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1 An example

We deal with the following simple, but fundamental, issue: Find the zero-curves asso-
ciated with a given portfolio. The term zero-curve is used here in a generic sense to
designate any one of the following financial curves, spot rates, forward rates, discount
factors and discount rates, since any one of these curves completely determines the oth-
ers.

Zero-curves are the corner stone to practically all valuations of financial instruments.
So, it may come as a surprise that the zero-curves associated with a well-defined port-
folio, derived using different methodologies, might vary significantly? This can best be
illustrated by an example: On their web-site, TechHackers describes a portfolio that
includes Eurodollar Deposits, Eurodollar Futures and Swaps from June 10, 1997. The
four pairs of Spot and Forward Rate curves in Figure 1 are derived using three different
implementations of the BootStrapping approach and a novel approach, EpiCurves, laid
out in this paper and implemented by EpiSolutions Inc. (www.episolutionsinc.com)
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Figure 1: Spot and Forward Rate curves: Four different functionalities
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At this point one might wonder if one should have any confidence in any one of these
pairs! There are even noticeable differences between the Spot Rate curves. To under-
stand the underlying reasons for these differences, one needs to examine the hypotheses
under which these zero-curves were obtained. To do so, let’s begin with an overview of
the BootStrapping methodology.

2 BootStrapping

The valuation of fixed-income securities, and derivatives written on fixed-income secu-
rities, requires an estimation of the underlying risk-free term structure of interest rates.
In principle, the term structure of interest rates is defined by a collection of zero-coupon
bond prices (and their respective maturities), spanning the horizon over which a fixed-
income security is to be valued. However, unless a zero-coupon bond exists for every
maturity for which a discount factor is desired, some form of estimation will be required
to produce a discount factor for any ‘off-maturity’ time. In practice, zero-coupon bond
prices are available for a limited number of maturities (typically ≤ 1 year). If zero-
coupon bonds for other maturities are available, a lack of liquidity may prevent the
determination of an accurate or reliable price. As a result, the zero-curve is typically
‘built’ from a combination of liquid securities, both zero-coupon and coupon-bearing, for
which prices are readily available. This can include Treasury Bills, Deposits, Futures,
Forward-Rate Agreements, Swaps, Treasury Notes and Treasury Bonds. The list need
not be limited to the securities just noted, though current vendor solutions are limited
to these securities. Given a spanning set of securities, the zero-curve is then built using
one of two forms of BootStrapping.

Under one BootStrapping method, the first step is to construct a larger set of spanning
securities, by creating an ‘artificial’ security that matures on every date for which a cash
flow is expected, and on which no security in the original set matures. For example,
given a 5-year and a 6-year swap (paying semi-annually), a 5.5-year swap would be con-
structed, with a fixed-rate somewhere in between (based on some sort of interpolation)
the fixed-rates for the 5-year and the 6-year swaps. Then, ‘standard’ BootStrapping may
be applied to the expanded set of securities, giving discount factors for each maturity
and cash flow date in the security set.

Another BootStrapping approach, is to make an assumption about how the instan-
taneous (or periodic) forward rates evolve between maturities in the security set. One
assumption might be that forward rates stay constant between maturities, another might
be that they increase or decrease in a linear fashion. Whatever the form of the forward
rate evolution, some assumption must be made. Under this approach, instead of solving
for a single discount factor for each successive security, a forward rate (or a parameter
governing forward rate evolution) is solved for that will give the appropriate discount
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factor(s) between two maturity dates. For the example of the 5-year and 6-year swaps,
given that the discount factors through the 5-year maturity have already been calcu-
lated, a forward rate is determined for the period between 5 and 6 years, which gives
a 5.5-year discount factor and a 6-year discount factor that (when combined with the
previous discount factors) will value the fixed side of the 6-year swap at par.

The results of either approach ‘look’ somewhat similar, a set of discount factors and
corresponding dates spanning the horizon from today to the last maturity date in the
security set. However, when using this set of discount factors as a basis for the valua-
tion of other fixed-income securities, it will rarely be true that the cash flows of these
securities will fall directly on the discount factor dates of the newly created zero-curve.
In this case, a discount factor or a zero-coupon rate must be interpolated from the zero-
curve. Typically available interpolation methodologies for this include linear, log-linear,
exponential, cubic-spline, or any of a number of variations on fitting the zero-curve with
a polynomial.

