. The investor seeks an investment
strategy consisting of both assets where he/she is able to specify three different risk
levels. The first,second and third risk levels have standard deviations of 500,100,10
percent respectively. These risk levels are absurdly aggressive but give a good illus-
tration of the interpolation of the portfolio with the different risklevels. The figure
shows the expected trajectory of the portfolio through the different riskleves in 2000
simulations.

When the initial capital is 1 million dollars the investor needs to invest 21.95
million on the stock for the first risk level, meaning that the investor needs to short
the bond for an amount of 20.95 million and invest on the stock. For the second
and third risk levels the investor needs to rebalance his portfolio so that 9.82 and
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3.1 million dollars respectively are invested on the stock.

6. Conclusion

This paper studies stochastic optimal control problems with multiperiod con-
straints from a dynamic programming perspective. First the general problem is
formulated, investigated and some results on the separation into subproblems us-
ing lagrange multipliers are presented. Then, a linear quadratic formulation of the
general case is solved by deriving an explicit and analytic expression for the control
based on a pair of ordinary differential equations called the Riccati equations.

A financial portfolio optimization problem with different risk levels for their re-
spective time periods is formulated and solved using the results of the linear qua-
dratic case in this paper. The solution is analytic and is based on a pair of simple
and completely solvable linear and homogeneous ordinary differential equations.

Finally an example is presented where an investor seeks the optimal trading strat-
egy of investing capital on both a bond and a stock. In this example the investor
also wants be able to specify different risklevels for different time periods. A figure
representing the expected trajectory of the investors portfolio is shown, giving some
what of an intuitive feeling of the results presented in this paper.
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