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T
he first step in using market prices
to fit the parameters of models for
the price of bonds is to strip the
bonds of their coupons. This is

because most bond pricing models really
model the current term structures of spot rates
of benchmark risk-free and risky securities
(Treasury and corporate bonds) — that is, the
prices of zero-coupon bonds. 

There are few zero-coupon bonds
available in the market, however. Although
Treasury STRIPS can be used to represent
these theoretical risk-free spot rates, there are
some problems with this approach. The main
one is that the Treasury STRIPS market is less
liquid than the Treasury coupon market,
which means that the observed rates on
STRIPS reflect a premium for liquidity. It is
thus necessary to extract spot rates from yields
of coupon bonds of different maturities, both
in the Treasury and corporate bond markets. 

The standard methods of stripping
coupons are bootstrapping (Fabozzi [1998]) or
linear regression (Carleton and Cooper
[1976]). If for each period there is one and
only one coupon bond that matures, these
techniques generate a unique set of spot rates
over the periods. If there are no bonds that
mature for some periods, however, or if there
are several bonds that mature at the same time,
then there are not unique answers, and in
some cases the techniques give rise to rates
with unacceptable features, particularly in the
case of risky bonds. 

Jarrow, Lando, and Turnbull [1997],
for example, use these methods to strip out the
risky zero-coupon bond prices, and point out
several mispricings, such as five-year AA zero-
coupon bonds priced above five-year AAA
zero-coupon bonds, and four-year B zero-
coupon bonds priced below five-year B zero-
coupon bonds. The authors attribute these
mispricings to the noise of the data and the call
features of some bonds. 

These mispricings are bothersome,
because it becomes difficult to estimate the
parameters in the credit bond pricing models.
There has been a resurgence of interest in
such models, as they not only give investors a
clear indication of current market perceptions
of the riskiness of particular bonds, but are also
a stepping stone to pricing many credit-sen-
sitive fixed-income derivatives, such as callable
and putable bonds, caps and floors, and mort-
gage-backed securities. 

Jarrow and Turnbull [1998], for exam-
ple, derive the default probabilities of risky
bonds by combining a default process with an
interest rate model. They apply the Black-
Derman-Toy model to build a recombined
binomial short rate tree, then combine it with
the default process to form a larger tree for
credit-risky bonds, and finally obtain default
probabilities by forward and backward induc-
tion methods. 

To remedy the mispricing caused by
bootstrapping, Thomas, Allen, and Morkel-
Kingsbury [1998] suggest using linear pro-
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gramming to strip out risky zero-coupon bond prices.
This produces the same spot rates as the bootstrapping
technique if there is one and only one coupon bond that
matures for each period, but is always able to ensure that,
for the same maturity the higher-rated zero-coupon bond
is priced above the lower-rated zero-coupon bond, and
for the same credit rating the shorter-maturity zero-
coupon is priced above the longer-maturity zero-coupon
bond. 

Although the LP formulation avoids the difficul-
ties encountered in Jarrow, Lando, and Turnbull [1997],
other problems have crept in. The main one is that the gap
between zero-coupon bond prices of different credit rat-
ings widens and then narrows as time goes by, which
means the forward rate of higher credit-rated zero-coupon
bonds is higher than that of lower credit-rated zero-
coupon bonds. Such a result again suggests that there are
potential arbitrage opportunities. 

We suggest a new linear programming formulation
to strip out risky zero-coupon bond prices that resolves
these problems. First, we use an extension of the origi-
nal LP approach to strip Treasury bonds, which works
whatever the current date, coupon dates, and sampling
dates. Then we introduce a new LP formulation for strip-
ping the coupons from risky corporate bonds that ensures
that the spreads increase over time. 

We discuss how the LP formulation can be mod-
ified to deal with liquidity issues and extend it to arbitrary
time intervals between the sampling points at which the
zero-coupon bond price is calculated. There is a con-
nection between the zero-coupon bond prices obtained
by the LP formulation and the default probabilities that
the market is imputing to the risky corporate bonds. 