As long as two securities do not share a maturity date, any combination of securities
may theoretically be used in constructing a zero-curve, even with the BootStrapping
methodology. A limitation of currently available technology, is that the user must typi-
cally ‘switch’ from one security type to another during the BootStrapping process. For
example, given a set of deposits, futures, and swaps, the currently available methods will
not allow for inclusion of a deposit and a futures contract, where the underlying deposit
maturity date of the futures contract is prior to the maturity date of the deposit (simi-
larly, no ‘overlap’ is allowed between futures contracts and swaps). In practice, this may
not be a severe limitation, as users may very well wish to describe different ‘sections’ of
the zero-curve using certain types of securities. Almost all commercially available zero-
curve construction technologies rely on a form of BootStrapping, in combination with a
variety of interpolation methods. Furthermore, they are limited to using certain types
of securities, and are also limited in the ways in which these securities may be combined.

DFS-Portfolio (Deposits, Futures and Swaps): Let’s now return to the example found
on the TechHackers web-site. A detailed description of the portfolio is given in Tables
1–3 in the Appendix, but at this point at brief description will suffice. There are 36
instruments in the full data set, broken down as follows: 6 Eurodollar Deposits with
term-to-maturities ranging from overnight to 12 months, 24 Eurodollar Futures with
90-day deposit maturities ranging from 3 months to 6 years, and 6 Swaps with term-
to-maturities ranging from 2 to 10 years. The yields of the deposits vary from 5.55%
to 6.27% with the higher yields corresponding to those with larger maturity. Similarly,
the 24 futures have yields that vary from 5.89% to 7.27%. And the yields for the swaps
vary from 6.20% to 6.86%, again with the yields increasing as maturities get larger.
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BootStrapping Sub-portfolio. In this example, there is overlap between the ma-
turity dates for the EuroDollars Deposits (1 day, 1 month, 2 m., 3 m., 6 m., 12 m.)
and the EuroDollars Futures (3 months, 6+ m., 9 m., 12 m., 15 m., . . . ). Thus not all
instruments can be included in a ‘BootStrapping sub-portfolio.’ One possible choice, the
default setting for one of the Financial Providers, is to switch from Eurodollar Deposits
to Eurodollar Futures at the earliest possible time (which simply means using the first
available Futures contract). The same idea is employed when switching from Eurodollar
Futures to Swaps – the first available Swap is used. Of course the user may choose
any time they wish for making these switches, the point is that they must be made
somewhere along the line. The data set used to generate the ‘BootStrapping portfolio’
is a subset of the full DFS-Portfolio data set with switches set to include the first 5
Eurodollar Deposits, the 2nd through the 7th Eurodollar Futures contracts and all 6
Swaps – for a total of 17 instruments.

BootStrapping Results. The first two pairs of Spot and Forward Rate curves in Fig-
ure 1 are those derived from functionalities made available by two Financial Providers.
Although all the Spot Rate curves appear to be relatively similar (except for the time
span from month 20 to month 25), the Forward Rate curves are quite dissimilar. Of
course, this can be traced back to the different BootStrapping implementations that rely
on different strategies described earlier.

The implementation of the BootStrapping technique at EpiSolutions Inc. –based on the
simple precept that the instantaneous forward rates are constant between (adjacent)
maturity dates— for the DFS-Portfolio yields the pair of zero-curves in Figure 2.

0 20 40 60 80 100 120

0.06

0.08

months

ra
te

s

EpiSolutions, Inc.
BootStrap         

Forward Rates 

Spot Rates 

Figure 2: EpiSolutions Inc.-BootStrapping for BootStrapping Portfolio
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3 Guiding principles

These ‘variations’ between these zero-curves are bound to be somewhat disturbing, but
more unsettling is the fact that only 17 of the 36 instruments were used in deriving
them. As already indicated earlier, the standard BootStrapping methodology shackles
us with a portfolio with ‘no overlapping maturities’. A sub-portfolio must be selected,
and the choice of instruments to include in this sub-portfolio is not necessarily unique;
in the DFS-Portfolio, it’s not unique. It’s not difficult to create a hypothetical example
of a portfolio where the ‘not-included’ instruments would yield dramatically different
zero-curves than those generated by the selected BootStrapping portfolio!

