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Splines and Finance

Main Themes

e (Calibration of financial models is a statistical problem

e Researchers in mathematical finance are experts in probability
theory but often are less knowledgeable about statistical

modeling and data analysis

e Unfortunately, statisticians have, with some notable exceptions,

not recognized finance as an important area of application

e Transformation and weighting in regression can improve the

calibration of financial models

e Splines are an effective tool for data analysis and statistical

modeling
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Overview
e Recent example where a statistician could have helped
e Example of curve fitting — dynamics of interest rates
e Penalized splines

e Two examples:
— Return to interest rate dynamics

— Term structure — estimating the forward rate curve
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Example: Estimation of Default Probabilities

Data:
e ratings: 1 = Aaa (best), ..., 16 = B3 (worse)

e default frequency: estimate of default probability

— many zero values at best ratings

From recent book on credit risk
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e nonlinear model:

Pr(default|rating) = exp{fy + firating}
e linear/transformation model (in recent textbook):
log{Pr(default|rating)} = By + [Firating
— Problem: cannot take logs of default frequencies that are 0

— (Sub-optimal) solution in textbook: throw out these

observations
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e Transform-both-sides (TBS) model — see Carroll and
Ruppert (1984, 1988):

Pr(default|rating)® = exp|a{By + firating}]
— « chosen by residual plots (or maximum likelihood)
— a = 1/2 works well

— a = 0 = log transformation

x if we z— 2% by z— (2 — 1)/«
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Normal Probability Plot
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method f’;{default\Aaa} % of TEXTBOOK estimate
TEXTBOOK 0.005% 100%
nonlinear 0.002% 40%
TBS 0.0008% 16%
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Comments:
e Suppose sample sizes were large so that all categories had at
least one default

— log transformation would have been applied to all 16 sample

proportions

— but this might have caused outliers and unstable estimates

e Perhaps a logistic regression fit should be compared with the
TBS fit.
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Geometry of transformations — variance stabilization

tangent line at Y=1
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Geometry of transformations — symmetrization
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1-year Treasury constant maturity rate

1 1 1 1 1 1 1 1 1
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year

1-Year Treasury Constant Maturity Rate, daily data

Source: Board of Governors of the Federal Reserve System

http://research.stlouisfed.org/fred2/
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Daily change in rate
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Estimating Volatility

Parametric model:

Var{(ARy)} = foR;*,
E.g.,
e 31 =0 (Vasicek, 1977)
e 51 =1/2 (Cox, Ingersoll, Ross, 1985)
e 51 =1 (Courtadon, 1982)

e (31 a free parameter (Chan, Karolyi, Longstaff, and Sanders,
1992)

19
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Nonparametric model:

Var{(AR;)} = 0*(R¢_1)
where o(+) is a smooth function

e will be modeled as a spline

e In these models: no dependence on ¢

20
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Squared change in rate
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Penalized Splines for Semiparametric Modeling

Underlying philosophy

1. minimalist statistics

e keep it as simple as possible
2. build on classical parametric statistics

3. modular methodology

23
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Reference

Semiparametric Regression by Ruppert, Wand, and Carroll
(2003)

e Lots of examples.

e But most from biostatistics and epidemiology

24



Splines and Finance

Semiparametric regression

Partial linear or partial spline model:
Y, = W] By +m(X:) +e.

Here m/(-) is a smooth function. We will model it as a spline with a

truncated polynomial basis:
m(z) = X Bx + B'(z)b.
XT= (X, XP)
B'(x)={(@—rm), - (o—rx))

The intercept is part of W/ 3y

25
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Example

m(x) =Prx+bi(r —Kr1)r +- -+ bx(r — KK )+

e slope jumps by by at kg

2 | e plus fn.
18 L= derivative

1.6
1.4r
1.2¢

0.8f
0.6
0.4f

0.2r
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Fitting interest-rate data with plus functions
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m(x) = prx+ -+ Bpa? +bi(z — k1)L + -+ br (2 — ki)

(Generalization

e pth derivative jumps by p! b at ki

e first p — 1 derivatives are continuous

3.5¢

2.5F

157

0.5¢

= plus fn.
= = derivative .
== 2nd derivative .
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p
+
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Minimize

Zw{

E.g.,

Penalized least-squares

2
(W8, + X8y + BT(X; )b)} + \b"Db.

30
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Penalized Least Squares — Non-adaptive
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Ridge Regression

From previous slide:

Zw { (W/!Bw + X, By +B'(X; )b)}2 +Ab"Db.

Let X have row (W] X[ B'(X;)). Then
Bw
2 T : —1 o7
B :{/’\,’ QX—FAb]ockdmg(0,0,D)} X'QY,
b
where

Q = diag(w?, ..., w?)

n

32
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Penalized LSE is also

e a BLUP in a mixed model
— (Bw, Bx) is the fixed effect vector
— b is the random effect vector

— ) is a ratio of variance components

e empirical Bayes estimator.