I. TREASURY STRIPS PRICES

To derive pure discount bond prices v0(t) of risk-
free zero-coupon bonds paying 1 at a set of prechosen
times t = 0, 1, ..., T, we use the observed market prices
of N0 bonds to solve the linear programming problem: 

(1)

v0(t) ³ [1 + m(t)]v0(t + 1)

LP Minimize a b

subject to P a c t v t b
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ai, bi ³ 0

for i = 1, ..., N0 and t = 0, 1, ..., T – 1, where Pi is the
present value of the bond i; ci(t) is its cash flow at time t;
v0(0) = 1; and m(t) is the minimum expected forward rate
from t to t + 1. 

The first constraints seek to match the present
value Pi to the discounted cash flows ci(t), and ai and bi are
the mispricing errors. ai is positive and bi = 0 if the price
is “too low”; bi is positive and ai = 0 if the price is “too
high.” The second constraint ensures that there is no
mispricing with respect to maturity. (When m(t) = 0, the
constraint corresponds to saying bonds of longer maturity
should be priced lower than those of shorter maturity.) 

The cash flow ci(t) is decided by the coupon pay-
ment, coupon date, sampling date, and current date. As
an example, assume t1, t2, ..., tT are fixed semiannual sam-
pling dates. A bond pays a coupon c every six months with
a principal F and a maturity date before or at time tT; there
is one cash flow in each sampling period. Let vi be the
price of the risk-free zero-coupon bond paying 1 at time
ti. Assume a is the proportion of the time between a
coupon date and the next sampling date compared with
the time between two sampling dates (therefore a is a
number between 0 and 1). Let b be the proportion of a
sampling interval between the current date (when the
market price of the bond is observed) and the next sam-
pling date. 

There are two cases to consider:

1. There is no coupon payment between the current
date and the next sampling date.

2. There is one coupon payment. 

In the first case, we have a ³ b, and the relation
between the market price and the future cash flows is
approximated by: 

P = PC + (a – b)c 

= acv1 + cv2 + ... + 

cvT–2 + (c + aF)vT–1 + (1 – a)(c + F)vT (2)

Here P is the present value, PC is the “clean” mar-
ket price, and (a – b)c is the accrued interest. We have
split each coupon payment and the principal into two
parts. One ac is paid at the previous sampling date, and
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one (1 – a)c is paid at the subsequent sampling date. In
the second case, we have a < b and the resulting equa-
tion is 

P = PC + (1 + a  – b)c 

= (a/b)c + [a + (b  – a)/b]cv1 + cv2 + ... +

cvT–2 + (c + aF)vT–1 + (1 – a)(c + F)vT (3)

Here (1 + a  – b)c is the accrued interest. 
Note that the two equations are basically the same

except for the cash value at the present date and the cash
paid out at t1. In the case of a = 0 and b = 1 (the cur-
rent date is the sampling date, and the next coupon pay-
ment is on the next sampling date), we have a very simple
equation:

PC = cv1 + ... + cvT–1 + (c + F)vT (4)

This set of timings leads to the special case of LP1
where, if bond i has coupon ci and principal Fi,

ci(t) = ci for t = 1, 2, ..., T – 1

and

ci(T) = ci + Fi (5)

For more general current dates, we have that if a
³ b, then the cash flows are 

ci(1) = aci

ci(t) = ci for  t = 2, ...,T – 2 (6)

ci(T – 1) = ci + aFi

and

ci(T) = (1 – a)(ci + Fi) 

For a < b with t0 the current date, the cash flows are 

ci(0) = (a /b)ci

ci(1) = [a + (b  – a)/b]ci

ci(t) = ci for t = 2, ..., T – 2 (7)

ci(T – 1) = ci + aFi

and

ci(T) = (1 – a)(ci + Fi)

The proof of Equations (2) and (3) is given in the
appendix, with some other cases. 