From these observations, it becomes self-evident that the only acceptable methods that
will generate ‘serious’ zero-curves must be based on the full portfolio. That’s going to
be our first guiding principle.

Because of the ‘non-overlapping condition,’ the BootStrapping implementations of Fi-
nancial Providers no.1 and no.2 can’t deal with the full data set. The implementation of
the BootStrapping by EpiSolutions Inc. does allow us to deal with the full collection of
instruments included in the DFS-Portfolio. The resulting Spot and Forward Rate curves
are those found in Figure 1 (lower left hand corner). Unfortunately, although the Spot
Rate curve might appear reasonable, the Forward Rates curve come with spikes that go
from about 5% to nearly 14% almost instanteneously! This is certainly not something
that we expect in practice. What we expect to see is an evolution of the rates that
doesn’t come with such abrupt changes. In other words, a certain level of smoothness
should be required from zero-curves. That’s going to be our second guiding principle.

The methodology of EpiCurves, to be detailed in the following sections, is guided by
these two principles (complete portfolio, smooth curves). If we run EpiCurves on the
full portfolio of the DFS-Portfolio, the resulting Spot and Forward Rate curves are in
the lower right hand corner of Figure 1.

Figure 3 allows us to make a comparison between the Spot and the Forward Rate curves
obtained via BootStrapping and EpiCurves, based on the given portfolio, not a sub-
portfolio chosen to accommodate the methodology. And because of the scaling, it’s now
possible to see that the Sport Rate curve generated by the BootStrapping method isn’t
really acceptable, either. It’s also useful to compare these results with those coming
from the BootStrapping method applied to the restricted 17-instruments BootStrapping
sub-portfolio.
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Figure 3: Comparison of Spot and Forward Rate curves.

To render the problem more manageable via BootStrapping, let’s restrict the DFS-
Portfolio to Deposits and Futures only, i.e., without the Swaps. Because of the overlap
of maturity dates, we have to use the EpiSolutions Inc. BootStrapping to make any
comparison with the EpiCurves results.
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4 Smoothness

The definition of smooth for a curve might almost be subjective, but it’s certainly appli-
cation dependent. In the world of zero-curves, one is certainly not going to be satisfied
with a ‘smooth’ Spot Rate curve, or a ‘smooth’ discount factors curve, when an as-
sociated zero-curve, for example the Forward Rate curve, is seesawing; that this can
actually occur was already pointed out in [4]. In fact, it suffices return to Figure 1 and
look at the Forward Rate curves generated by BootStrapping, even those derived from
the 17-instruments sub-portfolio.

In [1], Adams and Van Deventer rely on a criterion used in engineering applications, cf.
[3], in their derivations of Spot and Forward Rate curves with ‘maximum smoothness.’
They propose finding a forward rates curve, fw, such that for each instrument in the
portfolio:

Pi = exp

(
−

∫ ti

0

fw(s) ds

)
, i = 1, . . . , I,

where Pi is the (today’s) price and ti the maturity date of instrument i, and

∫ T

0

fw′′(s) ds is minimized,

[0, T ] is the time span in which we are interested; usually T is the largest maturity of the
instruments in the portfolio. It’s shown that the solution is a 4th order spline, certainly
smooth, whose coefficients can be easily computed; ‘maximum’ smoothness is achieved
in terms of a criterion attributed to Vasicek.

The Achilles’ heel of this approach, at least as laid out in [1], is that the only instruments
that can be included in the ‘maximum smoothness’ portfolio are zero-coupon bonds, and
zero-coupon bonds with maturities exceeding one year are extremely rare. In order to
obtain zero-curves that span more than a few months, one possibility is to fabricate ar-
tificial (long term) zero-coupon bonds that have similar financial characteristics to those
instruments found in the portfolio; this requires interpolations of some type. Moreover,
prices Pi are present day prices and so no future contracts can be included in the ‘maxi-
mum smoothness’ portfolio. Presumably, this can also be skirted by some adjustments.
In the final analysis, like for ‘standard’ BootStrapping, we have to create a sub-portfolio
and then enrich it by artificial instruments in order to be able to apply the suggested
method.

