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Abstract 

 

Polynomial functions of the term to maturity have long been used to 

provide a general functional form for zero-coupon yield curves.  The 

polynomial form has many advantages over alternative functional 

forms such as Laguerre, when using non-linear least squares to 

estimate zero-coupon yield curves with coupon bond data.  Most 

importantly the polynomial form invariably enables convergence of the 

estimation process.   

 

Unfortunately, the simple polynomial form results in estimated models 

of zero-coupon yield curves that approach either plus or minus infinity 

as the term increases.  This unsatisfactory aspect of the simple 

polynomial is inconsistent with both theoretical considerations and 

observational reality.   

 

We propose a new zero-coupon yield curve functional form consisting 

not of simple polynomials of term, τ, but rather constructed from 

polynomials of 1/(1+τ).  This form has the desirable property that long-

term yields approach a constant value.  Further, we model zero-coupon 

yields as a linear function of the first k principal components of p 

polynomials of 1/(1+τ), k<p.  Using a small number of principal 

components produces zero-coupon yield curves with a simple 

“parsimonious” structure while retaining the flexibility of larger 

polynomial form with its k-1 potential turning points.  Moreover 

estimating with principal components exploits the principal 

explanatory variable’s lack of colinearity. 
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The principal components of polynomials of 1/(1+τ) model is applied 

to Australian coupon bond data.  The results compare favourably to 

those obtained using the traditional polynomial of term model. 

Zero-coupon Yield Curve Estimation; a Principal Component, 

Polynomial Approach 

Introduction  

An understanding of the zero-coupon treasury yield curve is essential 

to the pricing of an increasingly vast array of interest bearing securities 

and the derivatives of those securities. Zero-coupon rates for example 

are central to the determination of “fair” coupon bond prices, forward 

rates, futures prices and swap rates.  Zero-coupon bond prices and 

yields can be inferred from a liquid market for zero-coupon bonds or 

treasury strips.  However there are very few such markets, and thus 

zero-coupon yield curves are generally inferred from the market 

yields/prices for coupon paying bonds.  This is not a trivial task. 

 

This paper proposes a new and relatively simple method for deriving a 

zero-coupon yield curve from the market prices of coupon paying 

treasury bonds.  It models zero-coupon yields, yZ, as a function of the 

principal components of polynomials of 1/(1+τ), where τ is the term of 

the underlying zero-coupon instrument.  This functional form not only 

has the flexibility, generality and tractable estimation properties of all 

polynomial forms, but also, and most importantly, the zero-coupon 

yields, implied by the model, approach some long-term limit as the 

term increases. 
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Fitting zero-coupon yield curves 

A coupon bond may be priced a number of ways.  The traditional 

procedure is to discount all of the bond’s cash flows at the market 

determined yield to maturity.  That is, 
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Where P(ym, t) is the price of a t period bond when the yield to maturity 

is ym, 

ci is the coupon payment at time t, and 

F is the bond’s face value. 

 

A coupon bond is, in effect, a bundle of zero-coupon bonds with each 

coupon payment constituting a single zero-coupon bond.  An 

alternative pricing method uses the constituent zero-coupon rates.  A 

bond’s cash flows are discounted with the relevant zero-coupon rate, 

rather than the yield to maturity, provided by the prevailing zero-

coupon yield curve.  Here, 
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Where  is the zero coupon rate applicable to a term of i periods.  y iz( )
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The zero-coupon yield curve, yz(τ), may be estimated as a particular 

function of the term, τ, that minimises the sum of the squared 

differences between the actual market bond prices, as given in (1), and 

the zero-coupon bond prices as given in (2).   That is, the zero-coupon 

yield curve is estimated by minimising, 
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Where n is the number of coupon bonds used in the estimation process.   

 

A consensus as to the “best” form for determining the zero coupon 

curve is yet to be established.  One popular approach has been to use a 

series of splines to approximate yz(t).  For example, Vasicek and Fong 

[1982] use exponential splines, Frishling et al [1994] use a linear spline, 

while Adams and Deventer [1994] a fourth order spline with the cubic 

term missing.  Spline zero curves perfectly fit the data ensuring that the 

sum of squares term (equation (3)) is zero.  While the perfect fit 

property of splines may, at first appear to be advantageous, it does 

contain faults.  A zero-yield curve that perfectly fits the data does not 

allow for either data measurement error or bond pricing errors. 