We use 113 Treasury bonds in the market on
February 7, 2000, with maturity dates up to the second
half of 2008. Data come from Datastream. Since coupons
are paid semiannually, we choose a six-month time inter-
val for a period, and set the sampling dates on May 15 and
November 15. 

Exhibit 1 is the stripped Treasury zero-coupon
bond prices v(t) on February 7, 2000, given by LP1. We
apply pricing Equations (2) and (3) to model the cash flows
and market prices. The last column is the observed U.S.
STRIPS prices on the same day from Datastream. 

The total error between the market prices and
the estimated prices is 2.13, and the total market value of
these bonds is 7163. So the relative error is less than
0.03%, a very good fit. The results are exactly the same
for several different minimum forward rates m(t) from 0
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E X H I B I T 1
U.S. Treasury Zero-Coupon Bond Prices

Date LP1 Price Yield (%) U.S. STRIPS

05/15/00 0.9849 5.60 0.9854 
11/15/00 0.9539 6.12 0.9548 
05/15/01 0.9213 6.44 0.9215 
11/15/01 0.8898 6.59 0.8904 
05/15/02 0.8604 6.62 0.8629 
11/15/02 0.8320 6.63 0.8363 
05/15/03 0.8040 6.67 0.8060 
11/15/03 0.7791 6.62 0.7795 
05/15/04 0.7528 6.65 0.7526 
11/15/04 0.7256 6.72 0.7239 
05/15/05 0.7017 6.72 0.7018 
11/15/05 0.6784 6.72 0.6789 
05/15/06 0.6556 6.73 0.6564 
11/15/06 0.6350 6.71 0.6359 
05/15/07 0.6158 6.67 0.6136 
11/15/07 0.5957 6.66 0.5974 
05/15/08 0.5785 6.62 0.5742 
11/15/08 0.5608 6.59 0.5560



to 0.03, which implies that the choice of m(t) is fairly
robust. Comparing the result with the observed U.S.
STRIPS prices, we see they are very close. 

II. RISKY ZERO-COUPON BOND PRICES

Suppose bonds are classified according to their
riskiness into ratings from 1 to M. The bond rated 1 has
the highest quality and the lowest default risk, and the
bond rated M has the lowest quality and the highest
default risk. Suppose there are N bonds observable in the
market. Bond i has present value Pi, maturity date Ti, cash
flows ci(t) for t = 1, 2, ..., Ti, and credit rating d(i).
Define ci(t) = 0 for i = T1 + 1, ..., T where T is the
longest-maturity date among N bonds. Suppose for the
class of bonds with credit rating j the price of a bond
stripped of its coupons paying 1 at date t is vj(t) for t = 1,
..., T. 

To construct these term structures of spot rate
curves of credit-risky bonds, assuming we have already cal-
culated the zero-coupon Treasury bond prices v0(t), t =
1, 2, ..., T, we can formulate and solve the linear pro-
gramming problem:

(8)

vj(t + 1) – vj+1(t + 1) ³ vj(t) – vj+1(t)

ai, bi ³ 0

for i = 1, ..., N, j = 0, ..., M – 1, and t = 0, 1, ..., T – 1,
where vj(0) = 1. 

The inequalities vj(t + 1) – vj+1(t + 1) ³ vj(t) –
vj+1(t) are used to characterize these bond properties: The
price of a longer-maturity bond is cheaper than that of a
shorter-maturity bond, and the price of a higher-rated
bond is higher than that of a lower-rated bond. The first
condition is satisfied by rewriting the constraint as vj+1(t)
– vj+1(t + 1) ³ vj(t) – vj(t + 1) and repeatedly applying it
from rating j to 0 using the fact that v0(t) – v0(t + 1) ³ 0.
The second condition is satisfied by repeatedly applying
the constraint from time 0 to t since vj(0) – vj+1(0) = 1 –
1 = 0. 

The constraint actually conveys more informa-
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tion. It says that the forward rates of higher-rated bonds
are lower than those of lower-rated bonds. This will
become clear when we study default probabilities of
credit-risky bonds later. 

We downloaded the list of U.S. industry corporate
bonds on February 7, 2000, from Datastream, which
provides information on S&P rating, amount issued,
amount outstanding, next call date, and last date price
changed, as well as all standard bond information. We use
twenty-six AA bonds, thirty-two A bonds, and thirty-two
BBB bonds with maturity up to November 15, 2005
(six years), after excluding bonds that are unrated, or
have call options embedded, or have different issuing
amount and outstanding amount, or have not been traded
for at least two months, or are of market value less than
100,000. The last two criteria try to remove bonds whose
prices may be irrelevant because of illiquidity. We do not
include AAA, BB, or B bonds either, as there are relatively
few such bonds available. 

Exhibit 2 shows the corporate pure discount bond
prices derived using the linear programming model with
the Treasury pure discount bond prices as reference v0(t).
The last three columns are the yield spreads between the
Treasury bonds and the corporate bonds (in basis points).

The increasing gap between risk-free and risky
bond prices indicates the increasing default risks over
longer terms. The relative errors of LP prices and observed
market prices are 0.25% for AA bonds, 0.41% for A
bonds, and 1.16% for BBB bonds. The increased errors
may be partly due to the ripple effects of higher-rated
bond pricing errors. We do not need to calculate the Trea-
sury bonds and the corporate bond prices separately, but
can calculate their zero-coupon prices in the same LP
problem. This incorporates the constraints of LP1 and LP2
into

(9)

v0(t) ³ [1 + m(t)]v0(t + 1)

vj(t + 1) – vj+1(t + 1) ³ vj(t) – vj+1(t)

ai, bi ³ 0
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for i = 1, ..., N0 + N, j = 0, 1, ..., M – 1, and t = 0, 1,
..., T – 1. 

III. LIQUIDITY ISSUES

The objective of a linear programming model is to
minimize the sum of all under/over errors. Such a for-
mulation indicates all bonds are treated equally. Yet the
issue amount of each bond may be quite different, from
hundreds of thousands of dollars for a corporate bond to
tens of millions of dollars for a Treasury bond. This has
a significant impact on the liquidity of individual bonds.
If the amount outstanding of a bond is small (the bid-ask
spread tends to widen (to compensate for possible illiq-
uidity), which may result in higher/lower bond prices than
for other more liquid bonds. Therefore, we should treat
each bond differently depending on its liquidity. 

One way to do this is to use the amount out-
standing information of all bonds in the market, which is
readily available from financial information services such
as Datastream. If some bonds have much lower amounts
outstanding than other bonds, we may treat them as illiq-
uid and remove them from the data set. This approach is
easily implemented by setting a threshold value and
removing any bonds whose amount outstanding is below
that value. 

This is the method we have used so far. For the
Treasury bonds, the cutoff point is set to be $10 million,
which is less than the amount outstanding of most Trea-

sury bonds. For corporate bonds the cutoff point is
$100,000. This approach retains most liquid bonds while
removes some possibly illiquid bonds. 

The disadvantage of this approach is how to choose
a threshold value. This problem can be easily solved by
reformulating the LP model. Instead of the simple sum of
under/over errors of the objective function, we can use
the weighted sum of under/over errors. The weight of a
bond is the proportion of its amount outstanding to the
total amount outstanding of all bonds in the market. 

To write out this idea mathematically, suppose
there are N bonds to be used to derive pure discount bond
prices, and bond i has amount outstanding Mi. Then the
objective function is defined as

(10)

where weights wi = Mi/M and M = M1 + ... + MN. 
The obvious advantage of this approach is that we

do not need to set a threshold value to remove possible
illiquid bonds. If a bond has a smaller amount outstand-
ing, its weight is also small compared to other bonds. Since
weights act as penalty costs in the objective function, the
LP model will try to minimize errors of the bonds with
greater weights and pay less attention to those with smaller
weights. This in turn removes the effect of bonds with
small amounts outstanding. 

Exhibit 3 shows the Treasury pure discount bond
prices using the weighted LP model and all relevant Trea-
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E X H I B I T 2
Risky Zero-Coupon Bond Prices and Yield Spreads

Bond Prices Yield Spreads (bp)
Date Treasury AA A BBB AA A BBB

05/15/00 0.9849 0.9831 0.9831 0.9828 67 67 76
11/15/00 0.9538 0.9478 0.9478 0.9476 82 82 85
05/15/01 0.9214 0.9153 0.9134 0.9109 52 68 90
11/15/01 0.8898 0.8837 0.8818 0.8748 38 51 95
05/15/02 0.8604 0.8503 0.8483 0.8414 52 62 98
11/15/02 0.8320 0.8122 0.8103 0.8034 87 96 127
05/15/03 0.8040 0.7842 0.7823 0.7753 76 84 111
11/15/03 0.7791 0.7551 0.7531 0.7462 83 90 115
05/15/04 0.7528 0.7252 0.7212 0.7143 87 100 123
11/15/04 0.7256 0.6980 0.6940 0.6871 81 93 114
05/15/05 0.7017 0.6737 0.6697 0.6545 77 88 132
11/15/05 0.6784 0.6386 0.6346 0.6194 105 115 158



sury bonds. We note that 90% of pricing errors are caused
by 30% of the most illiquid bonds. The prices derived
from the two LP models are remarkably close, which
may be because a threshold value is used in the original
LP model. 

IV. SAMPLING INTERVALS

So far we have dealt with six monthly intervals
between the sampling dates, but we might want to have
finer sampling dates for the near future and sparser ones
for the distant future. The general pricing equations can
be extended to allow for this as follows. For each cash flow
ck at time sk, we can find two adjacent sampling dates tn

and tn+1 such that sk lies in between. Define

(11)

Then the discount factor v~ k at time sk can be approximated
as

v~ k = akvn + (1 – ak)vn+1 (12)

The present value of all cash flows is the sum of ckv~ k,

ak
n k

n n

t s
t t

= -
-

+

+

1

1

which then leads to a pricing equation. 
Suppose the sampling periods are six months for

the first five years, and then one year for the next ten years.
If a bond has three years to maturity, no change is required.
If a bond has ten years to maturity, then in the first five
years, the contributions of each cash flow to its adjacent
sampling dates are 1 – a and a, respectively. From year
six, there are two cash flows in each interval. The con-
tributions of the first cash flow to its adjacent sampling
dates are (1 + a)/2 and (1 – a)/2, respectively; those of
the second cash flow are a/2 and (2 – a)/2, respectively.
This approach can simplify derivation of discount factors
for bonds covering very long periods. 

For the same bond data as above, we use semian-
nual intervals for years 2000 to 2003, and annual intervals
for years 2004 to 2008. The results, given in Exhibit 4,
are very similar to the equal sampling period results.

V. DEFAULT PROBABILITIES

We have described a way of constructing theoret-
ical Treasury and corporate pure discount bond prices
from the observed coupon bond prices. The yield spread
between Treasury STRIPS and corporate strips represents
the premium of several risk factors, e.g., default risk, liq-
uidity risk, sector risk. To simplify matters, we assume the
yield spread is due purely to default risk. This assumption
obviously exaggerates the default risk, but it makes cal-
culation of default probabilities easier, and at least it gives
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E X H I B I T 3
Bond Prices Using Weighted LP Models

Date LP Price Weighted LP U.S. STRIPS

05/15/00 0.9849 0.9849 0.9854 
11/15/00 0.9539 0.9539 0.9548 
05/15/01 0.9213 0.9214 0.9215 
11/15/01 0.8898 0.8898 0.8904 
05/15/02 0.8604 0.8604 0.8629 
11/15/02 0.8320 0.8322 0.8363 
05/15/03 0.8040 0.8038 0.8060 
11/15/03 0.7791 0.7791 0.7795 
05/15/04 0.7528 0.7528 0.7526 
11/15/04 0.7256 0.7256 0.7239 
05/15/05 0.7017 0.7022 0.7018 
11/15/05 0.6784 0.6783 0.6789 
05/15/06 0.6556 0.6555 0.6564 
11/15/06 0.6350 0.6354 0.6359 
05/15/07 0.6158 0.6158 0.6136 
11/15/07 0.5957 0.5957 0.5974 
05/15/08 0.5785 0.5785 0.5742 
11/15/08 0.5608 0.5604 0.5560

E X H I B I T 4
Bond Prices Using Varying Sampling Intervals

Semiannual
Date Price Yield (%) Price

05/15/00 0.9849 5.60 0.9849 
11/15/00 0.9539 6.12 0.9539 
05/15/01 0.9213 6.44 0.9213 
11/15/01 0.8898 6.59 0.8898 
05/15/02 0.8604 6.62 0.8604 
11/15/02 0.8320 6.63 0.8320 
05/15/03 0.8040 6.67 0.8040 
11/15/03 0.7791 6.62 0.7791 
05/15/04 0.7256 6.72 0.7256 
11/15/05 0.6784 6.72 0.6784 
05/15/06 0.6348 6.71 0.6350 
11/15/07 0.5967 6.64 0.5957 
05/15/08 0.5608 6.59 0.5608



the upper bound of the risk perceived by the market. 
Suppose the Treasury STRIPS prices v0(t) and the

corporate zero-coupon bond prices vi(t) are given, where
i is the credit rating. If a company defaults before its
bond matures, then a proportion d (the recovery rate) of
the face value, discounted by the remaining years to
maturity, is given to bondholders. This is the assumption
that most authors make (Jarrow and Turnbull [1998], for
example). (We assume the recovery rate is the same for all
bonds, whether AAA bonds or C bonds, for simplicity.
This assumption can be relaxed to make d credit-rating
dependent.) 

Denote Qi
k and Pi

k as the cumulative default and
survival probabilities of a bond currently rated i at the end
of period k, respectively, and let qi

k and pi
k be the marginal

default and survival probabilities in period k. Then,
because if a t maturity zero-coupon bond does not default
at all it is worth v0(t), while under the assumption above
if it does default it is worth dv0(t), one has 

vi(k) = (1 – Qi
k )v0(k) + Qi

k dv0(k)

or

(13)

for k = 1, 2, ... . The other probabilities can be easily com-
puted using the relations

Pi
k = 1 – Qi

k

pi
k = Pi

k /Pi
k–1

qi
k = 1 –  pi

k (14)

for k = 1, 2, ..., where Pi
0 = 1, i.e., a risky bond is not in

default at time 0. 
Exhibit 5 lists default probabilities derived with

Equations (13) and (14) for an example in Jarrow and
Turnbull (1998). The recovery rate d is assumed to be 0.4. 

The result is the same as that Jarrow and Turnbull
[1998] derive by building an interest rate tree as well as a
default tree. The significance of these recursive formulas
is twofold. They provide a quick way to compute default
probabilities, and they illustrate the independence between
default probabilities and interest rate models. The two
issues are decoupled. 
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For the Treasury and corporate zero-coupon bond
prices derived in Exhibits 1 and 2, we can quickly com-
pute the cumulative and marginal default probabilities.
The results are shown in Exhibit 6.

Marginal or cumulative default probabilities that are
negative or greater than 1 clearly indicate that there are
mispricings of zero-coupon bonds. The LP formulation
ensures that this will not happen. 