From our previous examples and analysis, it’s clear that if one is going to derive zero-
curves by taking into account more than just a few well chosen instruments, and one
is going to aim at an acceptable level of smoothness, there is going to be a ‘price’ to
pay for this. In Function Theory, the smoothness of a curve is identified in terms of
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the number of times it’s continuously differentiable. A curve z : [0, T ] → IR is said to
be of class Cq if its qth derivative is continuous. So, if z is of class C2 it means that
it can be differentiated twice and the second derivative is continuous. If it’s of class
C0 then z is just continuous, and if it’s of class C∞ then all derivatives, of any order,
exist and are continuous. It’s evident that C0 ⊃ C1 ⊃ · · · ⊃ C∞. In those terms, one
might wish the zero-curves to be of class C∞, but it’s evident that this is a much smaller
family of curves than those that are just continuous, or just continuously differentiable
(C1). And consequently, by insisting that our zero-curve be of class C∞, we might very
well have excluded those curves that have the ‘accuracy’ properties we are looking for.
Consequently, usually, we have to be content with smooth curves that are less than
infinitely smooth.

5 EpiCurves

EpiCurves come from a large, but specific, sub-family of curves that are of class Cq for
some q = 1, 2, . . . . To simplify the presentation, let’s suppose that we are interested in
finding a C2-curve. Every C2-curve on [0, T ] can be written as

z(t) = z0 + v0t +
1

2
a0t

2 +

∫ t

0

∫ τ

0

x(s) ds dτ, t ∈ [0, T ],

where

• x : (0, T ) → IR is an arbitrary piecewise continuous function that corresponds to
the 3rd derivative of z;

• a0, v0, z0 are constants that can be viewed as integration constants

Once the function x (3rd derivative) and the constants a0, v0, z0 have been chosen, the
function z is completely determined.

Now, let’s go one step further. Instead of allowing for any choice for x, let’s restrict
the choice of x to piecewise constant functions of the following type: split [0, T ] into
N sub-intervals of length 1/N and let the function x be constant on each one of these
intervals, and defined as follows: for k = 1, . . . , N ,

x(t) = xk, when t ∈ (tk−1, tk],

where t0, t1, . . . , tL are the end points of the N sub-intervals. The corresponding curve
z on [0, T ] is completely determined by the choice of

a0, v0, z0 and x1, x2, . . . , xN ,
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i.e., by the choice of a finite number of parameters, exactly N + 3.

Namely, for k = 1, . . . , N , t ∈ (tk−1, tk] with δ = 1/N and τ = t− tk−1,

z(t) = z0 + v0t +
1

2
a0t

2 +
τ 3

6
xk

+
k−1∑
j=1

xj

[
δ3

2

(1

3
+ (k − j − 1)(k − j)

)
+ δ2τ(k − j − 0.5) +

δτ 2

2

]
,

z′(t) = v0 + a0t +
k−1∑
j=1

xj

(
δ2(k − j − 0.5) + δτ

)
+

τ 2

2
xk,

z′′(t) = a0 + δ

k−1∑
j=1

xj + τxk,

z′′′(t) = xk.

By restricting the choice of x to piecewise constant functions, the resulting z-curves are
restricted to those curves in C2 that have (continuous) piecewise linear second deriva-
tives. Let’s designate this family of curves by C2,pl where pl stands for piecewise linear;
whenever appropriate we will use the more complete designation C2,pl([0.T ], N) with
[0, T ] the range on which these curves are defined and N the number of pieces, but usu-
ally the context will make it evident on which interval these curves are defined. Clearly,
not all C2-curves are of this type. However, Approximation Theory for functions, tells us
that any C2-curve can be approximated arbitrarily closely by one whose second deriva-
tive is a continuous piecewise linear function, i.e., a curve in C2,pl([0, T ], N), by letting
N → ∞. This provides us with the justification one needs to restrict the search for
‘serious’ zero-curves to those in this particular sub-family of C2-curves.