33
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Selecting A
1. cross-validation (CV)
2. generalized cross-validation (GCV)

3. ratio of variance components estimated by ML or REML in

mixed model framework
4. as in 3., but estimated in a fully Bayesian framework

5. EBBS = empirical bias bandwidth selection

— useful if m/(z) is of primary interest

34
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Selecting the Knots Locations

1. T use sample-quantiles of X so there are (approximately) an
equal number of observations between any pair of consecutive

knots
2. Some prefer equal-spaced knots

1. and 2. give similar results, except in extreme cases.

35
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Selecting the Number of Knots

(a) SpaHet, | = 3, typical data set (b) MASE comparisons
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Additive Models

Model:
Yi=mi(X1)+ - +mp(Xp) + &

Basis functions:

XZTJ = (X5 -+ Xi;)and B;F(ZE) ={(z — r1,5)}

Let X have row

(W, X;, ... X!, Bi(Xi1) ... Bp(Xip))

p

Estimation: Minimize

n P 2
> {Y _ (wzﬂw S X8 BI-(XZ-,J-)bj) }
1=1

j=1

J

1

p
+

}

p
+> " A;b; D;b;.
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Adaptive Penalties
e the penalty A(-) is allowed to vary with spatial position

e see Ruppert and Carroll (2000), Australian and New Zealand

Journal of Statistics

— A(+) is itself a spline

Minimize:
n p 2 p
S oW {Y - (WZﬂW +> X{;Bx;+Bj] (Xz-,j>bj) } +)  b;D;b;.
i=1 j=1 j=1
where

D; = diag (A(k1,5) - AKk;,j))
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Partial Spline Model

ARt = m (Rt) + mg(t) + O'(Rt,t)ez'

41
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effect of rate on A(rate)
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Partial Spline Model

ARt = ﬁlRt + mg(t) + O'(t, Rt)Gi

Output:
® 31
o Ma(t) + iRy

Corresponds to model with drift:
a{0(t) — Ry}

where
ma(t)

a=—0p; and 0(t) = — 3
1

44
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effect of rate on A(rate)
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Multiplicative Models for Volatility

Var(Y) = 03 51(X1) -+ 55(X))

p

Example:

Var{(AR,)} = 0307 (Re—1)o3(1)

47
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Backfitting algorithm:

Assume the Y; has mean zero, e.g., are residuals.

1. fit a model s%(X;) for Y as a function of X;
e “de-volatilize”: replace Y; by vy;/s1(X1)

2. fit a model s35(X>) for Y;? as a function of X,
e “de-volatilize”: replace Y; by Y;/s.(X3)

3. fit a model s7(X,) for Y;? as a function of X,

e “de-volatilize”: divide Y; by s1(X1) - s,(X))
4. either STOP or go back to 1.

Weighting is built into the algorithm.

48
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Estimating the Term Structure of Corporate
Debt with a Semiparametric Model

Joint work with:
e Bob Jarrow (Cornell)

e Yan Yu (University of Cincinnati)

52
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Bond prices and the forward rate
e { = time to maturity

e P(t) = price of zero-coupon bond at current time (¢t = 0)

(
e D(t) = discount function
e y(t) = yield to maturity

o f(t) = forward rate

PAR — D(t) = exp{—F(t)} = exp{—ty(t)} = exp {_/0 f(s)ds} .

53
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Estimation of the forward rate
Suppose the ith bond pays C;(¢; ;) and time ¢; ;
e 1=1,....n
o 1 =1,...,2;

Let f(s,8) = 6 B(s) be a spline model for the forward rate.

Model for price of 7th bond:

P\Z((S) = i: Cz (ti,j) GXp{—(S/BI(tZ’,j)}

j=1

where

p+1 p+1 p+1

BI t) = tB ds — P+ (t—lﬁzl)ﬁ_—i_l (t—/ﬂ:K)z_T__'_l /
() := i (s)ds= (¢t .. ).
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Estimate 0 by minimizing

Qn,A((S) — % Z{Pz - Z Ci(ti,j) exp{—&’BI(ti7j)}}2 -+ )\5,(}(5
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Selection of A
Estimation of A by GCV did not work well
GCV targets MSE of the estimated regression function

But the forward rate is the derivative of the (log of) the

regression function

Derivatives require a different amount of smoothing
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Corporate Bonds

e Problem: often there are not enough bonds to fit a fully

nonparametric model

e Jarrow, Ruppert, and Yu solve this by using a semiparametric

model

57
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Algorithm

Step 1: Nonparametric spline fit of a forward rate to US Treasury
bonds.

e § is estimated by minimizing @, x(4)
e ) is chosen by GCV, RSA, or EBBS
o ]/"\Tr(t) — 3B (t), where 4 are the estimated spline coefficients

Step 2: Parametric estimation to obtain the forward rate curve for

a corporation’s bonds.
e credit spread is parametric with parameter a

e for example, if the credit spread is a constant, then
~ ~
fo(t) = fr-(t) + a =8 B(t),

e fix & at value from Step 1 and estimate a by OLS
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Summary

e Statisticians and financial engineers would each benefit from

more collaboration

e (Calibration of financial models is an interesting and challenging
problem in statistics and data analysis
— transformation and weighting can be important

e Penalized splines are an attractive method for semiparametric

modeling