 

Data measurement error can arise from a number of sources, such as 

thin trading and non-synchronous trading.  When there is very little 

trading one party may be able to impose a non-fair price upon another 

party. The problem of non-synchronous trading arises where the bond 

prices used in the estimation process are generated at significantly 

different points in time.  Here, the bond prices represent a mixture of 

term structures taken from different points in time.  The use of a spline 

function on non-fair or non-synchronous data may produce a yield 

curve with an erroneous idiosyncratic shape. 
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Spline curve models completely eliminate prediction error through the 

implicit estimation of very many parameters (one for each bond).  In 

contrast to spline estimation, with its many parameters, is the 

“parsimonious” approach that employs a small number of parameters.  

In this approach to yield curve estimation the bond price data is 

“smoothed” by an estimation technique that minimises, but not 

eliminate, predicted bond price errors.  This smoothing approach 

produces superior results when estimating zero-coupon yield curves 

from bond data containing errors. 

 

Under the parsimony principle, empirical models are relatively simple, 

with a parsimoniously small number of parameters.  Previous research 

has shown that while parsimonious models are relatively simple 

structures they nevertheless fit the observed data smoothly and well.  

The parsimonious approach to yield curve estimation was pioneered 

by Nelson and Siegal [1987].  They specified the yield curve as a four-

parameter Laguerre function: 

 

  (4) yz( ) ( )τ β β β τ β τ= + +0 1 2
3e

1

The Laguerre yield curve has many beneficial aspects.  Its flexibility 

allows for a number of yield curve shapes such as, trenches and 

humps.  It also produces sensible rates at the extremities of the term 

structure, y(0) = β  and y(∞) = ββ0 + 0.  Notwithstanding its many 

attractive properties, unfortunately the Laguerre form is notoriously 

difficult to apply.  For many yield curve shapes, the non-linear least 

squares estimation process necessary to estimate (4) fails to converge 

for the Laguerre form.  Bhar and Hunt [1994], Barrett et al [1995], Hunt 

[1995a] and Pham [1995] illuminate the problems of implementing 

Laguerre zero-coupon yield curves.   An alternative to the Laguerre 

form is the polynomial yield curve.   
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For example, a four-parameter polynomial yield curve is specified as: 

 

  (5) y z ( )τ β β τ β τ β τ= + + +0 1 2
2

3
3

 

Polynomial zero-coupon yield models invariably produce convergence 

in the estimation process.  Studies that have employed polynomial 

forms are Langeteig and Smile [1989] Bhar and Hunt [1994], Hunt 

[1995a], Hunt [1995b] and Pham [1995].  This form is capable of 

providing all commonly observed yield curve shapes.  The polynomial 

form is a general function that provides a good approximation to any 

yield curve function, as the Taylor series expansion shows.  The 

primary failing of the polynomial form concerns the rates at the long 

end of the term structure. 

 

It is generally accepted that interest rates are mean reverting and a raft 

of interest rate models, starting with Vasicek [1977], incorporate mean 

reversion.  Mean reversion dictates that interest rates tend toward a 

fixed “mean” as the term increases.  Unfortunately, however, the 

simple polynomials of term model are not consistent with yields 

tending to some long-term constant rate.  On the contrary, it is a 

property of the polynomial form that long-term rates must diverge 

towards either positive or negative infinity.  The instability of longer 

rates is a most unsatisfactory aspect of the simple polynomial term 

structure.   

 

We suggest a polynomial of a simple transformation of the term, τ, that 

removes the problem of long-run rate instability inherent in this simple 

polynomial model (5) while retaining the tractable estimation property 

of the polynomial form. 
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Polynomials of 1/(1+τ) 

Polynomials of 1/(1+τ) are well behaved in that they approach a 

constant as τ increases.1  We propose the following zero-coupon yield 

curve; 
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Where β is a (p*1) vector of coefficients (β0, β1,  ... βp-1), 

X is a (1*p) vector of polynomials (w0,  w1, ... wp-1) and 

w = 1/(1+τ).   

 

The polynomial in 1/(1+τ), like the polynomial in t, is flexible and 

capable of rendering all of the common yield curve shapes but unlike 

the polynomial in τ,  is well behaved at both ends of the term structure, 

such that: 

  yz
i

i

p
( )0

0

1
= ∑

=

−
β

 yz(∞) = β0

 

A parsimonious modelling approach requires the yield curve to be 

specified with the smallest number of parameters that provide an 

acceptable fit to the observed bond data.  Previous studies have found 

that models with three and four parameters are sufficient to provide a 

good fit to the data (see for example Nelson and Siegal [1987], Diament 

[1993], Hall [1989], Bhar and Hunt [1993] and Hunt [1995a, 1995b]).  