In summary, the building of EpiCurves starts by selecting the level of smoothness desired
(z ∈ Cq), and then a zero-curve is built whose qth derivative is a continuous piecewise
linear function. This requires fixing a finite number of parameters; actually N + q + 1
parameters. If the resulting curve doesn’t meet certain accuracy criteria, the step size
(1/N) is decreased by letting N →∞.

6 Zero-curves from spot rates

To set the stage for finding the zero-curves associated with a collection of instruments
generating cash flow streams, let’s consider an EpiCurves approach to fitting spot rates
to obtain a Spot Rate curve. The data come in a pair of arrays,

s = (s1, s2, . . . , sL), m = (m1,m2, . . . , mL),
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that give us the spot rates for a collection of instruments of different maturities, for
example, Treasury Notes. The task is to find a Spot Rate curve that ‘fits’ these data
points. That’s easy enough. Assuming that m1 < m2 < · · · < mL, one could simply
derive a Spot Rate curve by linear interpolation between adjacent pairs. That’s actually
a perfect fit. Generally, this is not a ‘smooth’ curve. And, in turn, this will usually
generate a forward rates curves that can be quite jagged. So this ‘simple’ solution almost
never produces zero-curves that practitioners would consider acceptable. Of course, one
can use another interpolation method, such as via splines, that generates significantly
better results. Another possibility is to set-up an artificial portfolio with coupon-bonds
whose yields would match the given spot rates. The problem is then reduced to one of
finding the zero-curves associated with the cash flow stream of this (artificial) portfolio.
This is dealt with in the next section. But, this latter approach, found in the packages of
some financial technology providers, circles around the problem, at least one too many
times, before dealing with it.

The use of the EpiCurves technology provides an elegant solution that generates with
smooth zero-curves. The strategy is to find a Spot Rate curve of the type described in the
previous section, say again a C2,pl-curve that will match the given spot rates. One must
accept the possibility that there we won’t be able to find, for a fixed N , a C2,pl([0, T ], N)-
curve that fits perfectly the given data. So, the problem becomes one of finding the ‘best’
possible fit. Best possible can be defined in a variety of ways but it always comes down
to minimizing the ‘error’, i.e., the distance between the EpiCurves result and the given
spot rates. Mathematically, the problem can be formulated as follows:

find z ∈ C2,pl([0, T ], N) so that ‖s− z(m1 : mL)‖p is minimized ,

where z(m1 : mL) = (z(m1), z(m2), . . . , z(mL)) and ‖a‖p is the `p-norm of the vector
a. With p = 1, one would be minimizing the sum of the (absolute) errors, with p = 2
one minimize the sum of the squares of the errors, and with p = ∞, it would be the
maximum (absolute) error that would be minimized. The present implementation by
EpiSolutions Inc., has p = 1 and thus minimizes the sum of the errors, since

‖s− z(m1 : mL)‖1 =
L∑

l=1

|sl − z(ml)|.

The resulting optimization problem can then be reduced to a linear programming prob-
lem, since, as explained in the previous section, the functions z in C2,pl are completely
determined by a finite number of parameters.

To illustrate the results, let’s apply both linear interpolation and the EpiCurves technol-
ogy to obtain a Spot Rate curve that fits the spot rates (for T-bills and Treasury notes)
of October 1982:
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m = (3, 6, 12, 24, 36, 60, 84, 120, 240, 360),

s = (7.97, 8.63, 9.32, 10.19, 10.62, 10.8, 10.88, 10.91, 10.97, 11.17);

the time unit is 1 month. The Spot and Forward Rate curves can be found in Figure 5.
It’s barely possible to see the difference between the Spot Rate curves, but the difference
between the Forward rates curve is more than noticeable. The difference, of course, can
be traced back to the intrinsic smoothness of the Spot Rate curve when it’s generated
from EpiCurves.

Let also consider the case spot rates for January 1982, the maturities-array m is the
same, but now

s = (12.92, 13.90, 14.32, 14.57, 14.64, 14.65, 14.67, 14.59, 14.57, 14.22).