VI. CONCLUSION

We have shown that linear programming can be
used to strip coupons for both Treasury and corporate
bonds. The advantages of the LP approach are that there
is no mispricing and the spread structure is built into the
model. Real data can be easily analyzed since the LP for-
mulation works whatever the current date, coupon dates,
and sampling dates. The weighted LP model can be used
to deal with data that may include some less liquid bonds.
Finally, default probabilities of risky bonds perceived by
the market can be easily calculated without relying on any
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E X H I B I T 5
An Example by Jarrow and Turnbull [1998]

k v0(k) vi(k) qi
k Qi

k

1 0.953921 0.950486 0.0060 0.0060
2 0.906264 0.897056 0.0110 0.0169
3 0.857820 0.841008 0.0160 0.0327

E X H I B I T 6
Default Probabilities of Risky Bonds

Marginal Default Cumulative Default
Probabilities Probabilities

Date AA A BBB AA A BBB

15/05/00 0.0030 0.0030 0.0035 0.0030 0.0030 0.0035 
15/11/00 0.0075 0.0075 0.0075 0.0105 0.0105 0.0109 
15/05/01 0.0004 0.0040 0.0081 0.0109 0.0144 0.0189 
15/11/01 0.0004 0.0005 0.0091 0.0113 0.0149 0.0278 
15/05/02 0.0083 0.0084 0.0089 0.0195 0.0232 0.0365 
15/11/02 0.0202 0.0204 0.0208 0.0393 0.0431 0.0566 
15/05/03 0.0014 0.0016 0.0020 0.0407 0.0446 0.0585 
15/11/03 0.0105 0.0106 0.0111 0.0508 0.0548 0.0690 
15/05/04 0.0097 0.0143 0.0149 0.0600 0.0683 0.0828 
15/11/04 0.0023 0.0027 0.0032 0.0622 0.0708 0.0858 
15/05/05 0.0031 0.0034 0.0238 0.0650 0.0740 0.1075 
15/11/05 0.0313 0.0316 0.0336 0.0943 0.1033 0.1375



interest rate models. 

A P P E N D I X
Proof of Equations (2) and (3)

There are only two cases need to be considered: 1) there
is no coupon payment between now and the next sampling
date, and 2) there is a coupon payment between now and the
next sampling date. The sampling dates (from the next one) are
labeled as t = 1, 2, ..., T. 

The first case corresponds to a ³ b. The present value
of all cash flows of a bond is equal to the sum of c~ (t)v~ (t) over
all t from 1 to T – 1, where c~(t) is the cash flow, and v~(t) is the
discount factor at time t. Using linear interpolation, we can
write the value of v~ (t) as a combination of repayments at t and
t + 1

v~ (t) = avt + (1 – a)vt+1

for t = 1, ..., T – 1. Therefore the principal value PV satisfies

PV = c~(1)v~ (1) + ... + c~(T – 1)v~ (T – 1) 

= c(av1 + (1 – a)v2) + ... + (c + F)(avT–1 + (1 – a)vT)

= acv1 + cv2 + ... + cvT–2 + (c + aF)vT–1 + (1 – a)(c + F)vT

The accrued interest is taken in the market to be (a  –
b)c, and the general equation for bond prices is given by

MP + AI = PV

where MP is the market (clean) price of the bond. Substitut-
ing the accrued interest and the present value into the equation,
we obtain the first pricing equation. 

The second case corresponds to a < b. The present
value of all cash flows of a bond is equal to the sum of c~(t)v~ (t)
over all t from 0 to T – 1. The discount factors v~ (t) can be com-
puted the same as above for t = 1, ..., T – 1. In computing v~

(0), however, we must remember that the time interval from
now to the first cash flow is b  – a, and the time interval from
now to the next sampling date is b, so linear interpolation gives 

If there is only one cash flow in the future, then

PV c F c F v= + + - +a
b

b a
b

( ) ( ) 1

ṽ v0 1= + -a
b

b a
b

If there are two cash flows in the future, then

If there are three or more cash flows in the future, then

The accrued interest is equal to (1 – b  + a)c. Substi-
tuting everything into the general equation for bond price
gives the second pricing equation.

ENDNOTE

The authors are grateful to Datastream for the data and
to Nigel Morkel-Kingsbury for advice on extracting the data. 
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