Following this tradition one would restrict p in equation (6) to be three 

or four.  However, even if one, operating under the principle of 

parsimony, decided to estimate say, four parameters, it does not follow 
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that one would use the first four polynomial terms.  Rather, one would 

employ four polynomial terms that provided the best fit.  For example, 

Adams and van Deventer [1994] and Hunt [1995a] found that, within a 

four parameter model, a four order polynomial model with the cubic 

term omitted outperforms a straight third order polynomial model.   

 

We suggest a new principal components approach to selecting a k 

parameter model from a possible p polynomial terms (k<p).  This 

approach employs principal components of polynomials of 1/(1+τ).  

Specifically, our approach uses the “best” k principal components 

extracted from p, polynomials of 1/(1+k).  Equation (6) is transformed 

to: 

 

  (7) y z ( )τ = Z(τ)α

 

Where, α is a (k*1) vector of coefficients (α0, α1, ... αk), 

Z is a (1*k) vector of functions of τ,  

 

 Z(τ) =X(τ) A (8) 

 

Where A is a k*p matrix transformation coefficients.  Let Z and X be 

matrices composed of rows of Z(τ) and X(τ) for τ = 1 to T.  The matrix 

A, is composed of the k characteristic roots of X’X associated with the 

largest k characteristic roots of X’X.  Thus, the matrix Z contains k 

principal components of X.  The principal components consist of 

orthogonal vectors with the same number of observations as the 

original series that explain the maximum possible variance of the 

original series.  If k = p, all of the variance of the original series is 

explained and β = A-1 α. 
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While the untransformed polynomials 1/(1+τ) are naturally correlated, 

the principal components are not.  A comparison of the untransformed 

first three polynomials of 1/(1+τ), τ = 1 to 10 and the first three 

principal components of the polynomials is presented in Table 1 and 

Figure 1.  Table 1 shows the high degree of correlation between the first 

three polynomials of 1/(1+τ).2  This correlation is completely 

eliminated by combing these variables into principal components.   

 

Figure 1 contrasts the shape of the first three polynomial variables with 

those of the three principal components of those variables.  Note the 

untransformed variables do not have any minimum/maximum points, 

however, two of the principal component series contain turning points. 

 

Principal component series are orthogonal to each other.  In linear 

regression analysis orthogonality is an advantage as variables are 

“independent” in that they can be added to, or subtracted from, a 

specification without altering the value of the least squares estimated 

parameters on the other included variables.  This property is beneficial 

in one’s attempt to select an additional explanatory variable from a 

number of candidate variables.  One simply progresses through the 

candidate variables adding the next orthogonal variable that achieves 

the greatest reduction in the error sum of squares.  This cannot be done 

with correlated variables.  The reduction in error variance depends not 

upon the nature of the additional variable but on the combination of 

that variable with all of the other included variables.   

 

Equation (7) is linear in the variables; equation (3) introduces non-

linearity into the estimation process.  While the desirable independence 

property of orthogonal variables does not strictly carry across to linear 

specifications, our experience indicates that mostly it does.  In most 

cases the best combination of k explanatory variables is the best 
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combination of k-1 explanatory, plus that variable which provides the 

greatest reduction in error sum of squares by itself.  Principal 

components analysis is of great assistance in identifying the ability of 

variable to reduce the residual error of a specification as principal 

components are ranked by their variance.  The large variance principal 

components most often provide the greatest reduction in error 

variance.3   

Example 

We selected a distinct normal yield curve to demonstrate the derivation 

of the implicit zero-coupon yield curve.  It is based on the market 

yields on the 7th August 1995 for a set of traded Australian Treasury 

bonds.  The data consisted of yields and specifications for 19 coupon-

paying bonds.  The term of the bonds ranged from about 18 months to 

12 years.  The coupon rate ranged from 6.25%p.a. to 13%p.a. These 

yields are shown in Figure 2. 

 

Table 2 sets out the results of sequentially adding principal 

components of the first eight polynomial terms of 1/(1+τ).  The second 

column in Table 2 displays how the addition of each of the first four 

variables provides considerable reduction in the bond price residual 

sum of squared residuals.  The data in the third column of Table 2 

show that the addition of the fourth principal component signals the 

end of this tendency as it not significantly different from zero.    

 

The estimated zero-coupon yield curve, using the first three principal 

components of the first eight polynomial terms of 1/(1+τ), is plotted in 

Figure 3 along with the zero-coupon yield curve estimated using the 

more traditional polynomial specification using the first three 

polynomial terms of τ.   
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The two zero-coupon yield curves have a similar shape over sample 

term.  Each model has an almost identical performance in explaining 

bond price variation.  The third order polynomial zero-coupon yield 

curve has a residual sum of squares of 0.284 while the three principal 

components zero-coupon yield curve model has a residual sum of 

squares of 0.281.  Both figures equate to an R2 of 99.98%.  The principal 

components model outperforms the polynomial model in the 

projection of longer-term rates. 

 

Figure 3 clearly shows the tendency for straight polynomial rates to 

tend towards infinity (-∞ in this case).  In contrast the principal 

components of 1/(1+τ) asymptotes toward the coefficient on the 

constant, 10.34%p.a. in this case.  If reasonable implied long-term rates 

are important then the principal components zero-coupon model is 

clearly superior to its straight polynomial equivalent. 

 

Polynomial functions of the term to maturity have long been used to 

provide a general functional form for zero-coupon yield curves.  The 

polynomial form has many advantages, over alternative functional 

forms such as Laguerre, when using non-linear least squares to 

estimate zero-coupon yield curves using coupon bond data.  Most 

importantly the polynomial form invariably enables convergence of the 

estimation process.   

 

Unfortunately, the simple polynomial form results in estimated models 

where the zero-coupon yield diverges either to plus or minus infinity 

as the term increases.  This is an unsatisfactory aspect the simple 

polynomial model is inconsistent with both theoretical considerations 

and observational reality.   
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Summary 

We used a small number of principal components of a larger number 

of polynomials of 1/(1+τ) to produce an estimated zero-coupon yield 

curve with a simple “parsimonious” structure that retained the 

flexibility of a larger order polynomial form with its many potential 

turning points.  Estimating the model via principal components 

enabled us to exploit the principal components’ lack of colinearity and 

also promoted convergence in the non-linear estimation process.   

 

The yield curve constructed from polynomials of 1/(1+τ) displayed the 

tractable estimation properties of the traditional yield curve modelled 

as polynomials of τ.  However, unlike the traditional polynomial yield 

curve, the new yield curve had stable long-term yields.   

 

The principal components of polynomials of 1/(1+τ) model was 

applied to Australian coupon bond data.  The results compare 

favourable to those obtained using the traditional polynomial of term 

model. 
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Endnotes 
1 The 1 in the denominator of 1/(1+τ) is there to ensure the term is 

bounded at τ = 0.  
2 The polynomial series have been standardised to have a mean of zero 

and unit variance before principal component analysis was applied.  

Thus the principal components have identical covariances and 

correlations. 
3 Orthogonality of explanatory variables always eliminates any 

multicolinearity problems. 
4 The data were published in the Australian Financial Review. 
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Table 1: Covariance and Correlation of Polynomials and 

Principal Components 

    

Covariance : Untransformed Variables 

 1/(1+t) 1/(1+t)2 1/(1+t)3

1/(1+t) 0.0511   

1/(1+t)2 0.0496 0.0520  

1/(1+t)3 0.0452 0.0498 0.0493 

 

Correlation : Untransformed Variables 

 1/(1+t) 1/(1+t)2 1/(1+t)3

1/(1+t) 1.0000               

1/(1+t)2 0.9613 1.0000              

1/(1+t)3 0.9001 0.9839 1.0000  

    

Covariance and Correlation : Principal Components 

 First Second Third 

First 1.0000   

Second 0.0000 1.0000  

Third 0.0000 0.0000 1.0000 
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Figure 1 : Polynomials and Principal Components of 1/(1+τ) 
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Figure 2 : Yields on Australian Treasury Bonds 
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Table 2 : Zero-Curve estimation Results 

 

Sequential Variables Bond price 

Residual Sum 

of Squares 

Probability the 

Additional 

Variable 

Coefficient, βi,  is  

Zero 

   

Constant 9.27  

First principal component 3.36 0.0041% 

Second principal component 0.76 0.0001% 

Third principal component 0.28 0.0138% 

Fourth principal component 0.27 48.3324% 
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Figure 3 : Estimated Zero-Coupon Curves 
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1 The 1 in the denominator of 1/(1+τ) is there to ensure the term is 

bounded at τ = 0.  
2 The polynomial series have been standardised to have a mean of zero 

and unit variance before principal component analysis was applied.  

Thus the principal components have identical covariances and 

correlations. 
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