Running EpiCurves yields the result in Figure 6. Note that, the Forward Rates curve
is rather unsettled up to the end of year 1, it actually reflects almost perfectly the
‘unsettled’ market situation at that time (begin 1982).

11



0 50 100 150 200 250 300 350
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

months

ra
te

s 

Spot Rates 

Forward Rates 

January 1982 

Figure 6: Spot and Forward Rate curves from spot rates.

7 Zero-curves from cash flow streams

Let’s review briefly our goals and guiding principles. Given the increased complexity
of the instruments being traded, it certainly is no longer sufficient to be able to build
zero-curves based on just zero-coupon bonds. It should be possible to build the Spot
Rate curve associated with any collection of instruments, for example, AAA- or AA-
rated corporate bonds, any mixture of swaps, futures and bonds, etc. Notwithstanding
a relatively large literature devoted to zero-curves, cf. Buono, Gregory-Allen and Yaari
[2], there has never been any serious attempt at dealing with the building of zero-curves
at this more comprehensive level.

Of course, given an arbitrary collection of instruments, each one generating its own cash
flow stream, it might be possible∗ to generate, via BootStrapping for example, any one
of the zero-curves. However, as every practitioner knows all too well and as was reviewed
in §2, some of the resulting curves will be, to say the least, unwieldy, and have every
characteristic except ‘believable.’ The insistence on ‘smoothness’, cf. Vasicek and Fong
[5], Shea [4], Adams and Van Deventer [1], is motivated by the strongly held belief,
that’s also supported by historical data, that zero-curves don’t come with kinks, and
spikes i.e., extremely abrupt changes in the rates.

Keeping this in mind, the problem of generating zero-curves could be roughly formu-
lated as follows: Given a collection of instruments, each one generating a given cash flow
stream, find smooth zero-curves so that for each instrument (in the collection), the net
present value (NPV) of the associated cash flow matches its present price.

∗assuming that maturities occur at different dates
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Although this formulation allows us to include zero-coupon bonds, coupon bonds, swaps,
etc., in our collection of instruments, it doesn’t allow for futures, future swaps, etc. To
do so, let’s reformulate the problem in the following more general terms: With each
instrument i in our collection, we associate a

Time Array: (ti1, ti2, . . . , ti,Li
)

the dates, or time span, at which cash payments will occur, and a

Payments Array: (pi1, pi2, . . . , pi,Li
)

with cash flow pil received at time til, Li is the maturity date. One then interprets pil > 0
as cash received and pil < 0 as cash disbursed. For example, in the case of a coupon
bond, bought today for $100, with semi-annual $3 coupons and a two year-maturity, one
would have:

Time Array: (0, 6, 12, 18, 24),

assuming the time unit is ‘1 month’, and

Payments Array: (−100, 3, 3, 3, 103).

This allows us to include almost any conceivable instrument in our collection, as long
as it comes with an explicit cash flow stream. For example, in the case of the following
T-bill forward: A bank will deliver in 3 months from now, a 6-month Treasury bill of
face value $100, and 10% the annual forward rate for that 6 months period. The value of
such a contract would be $95.24 that would have to be paid in 3 months. This contract
would then come with the following arrays:

Time Array: (3, 9), Payments Array: (−95.24, 100).

Now, in this frame of reference, the zero-curve problem could be formulated in the fol-
lowing terms: Given a (finite) collection of instruments that generate cash flow streams,
find a discount factor curve such that

• the net present value (NPV) of each individual instrument (contract) turns out to
be 0 when all cash payments received and all disbursements are accounted for;

• all associated zero-curves (forward, spot, discount rates) are ‘smooth’.

When formulated at this level of generality, the zero-curve problem is usually not fea-
sible. In fact, it’s not difficult to fabricate an ‘infeasible’ problem. Simply, let the
collection consist of two one-coupon bonds that have the same nominal value, the same
maturity and the same price (today). Both coupons are to be collected at maturity
but have different face value. Clearly, there is no discount factor curve so that the net
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present value (NPV) of both of these cash flows turns out to be 0! