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Do Swedes Smile?

On Implied Volatility Functions

Abstract

An examination of implied volatilities for Swedish equity options shows a rather U-shaped

smile pattern when the volatilities are averaged within groups according to their moneyness.

The detected volatility smile makes the use of at-the-money implied volatilities for valuation

of in- or out-of-the-money options questionable. The at-the-money implied volatilities work

well for valuing at-the-money options, but the smile pattern might make them inappropriate

for other options. This paper investigates whether some kind of deterministic volatility

function could lead to more accurate model values than the at-the-money implied volatilities,

which are used as a benchmark. Different specifications of volatility functions are fitted over

a six months estimation period. These functions are then used during a one-month evaluation

period to value options as a test of the out-of-sample fit. Although the benchmark model

performs best for the at-the-money options, other models are much better for deep in- and to

some extent out-of-the money options. However, no single model works very well for options

of all moneyness levels.
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1. Introduction

When valuing an option, the volatility of the underlying asset is an important factor.

Unfortunately, the volatility is not readily observable on the market and therefore some kind

of estimate is needed. One possible estimate is the implied volatility according to some

pricing model, i.e. the volatility that makes the model value equal to the market price. The

volatility implied by the model can be seen as the market participants’ assessment of the

volatility and it is dependent on the underlying price process and other assumptions of the

model in question. In e.g. the Black-Scholes (1973) model it is assumed that the asset returns

are log-normally distributed with constant volatility, and that there are no transaction costs. If

these assumptions are correct, all options written on an asset should yield the same implied

volatility. However, several studies have found that implied volatilities tend to differ across

moneyness and time to expiration. The pattern of implied volatilities across time to expiration

is usually referred to as the term structure of implied volatilities, whereas the “skew” or the

“smile” refers to the pattern across moneyness levels. However, in the following the

expression “smile“, used interchangeably with “skew”, will include the pattern across both

time and moneyness, the so called volatility surface.

The reason for the expression “smile” is the empirical findings for S&P 500 options before

the 1987 crash. The implied volatilities for deep in- and out-of-the-money options were found

to be higher than the at-the-money options, thus creating a smile-shaped pattern. After the

crash, the smile in S&P 500 options has changed to look more like a “sneer” with

monotonically decreasing implied volatilities for increasing exercise prices, but the implied

volatility pattern is often referred to as the smile regardless of its actual shape. The actual

shape of the smile differs between different markets, between different underlying assets and

between time periods. One example is that the smile of the implied volatilities for currency

options tends to be much more U-shaped than for other underlying assets. This could perhaps

be explained by differences in market microstructure.

When computing implied volatilities, there may be problems with differences in liquidity for

options of varying moneyness. Options close to being at-the-money are usually traded much

more frequently than deep in- or out-of-the-money options. If the prices are stale, they may
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lead to biases in the volatility estimates for the latter options. In addition, the prices given the

Black-Scholes model have shown to be more accurate for some options than for others, and

some options are also more sensitive to volatility than others. Therefore, some kind of

weighting scheme might be called for. In a review article, Mayhew (1995) discusses different

weighting schemes for implied volatilities from options of different moneyness. The simplest

way is to estimate the implied volatility for the option that is closest to being at-the-money,

and then use this estimate to price all contracts with the same time to expiration regardless of

moneyness. Moreover, according to e.g. Beckers (1981) the implied volatility for the nearest-

the-money option appears to do as well as a weighted average. However, when there is a

pronounced smile pattern in implied volatilities this may not be the case.

One of the assumptions underlying the Black-Scholes model is that the distribution of the

price of the underlying asset is lognormal. Hull (1999) discusses two of the conditions for an

asset price to have a lognormal distribution; the volatility of the asset should be constant and

the price of the asset should change smoothly with no jumps. Usually this is not the case, and

both factors tend to make extreme outcomes more likely. However, the impact depends on

the time left to expiration. The percentage impact of stochastic volatility on option prices

increases as the maturity increases, whereas the volatility smile created by stochastic

volatility usually becomes less pronounced as the time to expiration increases. The effect of

jumps however, is less pronounced for longer options because the jumps over a longer time

period tend to get “averaged out”. Excess kurtosis in the underlying return distribution may

be one explanation to the existence of smile patterns. There will then be a higher probability

of extreme observations than in the Black-Scholes case, which in turn will increase the value

of out-of and in-the-money options relative to at-the-money options. The result would be a U-

shaped smile in implied volatilities. However, the underlying distribution may also be

skewed, and this skewness will make one side of the smile more pronounced. The result

would then be an asymmetric smile, which has also been found in several studies.

When pricing options, the volatility smile has to be incorporated in some way. This is done

by incorporating for example stochastic volatility, see e.g. Scott (1987), Ball and Roma

(1994), and Hull and White (1999), stochastic interest rates, see e.g. Amin and Jarrow (1992)

or jumps in the price of the underlying asset, see e.g. Merton (1976). As discussed in

Mayhew (1995), if the price of the asset underlying the option is assumed to follow a
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sufficiently complicated process, nearly any type of volatility smile can be generated.

However, these multifactor models include several parameters that have to be estimated. In

addition, there may be problems since there are no securities with which to directly hedge the

volatility or jump risk.

The purpose of this paper is to examine the volatility smile implied for Swedish equity

options. Differences in e.g. market microstructure may cause the smile pattern for Swedish

options to be quite different from those detected in previous studies on other markets. A

pronounced smile makes the use of at-the-money implied volatilities for valuation of in- or

out-of-the-money options questionable. These volatilities work well when valuing at-the-

money options, but the smile pattern might make them inappropriate for other options. It is

therefore analysed whether implied volatility functions could lead to more accurate option

valuation than the implied volatilities from at-the-money options.1 Like many other options,

the Swedish equity options are American. Many studies analysing American options choose

to exclude options were early exercise might be optimal, and use European pricing models to

compute the implied volatility. However, in this study, an American pricing model is used

and options of all moneyness levels are included. For deep in-the-money options, where the

early exercise premium is high, it can be hard to find an implied volatility. For these options,

the use of an implied volatility function could be especially fruitful, and in the paper, deep in-

the-money options with high early exercise premiums are therefore examined especially. The

call options should not be exercise early during the analysed period since the underlying

stocks do not pay any dividends. The paper will therefore focus on put options.

The American version of the Cox et al. (1979) binomial model is used in the iterations for the

implied volatility. A U-shaped pattern in implied volatilities is indicated when these are

averaged within groups according to the moneyness of the options. In accordance with this

pattern, different specifications of deterministic volatility functions are fitted over a six

months estimation period. These functions are then used to value options during a one-month

evaluation period as a test of the out-of-sample fit. To compare the different methods, the at-

the-money implied volatility is used as a benchmark. Unfortunately, the results of for

example Rubinstein (1985) and Dumas et al. (1998) indicate that volatility functions implied

                                                          
1 Engström and Nordén (2000) find that some American option pricing models work rather poorly for deep in-
the-money options. However, at-the-money implied volatilities are used in the valuation, and with a pronounced
volatility smile, this could perhaps explain the poor fit for these options.
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by option prices are non-stationary. The functions fitted to the estimation period data might

therefore not be very good in describing the volatility for the evaluation period. In addition,

therefore, it is tested how well implied volatility functions estimated over the last month of

the estimation period value options in the evaluation period.

The results of using volatility functions rather than at-the-money implied volatilities are

mixed, and as expected they depend on the moneyness of the options that are valued. For

rather deep in-the-money options, some of the volatility functions outperform the benchmark

model. Overall, the benchmark is outperformed for up to 50% of the observations depending

on model. However, no single model works very well for options of all moneyness levels.

Since the volatility functions that perform well for deep in-the-money options perform very

badly for at-the-money options, it is hard to say that the use of a function rather than the at-

the-money volatility leads to an improvement.

The paper is divided into eight sections. In the following section, some previous studies of

implied volatility functions are discussed. In the third section, the institutional setting and the

data is presented, whereas the methodology is discussed in section 4. The fifth section

discusses the shape of the smile and in section 6 possible specifications of the volatility

functions are presented. The results of the out-of-sample tests are in section 7, where also

some discussion about robustness can be found. Finally, in section 8, the study is ended with

some concluding remarks.

2. Previous studies

Black (1975) discusses the possible need for different volatilities for options with different

remaining time to expiration. If e.g. the volatility has been unusually high lately, a gradual

decline back to more normal levels may be expected. The reverse may be expected in periods

of unusually low volatility. This mean reversion in volatility levels might therefore explain

some of the term structure patterns in implied volatility detected in other studies.

MacBeth and Merville (1979) analyse market prices of equity call options written on six

different stocks, and compare these to the prices predicted by the Black-Scholes model. The

implied volatility is found to be different across moneyness and time to expiration. For all
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options, there is a tendency for the implied volatility to decrease as the option becomes less

in-the-money. The time to expiration relationship however, depends on the moneyness of the

calls. For example in-the-money options with a short remaining time to expiration tend to

have higher implied volatilities than corresponding options with a longer time to expiration.

For out-of-the-money options, the relationship is reversed.

Rubinstein (1985) examines implied volatilities for equity call options traded on the CBOE

using a very rich data set. Six different model specifications besides the Black-Scholes model

are used, but none of them seem to be able to capture all of the observed biases from the

Black-Scholes model. Although the biases were found to be statistically significant, there was

no evidence of economic significance. The biases across exercise prices from the Black-

Scholes values are also found to be non-stationary. The direction of the bias is usually the

same for most of the underlying stocks at a certain time, but the direction is different for

different periods in time. For out-of-the-money calls, the conclusion is that shorter time to

expiration corresponds to a higher implied volatility for the entire analysed period. For at-the-

money calls, however, this is true only for the second half of the analysed period, whereas the

opposite is true for the first half. In the first half, it is usually the case that a lower exercise

price leads to a higher implied volatility if the options have the same time to expiration,

whereas the opposite is true for the second period.

Geske and Roll (1984) demonstrate that an improper treatment of the early exercise

possibility of American call options could explain some of the previously detected biases. If

the “American version” of the Black-Scholes model (the so-called Black’s approximation)

rather than e.g. the corrected version of the Roll (1977) American call option model is used,

the probability of early exercise may influence the relation between implied volatility and for

example exercise price. In time periods when the levels of interest rates and dividend

payments make early exercise more likely, the implied volatility is expected to be directly

related to the exercise price. During periods when the probability of early exercise is less

likely, implied volatility is inversely related to the exercise price. This finding could perhaps

explain the results of for example MacBeth and Merville (1979) and Rubinstein (1985).

Rubinstein (1994) analyses S&P500 index options for the latter part of the eighties, and finds

that the crash of 1987 appears to have increased the market participants’ view of the
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possibilities of another market crash. This “crash-o-phobia” causes a slightly bimodal implied

distribution to be quite common after the crash. The precrash “smile” pattern in the implied

volatilities also appears to have changed into a “sneer” in the postcrash period.

Duque and Paxson (1994) examine the smile using the most actively traded equity call

options on LIFFE in London. A European model is used to find the implied volatility after

excluding options with possible early exercise. The shape of the smile is usually a relatively

high implied volatility for in-the-money options, but there is also a “wry grin” (the implied

volatilities for in-the-money options are smaller than for out-of-the-money options) or

“reverse grin” (in-the-money volatilities are higher than for out-of-the-money options).

Different trading strategies based on the relative implied volatilities are then tested as pseudo

arbitrage of the smile. However, after transaction costs, most abnormal returns are eliminated.

Bates (1996) surveys different schemes to aggregate implied volatilities for option with

different exercise prices and maturities into one assessment of volatility proposed in the

literature. Most involve some kind of weighting scheme, where options of different

moneyness and/or maturity get different weights. Also the effect on the implied volatility of

the choice of short term interest rate in the pricing formula is discussed, as well as the choice

of stochastic interest rate models. The findings concerning the forecasting abilities of implied

volatilities are mixed. However, almost all studies find that the implied volatility contains

information about future volatility. Evidence of both more and less positively skewed

distributions than the lognormal has also been found in several studies. The results suggest

that no single alternative hypothesis about the underlying distribution can eliminate the found

biases across exercise prices. Bates (1996) suggests that time-varying skewness might be

used to complement models of time-varying volatility.

Corrado and Su (1996) derive and empirically test a model that extends the Black-Scholes

model in that non-normal skewness and kurtosis is taken into account. The adjustments are

found to remove most of the biases across exercise prices for S&P 500 index options. In

addition to implied standard deviations, implied coefficients for skewness and kurtosis are

computed simultaneously.
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Bakshi et al. (1997) examine the pricing and hedging performance of different option pricing

models compared to the Black-Scholes model for S&P 500 call options. These other models

allow for stochastic volatility, stochastic interest rates and jumps in different combinations.

Because a common motivation for newer models is the smile pattern found using the Black-

Scholes model, the smile pattern in the implied volatility found given the different models is

analysed especially. The Black-Scholes implied volatility exhibits a clear U-shaped pattern

across moneyness, with the most distinguished smile evident for options near expiration.

Dumas et al. (1998) develop a deterministic volatility function (DVF) model for option

pricing. This model is fitted to different specifications of the volatility, and evaluated using

S&P500 index options. The simplest model uses the implied volatility from the Black-

Scholes model, whereas the others also try to capture the effect of moneyness and time to

expiration. A relatively parsimonious volatility function works well for describing the

observed volatility structure, whereas the Black-Scholes constant volatility model is better for

determining hedge ratios. However, the results indicate that the volatility functions implied

by the options prices are not stable over time. An “ad hoc” model, of a kind often used in

practice, that simply smoothes the implied volatility across moneyness and maturity gives

rise to pricing errors that are smaller than those of the DVF approach. Overall, the authors

conclude, “simpler is better”.

Peña et al. (1999) analyse the determinants of the smile pattern in implied volatility using

data on the Spanish IBEX-35 stock exchange index. The volatility function is estimated by

fitting the implied volatility to six alternative models. Regardless of specification, a model

including moneyness by both a linear and a quadratic term is preferred to one with just a

linear term, which implies that the Spanish smile is characterised by curvature. The minimum

implied volatility is found to be very close to the at-the-money implied volatility.  A day-of-

the-week pattern in the volatility function is also found. The curvature of the smile on

Mondays is significantly different from the smiles in the end of the week. However, this

seasonality appears to disappear when some economic variables are included in the analysis.

A bi-directional Granger causality between transaction costs (proxied by the bid-ask spread)

and the curvature of the volatility smile is also found. However, the results suggest that

market conditions and transaction costs are relatively more important for options with a short

remaining time to expiration. In a related study, Peña et al. (2001) test the influence of the
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relative bid-ask spread (as a measure of liquidity costs) on the volatility smile by fitting

different models for the implied volatility incorporating also the bid-ask spread. However,

these models are not found to be superior to the basic Black-Scholes implied volatilities.

Derman (1999) discusses how the future skew, given the current one, will vary with the

underlying index level. It is argued that it often is easier to model change by describing what

does not change - in options trading referred to as “sticky”. Three suggestions about what in

the skew that is considered sticky when the underlying changes are presented; sticky-strike,

sticky-delta, and sticky implied tree. Implied volatilities of S&P 500 index options over the

period September 1997 to October 1998 are examined, as well as the appropriate rule

followed by the market.  In the sticky-strike approach, it is assumed that the volatility of an

option with a particular exercise price stays the same regardless of changes in the underlying.

The at-the-money volatility will therefore change as the underlying changes. This not very

realistic model could at most be used for approximating the smile for exercise prices that are

close to each other. The sticky-delta rule implies that the current level of at-the-money

implied volatility should remain the same regardless of moves in the underlying. An option

that is 10% out-of-the-money when the underlying has moved should have the same implied

volatility as the option that was 10% out-of-the-money before the change. In the sticky-

implied-tree approach, the at-the-money implied volatility decreases twice as rapidly as the

level of the underlying increases. The first two approaches are more of heuristic rules than

actual theories, whereas the implied-tree model provides a consistent, although not

necessarily accurate, view.

Analysing equity call options traded on LIFFE, Duque and Lopes (1999) use the Hull and

White (1998) stochastic volatility option pricing model to find the theoretical relations that

should exist between shape of the smile, the level of volatility and the time to expiration. If

early exercise could be optimal, the option is excluded. Cubic B-splines are used to model the

implied volatilities for specific moneyness degrees using observed implied volatilities for

other moneyness degrees. As the time to expiration decreases, the magnitude of the smile is

found to increase. This gives empirical support for the notion that options tend to die smiling.

However, the changes in the smile pattern are asymmetric. The “wry grin” found for longer-

term options is converted into a “reverse grin” for options near expiration. For medium term
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options, the smile is more symmetric. Furthermore, a statistically significant positive relation

between the smile and the volatility of the underlying stock is also found.

Hafner and Wallmeier (2000) analyse the pattern of DAX implied volatilities across exercise

prices, and its determinants. They find that, on average, 95% of the cross-sectional variation

in implied volatilities could be explained by variation in moneyness. The great impact of the

1987 crash on the implied volatility pattern indicates that market participants’ assessment of

crash risk is affecting the smile. However, because of lack of good proxies, this assessment is

difficult to incorporate into a model.

Dennis and Mayhew (2001) investigate systematic and firm specific factors that could

explain the volatility skew observed for equity options traded on the CBOE. The implied

volatilities are computed using a 100-time steps binomial model, which account for early

exercise. They find that options written on high beta stocks have more negative volatility

skews than options written on stocks with lower betas, indicating that market risk is an

important factor in explaining the skew. However, beta is only a significant factor in the post-

crash of 1987 period, which indicates that option holders became more concerned with

market risk after the crash. They also find that skews on individual equity options tend to be

more negative when the skew on index options is more negative. However, the variation in

firm specific factors appears to be more important than variations in systematic factors in

explaining the variation in the skew.

3. Institutional setting and data

During the analysed period, options on 27 individual stocks were listed on OM. The

underlying stocks were in turn listed on the Stockholm Stock Exchange (StSE). The average

daily trading volume for these options was around 51,000 contracts, and approximately 70%

of these were calls.2 Comparisons with CBOE shows that the average daily trading volume

                                                          
2 During the period in question, the average daily trading volume on the StSE for the underlying stocks was
SEK 2.6 billion for the on average 10,470 transactions per day. The market capitalisation for the 228 listed
Swedish stocks at the end of year 1995 was SEK 1,179 billion (which at that time was equal to $177 billion).
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was around 305,000 equity option contracts at that time, of which around 90,000 were put

options.3

The trading at the StSE, as well as the option trading at OM, took place between 10.00 a.m.

and 4.00 p.m. CET during the period in question. Series of call and put option contracts with

an initial time to expiration of six months were listed every three months. The option

expiration day is the third Friday of the expiration month. After receipt of exercise notices

from the option holders, OM assigns the exercises randomly among the options writers. OM

thus functions both as the exchange and the clearinghouse.

The data set used in the study consists of prices of put and call options during the sample

period July 1, 1995, to February 1, 1996. Only the 10 underlying stocks with the most

frequently traded put options on the market at that time are used.4 Daily closing bid/ask

quotes of the options are obtained from OM, whereas daily closing bid/ask quotes and

transaction prices of the underlying stocks are obtained from the StSE. Dividends are paid

only once a year and most dividend payouts occur around May. Hence, no dividend payments

are made during the sample period. Finally, daily rates of the Swedish one-month Treasury

bills are used as a proxy for the riskless interest rate.

The sample period is divided into an estimation period: July 1 to December 31, 1995, and an

evaluation period: January 1 to February 1, 1996. Since the relation between implied

volatilities for puts and corresponding calls is analysed in the estimation period, only days for

which non-zero quotes for both puts and calls exist are included in the sample. To avoid

possibly disturbing effects of the trading immediately before expiration, options with less

than a week left to expiration are omitted. After a screening procedure, observations that do

not satisfy the American put-call parity boundary condition are excluded. In addition,

observations are omitted if the option value according to the binomial model is less than SEK

0.01, the lowest tick size allowed at OM. Moreover, for some contracts (when the exercise

value of the option exceeds both the model value without exercise and the market value) it is

not possible to obtain an implied volatility. These contracts are removed from the database.

Only put options are included in the evaluation sample, and the only restrictions for this

                                                          
3 Source: OM Factbook and Futures and Options World, February 1996 respectively.
4 The stocks are Astra A, Electrolux B, Ericsson B, Investor B, MoDo B, SCA B, Skandia, SEB A, Trelleborg
B, and Volvo B.
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sample is that the options should have at least a week left to expiration and the binomial

model prices should not be less than SEK 0.01. In total, this leaves us with an estimation

sample consisting of 10,735 contracts and an evaluation sample consisting of 2,519 contracts.

Table 1 offers a summary of the option data. Panel A displays the data for the estimation

period whereas Panel B contains data for the evaluation period. The observations are divided

into six subgroups according to moneyness of the put options and four subgroups according

to the number of days left to expiration. Moneyness is defined as the ratio of the exercise

price to the stock price, where the average of the closing bid and ask quotes is used. A put is

defined to be at-the-money when its moneyness is between 0.98 and 1.02. For the estimation

period, around one third of the puts are out-of-the-money while over 50% of the observations

belong to the in-the-money groups. Since options with a high probability of early exercise are

of special interest, the moneyness groups are dispersed unevenly, with an additional group for

very deep in-the-money options. The dispersion of the options into different subgroups

according to moneyness is roughly the same for the options in the evaluation period.

Options with extreme moneyness levels are usually excluded from this kind of studies.

However, as we are interested in examining if implied volatility functions are superior to at-

the-money implied volatilities in valuing options with different moneyness levels, especially

deep in-the-money options, we need to include also options that are rather far from being at-

the-money. For at-the-money options, the at-the-money implied volatility should be the best

volatility input for the pricing model. However, the question is whether the smile pattern in

implied volatilities makes the valuation of in- or out-of-the-money options inaccurate using

these volatilities. A wide range of moneyness levels is therefore included.

4. Methodology

To be able to investigate if the use of implied volatility functions is superior to using the

implied volatility for the option closest to being at-the-money, this volatility is used as a

benchmark. The implied volatility is for all options found using the average of the closing bid

and ask prices for both the options and the underlying stocks. Since the options are American,

the volatility is found by equating the Cox et al (1979) binomial model value and the market
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price of the option after allowing for early exercise. The remaining time to expiration is at all

times divided into 100 time steps.

The same model is used to value put options using different specifications of implied

volatility functions. The model values are compared to the benchmark values given the

nearest-the-money implied volatility, and to market values respectively. Since the purpose is

to analyse possible advantages with the use of an implied volatility function rather than at-

the-money implied volatility, options are valued using the implied volatility of the same day

rather than using the volatility from the day before.

Many previous studies use S&P 500 index option data since this is a widely traded option.

The high trading frequency enhances the possibility of simultaneous prices. Since the

relationship between option prices and prices of the underlying is used in the computation of

the implied volatility, they should all be simultaneous.5 The results could otherwise be

misleading, and show an over- or underestimated volatility. The use of Swedish equity option

data, where trading is not as frequent as in the US, could lead to difficulties with non-

synchronised transaction prices since it is improbable that the prices of option and underlying

stock are exactly simultaneous. Ideally, time stamped option- and stock prices should be used

but, unfortunately, no such record of prices is available. In order to avoid too much time

difference between the prices, the average of the daily closing bid/ask quotes is used for both

options and underlying stocks. In addition, only the most frequently traded options are

analysed. However, the bid/ask quotes are only valid for a certain number of options, and in

addition, several transactions may be executed within the spread. It is also possible that

market markers do not price illiquid options as thoroughly as the more frequently traded

ones. Nevertheless, the choice of bid/ask quotes instead of transaction prices is likely to

improve the analysis.

5. Patterns in implied volatility

In Table 2, the implied volatilities for both put and call options are averaged over the

different time and moneyness groups described above. Panel A contains volatilities for the

options in the six months estimation period. For put options, the results indicate a rather clear
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U-shaped smile pattern, with the lowest average implied volatility found for the at-the-money

options in all time groups except the longest time to expiration group. For call options, the

pattern is similar to that for the puts although not as pronounced. Because moneyness is

defined as the ratio of the exercise price to the stock price for both put and call options, the

call options in the parentheses next to the deep out-of-the-money puts are deep in-the-money,

and vice versa.

The average implied volatilities differ also for the different maturity groups. For both put and

call options, the longer the time left to expiration, the lower the implied volatility tends to be

in each moneyness group. In addition, the shorter the time left to expiration, the more

pronounced the U-shape of the smile appears to be. This pattern is sometimes referred to as

the options are dying smiling.

Differences in volatility level for the included underlying stocks may have influenced the

results in Table 2. If e.g. options written on high volatility stocks have shorter time left to

expiration than the other options this could explain the term structure effects mentioned

above. Therefore, the pattern across moneyness and time to expiration is analysed also for

relative volatilities, i.e. the implied volatility of each contract divided by the at-the-money

implied volatility for that option series. Differences in the level of implied volatilities

between time groups could of course not be detected using relative volatilities, but the smile

patterns in the different groups are very similar to the results in Table 2.6

For comparison, the average implied volatilities for put options in the evaluation period are

presented in Panel B of Table 2. The pattern is similar to that in Panel A in that the shorter

time groups indicate a smile pattern between moneyness and implied volatility. However, for

the group with the longest time left to expiration, the average implied volatility is increasing

as the options get deeper in-the-money. This is the case also when relative volatilities are

used. However, as can be seen in Table 1, this group does not contain many observations.

Because of put-call parity, European put and call options written on the same underlying

asset and with identical exercise prices and expiration days should have the same implied

                                                                                                                                                                                    
5 For a discussion on the effect of using non-simultaneous prices see Harvey and Whaley (1991).
6 The results for the relative volatilities are not presented, but are available upon request.
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volatility. For American options, on the other hand, put-call parity does not hold because of

the possibility of early exercise. Since corresponding put and call options are written on the

same underlying stock, there is no clear reason why implied volatilities should differ

depending on which of the two is used to find it. However, if the implied volatilities reflect

the expected volatility, it may differ if traders with different beliefs choose to trade in

different types of options (puts or calls).7

If the implied volatility of the put option in a put-call pair is compared to the corresponding

call volatility, the difference is less than 1 percentage point for about a third of the options.

However, according to the average values in Table 2, the implied volatilities for put options

are higher than for corresponding call options. The greatest differences are found for deep in-

the-money options. This might to some extent be explained by the higher value of early

exercise premium embedded in the put option prices. Since there are no dividend payments

during the analysed periods, the call options should not optimally be exercised early and the

call prices therefore include no early exercise premium.

As mentioned above, Geske and Roll (1984) argues that the results of for example Rubinstein

(1985) might be explained by the different probabilities of early exercise in different sub

periods. The reason would be that possible early exercise has been taken into account

inadequately by using Black’s approximation. In this study, a version of the binomial model

that allows for early exercise is employed so this should not be the explanation to the detected

smile pattern in implied volatilities. However, if option writers were concerned about the risk

of being exercised against when writing an option, they would perhaps demand a

comparatively higher price for the options during periods when early exercise is more likely.

This would in turn yield a higher implied volatility.

To test whether the difference between implied volatilities for put and call options could be

explained by the higher probability of early exercise for put options, the volatility difference

is regressed on the empirically estimated early exercise premium (EEP) in the put option

price. The early exercise premium for each option is estimated as the deviation of the put

option market price from the put price according to the European put-call parity relationship.

Due to the absence of dividend payments during the sample period, the call options can be

                                                          
7 See e.g. Easley, O’Hara and Srinivas (1998).
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seen as European options. It is therefore assumed that the deviation from European put-call

parity is caused by the early exercise premium in the American put option price.8 Given this

specification, the regression results are:

EEPimpcallimpput 0265.00052.0 +−=−σσ    4061.02 =R

(0.000)   (0.000)

where p-values using White (1980) heteroskedasticity-consistent standard errors are in

parentheses. The results indicate that the difference between the implied volatilities for

corresponding put and call options is positively related to the early exercise premium in the

put option price. The possibility of early exercise can make it hard to find implied volatilities

for deep in-the-money options, and the use of volatility functions could be especially fruitful

for these options. Since the call options optimally should not be exercised early, there should

not be much problem in determining the implied volatilities for the calls. The remainder of

the study therefore concentrates on put options only.

6. Possible specifications of the volatility function

To estimate the shape of the implied volatility function, the data is fitted to several different

specifications. In this study, options written on different underlying stocks are included into

the sample, and to be able to handle different levels of volatilities for these stocks, the focus

will be on relative volatilities. This means that when fitting the models, the explanatory

variables are regressed on the relative volatilities rather the actual implied volatilities. It is not

obvious how the volatility functions should be modelled, and since the smile patterns is

different for different markets, the shape of possible volatility functions also differ.

According to the results in Table 2, the time to expiration and the moneyness of the options

are very important parameters, but exactly how they should be incorporated could be

discussed. Most of the specifications used in this study are suggested in either Dumas et al.

(1998) or Peña et al. (1999). As pointed out in the latter study, the specifications might be

simplified by including the natural logarithm of the moneyness ratio, rather than the ratio

itself, in the function. For an option that is exactly at-the-money, the regression intercept

using this specification will represent the at-the-money implied volatility since the natural

                                                          
8 For a more elaborate discussion about this method, see Zivney (1991) or Engström and Nordén (2000).
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logarithm of the moneyness ratio will be zero. Both the specifications with moneyness as one

of the explanatory variables and those with the natural logarithm are tested, in- and out-of-

sample, but the version that includes the natural logarithm of the moneyness ratio yield better

results overall. Only these specifications are therefore employed in the following.

As a starting point, the following specifications are chosen:
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Model 1 is the benchmark, the implied volatility of the at-the-money option. In Model 2, a

linear relationship, i.e. a “sneer”, between volatility and moneyness is assumed. This

specification is not consistent with the patterns in Table 2, but to rule out the possibility that a

sneer would be a better description of the implied volatilities across moneyness than a smile,

also this model is tested. One drawback with specifications where the volatility is linearly

related to the moneyness is that at extreme moneyness values, the volatility may become

negative. To prevent negative volatilities, a minimum value could be imposed. However, this

is not a problem in this study. In Table 2, the pattern of implied volatility across moneyness

shows a great deal of curvature. In Model 3, this curvature is accounted for by including also

a quadratic moneyness term. Table 2 also indicates that the shape of the smile depends on the

time left to expiration. Model 4 and 5, try to capture these time effects by including also time

to expiration parameters, linear and quadratic, and cross terms with both time and moneyness.

Several previous studies have found that the smile pattern may be asymmetric, and some

additional models are therefore tested:
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Model 6, for example, assumes that the implied volatility is linear in moneyness up to the at-

the-money mark. For moneyness levels above that, the volatility function gets some

curvature. Also for the asymmetric models some time dependence might be included.

However, to reduce the number of considered models, linear and quadratic time to expiration

parameters are added to the asymmetric model with the best in-sample fit only. The results of

fitting the relative volatilities to the different models are presented in Table 3. According to

the table, Model 6 is the asymmetric model with the highest 2R  and the model specification

is therefore given as:
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According to Table 3, all coefficients are highly statistically significant. However, according

to the coefficients of determination Model 2, which assumes a “sneer” pattern, is not a good

model of the pattern of volatilities across moneyness compared to the “smile” pattern

assumed in Model 3. Moreover, the three models that contain time parameters all have better

in-sample fit than the models without it. However, Dumas et al. (1998) find that more

parsimonious models perform better in out-of-sample tests. Especially, time parameters are
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found to be over-fitting the model. All eight models are therefore used in the out-of-sample

tests.

Since relative volatilities are used in the fitting procedure, there is no obvious reason why the

observed smile effects should be different for different underlying stocks.9 However, as a

check, the models are fitted for each of the underlying stock as well. The coefficients of

determination for the different models are in Table 4 displayed for each underlying stock.

Although the in-sample fit for the models when fitted like this is better for most of the stocks,

the patterns are similar to the results of Table 3. Again, the models that include time

parameters are superior to the others. However, for three of the stocks, the coefficients of

determination are lower overall than for the other stocks (Ericsson, SEB and Skandia). An

examination of the moneyness levels of the options written on different stocks results in no

apparent correlation between the moneyness range or average moneyness in the group and

model 2R . Duque and Lopes (1999) find that the smile gets more pronounced when the

volatility increases. To examine if this could be the reason for the inferior fit for three of the

underlying stocks, the average volatility and the average at-the-money volatility is computed

for the options written on each of the stocks. However, as in the case with the moneyness

levels, no relation can be found.

7. Out-of-sample tests

More than a good in-sample fit is required from an implied volatility function. Of greater

interest is the goodness-of-fit in an out-of-sample period. To test the out-of-sample fit, it is

tested whether or not the different volatility functions could improve the valuation of puts

using the binomial model during the one-month evaluation period. The volatility to use for

each option is determined by multiplying the pricing parameters by the appropriate model

coefficients. Since the volatility models are specified in terms of relative volatilities, the

resulting values are multiplied by the implied volatility for the option closest to being at-the-

money in the option series the option belong to. Binomial model values are computed using

the volatility given by the eight suggested volatility functions as well as the at-the-money

implied volatility. These model values are compared to the actual bid and ask market prices

                                                          
9 However, as mentioned above, Dennis and Mayhew (2001) argues that the beta of the underlying stock
influence the shape of volatility smile. This could make some model to work better for certain stocks.
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of the options. Remember though that it is not the performance per se that is interesting, but

the performance of the models relative the benchmark.10

In Table 5, four measures of the goodness-of-fit are presented for each volatility function. In

Panel A, the root mean squared errors (RMSE) for the difference between the model values

and the average of the market bid and ask prices are presented. Not very surprisingly, models

2 and 8 show the highest RMSE. On the other hand, five of the models actually yield option

values with smaller RMSE than the benchmark at-the-money volatility. They are therefore

considered better in terms of RMSE. In Panel B, instead the mean absolute errors (MAE) are

displayed. According to this criterion, no model performs better than Model 1, but Model 6 is

fairly close with a MAE that is only SEK 0.01 higher than for Model 1. In Panel C, the

percentage of model values within the market bid/ask spread is presented for each model. No

model produces a higher percentage than Model 1, although models 3, 6 and 7 are the closest

with around 75% of the values within the spread. The results in Panels A, B and C suggest

that the results for Model 1 could be driven by comparatively few but rather large deviations

between model value and bid/ask midpoint. To investigate this, the squared deviations

between model value and market midpoint is compared for Model 1 and the model in

question for each contract day.11 Panel D shows the percentage of contract days that each

model outperforms Model 1 in terms of daily squared deviation. Model 6 is the “best“ model

according to this criterion, with a lower daily squared error than Model 1 during nearly 50%

of the contract days.12 However, this implies that Model 1 is the superior model during the

remaining 50% of the contract days.

It was clear from the beginning that Model 1 would work well for at-the-money options.

However, it is more interesting to compare the performance of Model 1 to other models when

it comes to in- and out-of-the-money options. The RMSE and the percentage of model values

within the bid/ask spread are therefore computed for each of the time/moneyness groups in

Table 1. To avoid to cumbersome tables, only the results for four of the models are compared

to Model 1. The chosen models are 3, 5, 6, and 9, and they are chosen because they are

considered to be the “best” in their group of models, both in- and out-of-sample.

                                                          
10 Otherwise, it would rather be a joint test of the volatility function and the binomial option pricing model.
11 A contract day is a day when an option with a certain exercise price and expiration day is traded.
12 The results would of course be the same if instead the daily absolute errors were compared.
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In Table 6, the RMSE for each group and model is presented, whereas the results for the

values within the spread are in Table 7. The two measures of the goodness-of-fit lead to quite

different results in that the performance of Model 1 in terms of values within the spread is

much better than in terms of RMSE, compared to the other models. This indicates that a

choice has to be made about what kind of goodness-of-fit that is considered most important.

Is it most important that the model produces values that most of the times fall within the

market bid/ask spread, or is it to avoid large deviations from the market midpoint.13

For models 3 and 6, i.e. the smile and the asymmetric smile models, the overall performance

is rather good. For at-the-money options, the models perform almost as well as Model 1,

whereas they usually perform better than Model 1 for deep in-the-money options. Model 6

appears to produce slightly more accurate option values than model 3, indicating that the

smile in Swedish equity options is a bit asymmetric. The time dependent models, i.e. models

5 and 9, perform comparatively badly overall, but for deep in- and also to some extent deep

out-of-the-money options, these models work well compared to the other models. For at-the-

money options, the performance is considerably worse than for the other models. The rather

good performance of these models in table 5 could probably be explained by the

comparatively few observations of at-the-money options, were they perform badly.14

Of greater interest than the individual performance of each model is whether the use of

volatility functions, rather than at-the-money implied volatility, significantly increases the

valuation performance. In terms of observations within the spread, there does not seem to be

any major advantage with the use of volatility functions. Although some model produces

higher percentages of values within the spread for certain options, the actual number of

observations within the spread is not that much higher. If attention instead is focused on

RMSE, the advantage of volatility functions is more pronounced. For deep in-the-money

options, using one of the time dependent models significantly reduces the RMSE. The

greatest reduction in RMSE, over SEK 1, is achieved if the volatility for deep in-the-money

options with 31 to 90 days left to expiration is estimated using Model 5 rather than Model 1.

                                                          
13 By using RMSE, large deviations are punished more severely than smaller ones.

14 Panel B of Table 2 indicate a pattern in implied volatilities that are rather a “reversed sneer” than a smile for
the group of options with a remaining time to expiration in excess of 151 days. It is therefore tested whether
Model 2b would be better in this time group than the four tested models. However, this is not the case.
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When estimating the different volatility functions, there is the question about how long the

estimation window should be. Dumas et al. (1998), among others, notice that the functions

are not stable over time. Hence, a too long estimation period would not be meaningful.

Instead, a rather short estimation period is called for. However, by using rather few

observations, sampling variation may have been introduced. And if this sampling variation

rather than parameter instability is the cause of a poor fit, a somewhat longer estimation

period could lead to an improvement. The estimation period in this study is six months,

which is a rather long period. To test the effects of reducing this period to one month, the

models are re-estimated using data for just December 1 trough December 31, 1995. However,

the data is fitted only to the alternative specifications of the models. The evaluation period is

still January 1 through February 1, 1996.

The coefficients and 2R  for the fitted models are presented in Table 8. When the estimation

period is reduced, the in-sample fit is significantly improved for all models. However, the

coefficient for squared time to expiration in Model 5 is not significantly different from zero,

whereas it is significant only at the 5-percent level for Model 9. Moreover, when it comes to

the out-of-sample fit the results for the shorter estimation period is inferior to the results of

the longer period. The goodness-of-fit for the shorter estimation period can be found in Table

9. The RMSE in Panel A is considerably increased compared to the RMSE in Table 5. In

addition, no model produces an RMSE that is lower than the benchmark. Also when the other

criteria are considered, Model 1 is the superior model. However, Model 1 is outperformed

during up to 42% of the contract days by other models.

In all tests the entire sample of observations is used, regardless of underlying stock. Perhaps

this has caused a greater bias than could be expected. To examine this possibility, the

goodness-of-fit for the out-of-sample period is tested also when the volatilities in the

evaluation period are computed using the model coefficients for each of the underlying stock.

The goodness-of-fit for the four chosen models are presented in Table 10. As can be

expected, the out-of-sample fit is better than in Table 5 although just slightly. However, for

Model 9, the fit is slightly worse than when the entire sample is used in the fitting of the

models. Hence, the similarities indicate that the results are not greatly biased by the use of

data for all underlying stocks together.



24

8. Concluding remarks

This study investigates smile patterns in implied volatilities for Swedish equity options. A

rather U-shaped smile is found, indicating that the implied volatility for the option closest to

being at-the-money will not accurately value options that are far away from the at-the-money

point. With the at-the-money implied volatility used as a benchmark, the performance of

eight different specifications of deterministic volatility functions are tested.

The volatilities according to the volatility functions are used to value options in an out-of-

sample evaluation period. The performance of the volatility functions depends on the time to

expiration and the moneyness of the valued options. The results indicate that time parameters

should be included into the function if the valued options are deep in-the-money. For options

of comparatively short maturity the function should concentrate on the smile, i.e. have some

kind of quadratic moneyness term. The overall performance of functions modelling a smile or

an asymmetric smile with no time dependence is rather good. For at-the-money options, the

models perform almost as well as the benchmark, whereas they usually perform better than

the benchmark for deep in-the-money options. However, the asymmetric smile model appears

to produce slightly more accurate option values than the smile model, indicating that the

smile in Swedish equity options is a bit asymmetric.

For certain options, the use of implied volatility functions may lead to an economically

significant improvement. For deep in-the-money options, using one of the time dependent

models rather than the benchmark model may reduce the RMSE with more than SEK 1.

However, no single model works very well for options of all moneyness levels. Since the

volatility functions that perform well for deep in-the-money options perform very badly for

at-the-money options, it is hard to say that the use of a function rather than the at-the-money

volatility leads to an improvement. In a coming version of the paper, it will be tested whether

a model that includes the time parameters differently for different moneyness levels using

dummy variables could improve the performance.

When the estimation period is reduced to one month, the in-sample fit improves significantly

whereas the out-of-sample fit is inferior to the results of the longer estimation period. Overall,

Model 1 is the superior model, but it is outperformed in terms of squared deviation during up
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to 42% of the contract days. However, the results of this reduced estimation period may have

been influenced by the choice of time period (December). It should also be tested how the

results would be affected if the functions estimated during one month are used to value

options during the following month, on a roll-over schedule. This will be tested in the coming

version of the paper.
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Table 1: The dispersion of observations with respect to moneyness and time to expiration

Panel A: The number of observations in the estimation period

Time (days left) to Expiration ( )T t−

Moneyness ( / )X S 7 - 30 31 - 90 91 - 150 151 - 182 Total

< 0.90 102 (00.95) 522 (04.86) 736 (06.86) 147 (01.37) 1,507 (14.04)

0.90 - 0.98 337 (03.14) 776 (07.23) 818 (07.62) 394 (03.67) 2,325 (21.66)

0.98 - 1.02 165 (01.54) 433 (04.03) 520 (04.84) 282 (02.63) 1,400 (13.04)

1.02 - 1.10 301 (02.80) 918 (08.55) 1,070 (09.97) 499 (04.65) 2,788 (25.97)

1.10 - 1.20 201 (01.87) 606 (05.65) 672 (06.26) 201 (01.87) 1,680 (15.65)

> 1.20 69 (00.64) 552 (05.14) 333 (03.10) 81 (00.75) 1,035 (09.64)

Total 1,175 (10.95) 3,807 (35.46) 4,419 (38.65) 1,604 (14.94) 10,735 (100.00)

Panel B: The number of observations in the evaluation period

Time (days left) to Expiration ( )T t−

Moneyness ( / )X S 7 - 30 31 - 90 91 - 150 151 - 182 Total

< 0.90 70 (02.78) 106 (04.21) 123 (04.88) 4 (00.16) 303 (12.02)

0.90 - 0.98 157 (06.23) 169 (06.71) 272 (10.80) 33 (01.31) 631 (25.05)

0.98 - 1.02 74 (02.94) 93 (03.69) 152 (06.03) 32 (01.27) 351 (13.93)

1.02 - 1.10 148 (05.88) 176 (06.99) 272 (10.80) 60 (02.38) 656 (26.04)

1.10 - 1.20 96 (03.81) 126 (05.00) 209 (08.30) 10 (00.40) 441 (17.51)

> 1.20 27 (01.07) 53 (02.10) 57 (02.26) 0 (00.00) 137 (05.44)

Total 572 (22.71) 723 (28.70) 1,085 (43.07) 139 (05.52) 2,519 (100.00)

Panel A displays the number of observations that are included in the first part of the sample (July 1 through

December 31, 1995), according to the moneyness and the time left to expiration of the put options. In

parentheses the numbers are expressed as percentages of the total number of observations. Panel B contains the

corresponding information for the observations that are included in the second part of the sample (January 1

through February 1, 1996).
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Table 2: Average implied volatility with respect to moneyness and time to expiration

Panel A: Average implied volatilities for puts (calls) in the estimation period

Time (days left) to Expiration ( )T t−

Moneyness ( / )X S 7 - 30 31 - 90 91 - 150 151 - 182 Total

< 0.90 44.02 (38.46) 32.96 (30.43) 29.90 (27.70) 28.63 (25.79) 31.79 (29.55)

0.90 - 0.98 32.31 (27.93) 27.47 (25.67) 25.22 (24.31) 25.22 (23.63) 27.00 (25.16)

0.98 - 1.02 28.05 (25.66) 26.22 (25.38) 24.90 (24.39) 25.70 (24.56) 25.85 (24.88)

1.02 - 1.10 32.48 (29.42) 26.24 (25.91) 25.16 (24.94) 25.91 (25.17) 26.44 (25.78)

1.10 - 1.20 49.40 (41.89) 34.02 (30.13) 30.24 (28.07) 29.27 (28.63) 33.78 (30.53)

> 1.20 75.33 (55.67) 60.69 (37.61) 49.25 (32.95) 37.41 (31.56) 56.16 (36.84)

Total 38.22 (32.87) 33.64 (28.69) 29.90 (27.70) 26.96 (25.49) 31.25 (27.76)

Panel B: Average implied volatilities for puts in the evaluation period

Time (days left) to Expiration ( )T t−

Moneyness ( / )X S 7 - 30 31 - 90 91 - 150 151 - 182 Total

< 0.90 44.12 33.60 32.09 25.82 35.31

0.90 - 0.98 37.66 29.14 30.54 31.27 31.98

0.98 - 1.02 34.94 28.24 31.09 33.38 31.34

1.02 - 1.10 36.80 28.84 30.94 35.37 32.12

1.10 - 1.20 53.17 37.74 35.00 36.76 39.84

> 1.20 76.96 36.99 48.73 - 61.55

Total 42.44 34.01 32.71 33.76 35.37

The table presents the average implied volatility for subgroups classified on the basis of moneyness (defined as

the ratio of the exercise price to the average closing stock price) and time to expiration. In Panel A, the

volatilities for both puts and calls (calls in parentheses) are based on data from the first part of the sample (July

1 through December 31, 1995). Panel B depicts the average implied volatilities for put options during the second

part of the sample (January 1 through February 1, 1996).
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Table 3. Coefficients for different specifications of the volatility function

Alternative specifications of the volatility function

Coefficients Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Constant 1.1320* 1.0048* 1.1502* 1.2445* 0.9982* 1.0418* 0.9305* 1.2473*

)/(ln SX 1.3185* 0.8295* 1.8535* 1.8384*
2)/(ln SX 9.0209* 8.6194* 8.8336* 11.3236*

)( tT − -0.5490* -1.5631* -1.6047*
2)( tT − 1.9680* 1.9552*

)(*)/(ln tTSX − -4.0716* -4.0206*

U -1.0305* 1.4458* -1.1017*
2U 6.3976*

D 3.3027*
2D 12.5881* 12.5907*

2R  0.1847  0.4992  0.5677  0.5748  0.5032  0.4860  0.4645  0.5533

The table shows results of fitting relative put volatilities in the estimation period to different volatility functions.

X is the exercise price, S is the underlying stock price, )( tT −  is the time to expiration and

i

i
i S

X
U ln=  if 0ln <

i

i
S
X

, 0=iU  if 0ln ≥
i

i
S
X

 and 
i

i
i S

X
D ln=   if  0ln ≥

i

i
S
X

,  0=iD  if  0ln <
iS
iX

.

White (1980) heteroskedasticity-consistent standard errors are used, and coefficients marked with * have p-

values < 0.0001.
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Table 4. Coefficients of determination for different volatility functions for each underlying

stock

Model 2R  for the alternative specifications

Underlying stock Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Astra 0.2616   0.4196   0.5102   0.5477   0.4591   0.4265   0.3987   0.5707

Electrolux 0.3283   0.6318   0.7524   0.7726   0.6437   0.6354   0.5267   0.7266
Ericsson 0.0020   0.3044   0.3720   0.4134 0.3427   0.3039   0.2365 0.4412

Investor 0.3693 0.7730   0.8223   0.8352 0.7894 0.7751 0.6814 0.8414
MoDo 0.5943 0.7617 0.8685   0.8808    0.7628 0.7614 0.6960 0.8278

SCA 0.4766 0.7254   0.7645   0.7767 0.7242 0.7247 0.6485 0.7622

SEB 0.0134 0.4966 0.5610 0.5622   0.4504   0.4969   0.4781 0.5053
Skandia 0.0031 0.2126 0.3547 0.4134 0.2117 0.2129 0.1883   0.3960

Trelleborg 0.2948 0.5300 0.6178 0.6194 0.5346 0.5226   0.4958   0.6043

Volvo 0.2702 0.7121 0.7468 0.7667   0.7616 0.7257 0.5592 0.8034

Average     0.2614   0.5567   0.6370   0.6588   0.5680   0.5585   0.4909   0.6479

Minimum     0.0020   0.2126   0.3547   0.4134   0.2117   0.2129   0.1883   0.3960

Maximum     0.5943   0.7730   0.8685   0.8808   0.7894   0.7751   0.6960   0.8414

The table shows the in-sample fit, in terms of 2R  for the different specifications of the volatility functions for

each underlying stock. Also minimum, maximum and average values of 2R for the models are presented.
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Table 5. Goodness-of-fit for the different volatility functions

Panel A: RMSE for the different specifications

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

0.9537 1.5052 0.9487 1.0297 0.9260 0.8685 0.9009 1.2520 0.9263

Panel B: MAE for the different specifications

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

0.5294 1.1220 0.5960 0.7028 0.6761 0.5409 0.6017 0.8546 0.6493

Panel C: Percentage of model values within the market bid/ask spread

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

83.37 41.92 73.92 66.18 65.58 76.42 74.32 58.59 67.69

Panel D: Percentage of contract days when model outperforms Model 1 in terms of daily squared errors

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

    - 25.09 43.23 41.41 39.22 49.46 42.79 31.64 39.90

The table presents different measures of the goodness-of-fit of the examined volatility functions when used in an

out-of-sample test to value options according to the binomial model. In Panels A and B, the root mean squared

errors and the mean absolute errors for the different model values from the midpoint market value of the options

are displayed. Panel C presents the percentage of values, according to each model, that are within the market

bid/ask spread of the options. In Panel D, finally, the results of a daily comparison of squared deviations from

the market midpoint between Model 1 (where the implied volatility of the option closest to being at-the-money

is used) and the model in question are displayed.



35

Table 6: RMSE for the difference between model values and actual midpoint prices

displayed with respect to moneyness and time to expiration

Maturity Moneyness Model 1 Model 3 Model 5 Model 6 Model 9

< 0.90 0.4484 0.4277 0.4225 0.4143 0.5218

0.90 - 0.98 0.4702 0.4721 0.6280 0.4552 0.9623

7 - 30 0.98 - 1.02 0.0798 0.0965 0.9602 0.0890 1.0087

1.02 - 1.10 0.6727 0.6529 1.2310 0.6422 1.0004

1.10 - 1.20 1.2697 1.1070 1.0020 1.1435 1.0285

> 1.20 2.1857 2.0626 1.8168 2.0762 1.9601

< 0.90 0.3846 0.3190 0.3144 0.3553 0.3539

0.90 - 0.98 0.3625 0.3968 0.4368 0.3099 0.4636

31 - 90 0.98 - 1.02 0.1094 0.1485 0.4353 0.1203 0.4619

1.02 - 1.10 0.6728 0.7350 0.9616 0.6452 0.7776

1.10 - 1.20 1.7104 1.4372 1.3619 1.3673 1.3153

> 1.20 2.8813 2.1130 1.8543 2.0985 1.9905

< 0.90 0.4591 0.3759 0.3882 0.6244 0.4320

0.90 - 0.98 0.3725 0.3846 0.6452 0.6690 0.4292

91 - 150 0.98 - 1.02 0.1345 0.1782 0.6174 0.1490 0.6960

1.02 - 1.10 0.4722 0.9103 0.6484 0.5693 0.6930

1.10 - 1.20 1.1753 1.6183 1.0607 1.2180 0.9046

> 1.20 2.7980 2.3619 1.8555 2.2742 1.9685

< 0.90 0.5591 0.8718 1.2608 1.9061 1.1145

0.90 - 0.98 0.4657 0.3496 0.5497 1.1354 0.5797

151 - 182 0.98 - 1.02 0.1938 0.2138 1.2803 0.2457 1.6106

1.02 - 1.10 1.1728 1.0676 1.6491 0.6732 1.7897

1.10 - 1.20 0.9897 2.4848 0.3683 1.6276 0.6202

> 1.20 - - - -    -

  Overall 0.9537 0.9487 0.9260 0.8685 0.9263

The table displays the RMSE for the differences between the model option values, according to the different

volatility functions, and the averages of the closing bid and ask option prices. The observations are displayed

with respect to moneyness and time to expiration.
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Table 7: The number (percentage) of model values within the market bid/ask spread,

displayed with respect to moneyness and time to expiration

Maturity Moneyness Model 1 Model 3 Model 5 Model 6 Model 9

< 0.90 48 (68.57) 49 (70.00) 55 (78.57) 55 (78.57) 56 (80.00)

0.90 - 0.98 96 (61.15) 93 (59.24) 98 (62.42) 117 (74.52) 70 (44.59)

7 - 30 0.98 - 1.02 74 (100.00) 73 (98.65) 21 (28.38) 72 (97.30) 17 (22.97)

1.02 - 1.10 141 (95.27) 131 (88.51) 53 (35.81) 139 (93.92) 72 (48.65)

1.10 - 1.20 84 (87.50) 89 (92.71) 81 (84.38) 89 (92.71) 86 (89.58)

> 1.20 17 (62.96) 19 (70.37) 20 (74.07) 18 (66.67) 21 (77.78)

< 0.90 76 (71.70) 84 (79.25) 84 (79.25) 71 (66.98) 72 (67.92)

0.90 - 0.98 122 (72.19) 119 (70.41) 116 (68.64) 137 (81.07) 92 (54.44)

31 - 90 0.98 - 1.02 93 (100.00) 92 (98.92) 61 (65.59) 91 (97.85) 57 (61.29)

1.02 - 1.10 167 (94.89) 137 (77.84) 87 (49.43) 164 (93.18) 123 (69.87)

1.10 - 1.20 100 (79.37) 96 (76.19) 93 (73.81) 105 (83.33) 106 (84.13)

> 1.20 32 (60.38) 28 (52.83) 38 (71.70) 29 (54.72) 33 (62.26)

< 0.90 94 (76.42) 89 (72.35) 92 (74.80) 72 (58.54) 95 (77.24)

0.90 - 0.98 230 (84.56) 227 (83.46) 157 (57.72) 149 (54.80) 215 (79.04)

91 - 150 0.98 - 1.02 152 (100.00) 149 (98.03) 108 (71.05) 150 (98.68) 100 (65.79)

1.02 - 1.10 246 (90.44) 163 (59.93) 213 (78.31) 220 (80.88) 211 (77.57)

1.10 - 1.20 179 (85.65) 79 (37.80) 156 (74.64) 112 (53.59) 171 (81.82)

> 1.20 43 (75.44) 32 (56.14) 48 (84.21) 37 (64.91) 46 (80.70)

< 0.90 3 (75.00) 1 (25.00) 0 (00.00) 0 (00.00) 0 (00.00)

0.90 - 0.98 29 (87.88) 29 (87.88) 30 (90.91) 14 (42.42) 29 (87.88)

151 - 182 0.98 - 1.02 32 (100.00) 32 (100.00) 13 (40.63) 32 (100.00) 6 (18.75)

1.02 - 1.10 36 (60.00) 47 (78.33) 18 (30.00) 47 (78.33) 18 (30.00)

1.10 - 1.20 7 (70.00) 3 (30.00) 9 (90.00) 4 (40.00) 8 (80.00)

> 1.20 - - - -    -

  Overall 2,100 (83.37) 1,862 (73.92) 1,652 (65.58) 1,925 (76.42) 1,705 (67.69)

The table displays the number of option values, given the different volatility functions, which are within the

market bid/ask spread. The observations are displayed with respect to moneyness and time to expiration. In

parentheses, the numbers of values within the spread are expressed as percentages of the total number of

observations in each time/moneyness group during the evaluation period (January 1 through February 1, 1996).
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Table 8. Coefficients for different specifications of the volatility function given a one-month

estimation period

Volatility specifications

Coefficients Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Constant 1.1090* 0.9579* 1.0713* 1.0919* 0.9682* 1.0141* 0.8416* 1.1755*

)/(ln SX 3.1990* 1.1168* 2.3491* 2.3285*
2)/(ln SX 15.2957* 13.7722* 13.8220* 18.7863*

)( tT − -0.3918* -0.6136Ψ -1.1480*
2)( tT − 0.4299ω   1.1176Ψ

)(*)/(ln tTSX − -5.2875* -5.1898*

U -1.3645* 2.2486* -1.3236*
2U 9.9052*

D 5.1667*
2D 19.9236* 19.3125*

2R  0.4425  0.7158  0.7466  0.7467  0.7326  0.7160  0.6448  0.7479

The table shows results of fitting relative put volatilities during the period December 1 through December 31,

1995 to different volatility functions. X is the exercise price, S is the stock price, )( tT −  is the time to expiration

and 
i

i
i S

X
U ln=   if  0ln <
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iS
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.

White (1980) heteroskedasticity-consistent standard errors are used, and coefficients marked with * have p-

values < 0.0001, whereas those marked with Ψ or ω have p-values < 0.05 and > 0.10 respectively.
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Table 9. Goodness-of-fit for the different volatility functions with estimation over one month

Panel A: RMSE for the different specifications

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

0.9537 2.2826 1.4408 1.2897 1.2621 1.3067 1.3477 2.0359 1.2906

Panel B: MAE for the different specifications

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

0.5294 1.6482 0.8578 0.8350 0.8299 0.7205 0.7732 1.3790 0.7992

Panel C: Percentage of model values within the market bid/ask spread

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

83.37 27.31 63.60 59.90 59.15 71.81 67.80 37.83 63.12

Panel D: Percentage of contract days when model outperforms Model 1 in terms of daily squared errors

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

- 14.37 33.03 29.69 30.81 42.00 34.14 21.95 36.52

The table presents different measures of the goodness-of-fit of the examined volatility functions when used in an

out-of-sample test to value options according to the binomial model. The models are fitted during the period

December 1 through December 31, 1995. In Panels A and B, the root mean squared errors and the mean

absolute errors for the different model values from the midpoint market value of the options are displayed. Panel

C presents the percentage of values, according to each model, that are within the market bid/ask spread of the

options. In Panel D, finally, the results of a daily comparison of squared deviations from the market midpoint

between Model 1 (where the implied volatility of the option closest to being at-the-money is used) and the

model in question are displayed.
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Table 10. Goodness-of-fit for some of the different volatility functions with estimation for

each underlying stock

Panel A: RMSE for different models

Model 1 Model 3 Model 5 Model 6 Model 9

0.9537 0.8591 0.8669 0.8456 0.9754

Panel B: MAE for different models

Model 1 Model 3 Model 5 Model 6 Model 9

0.5294 0.5408 0.6312 0.5367 0.6909

Panel C: Percentage of values within the spread

Model 1 Model 3 Model 5 Model 6 Model 9

83.37 77.45 68.52 76.78 65.30

Panel D: Percentage of days when better than Model 1

Model 1 Model 3 Model 5 Model 6 Model 9

     - 45.89 40.33 46.61 38.82

The table presents different measures of the goodness-of-fit of the examined volatility functions when used in an

out-of-sample test to value options according to the binomial model. The models are fitted during the entire

estimation period using different coefficients for different underlying stocks. In Panels A and B, the root mean

squared errors and the mean absolute errors for the different model values from the midpoint market value of the

options are displayed. Panel C presents the percentage of values, according to each model, that are within the

market bid/ask spread of the options. In Panel D, finally, the results of a daily comparison of squared deviations

from the market midpoint between Model 1 (where the implied volatility of the option closest to being at-the-

money is used) and the model in question are displayed.


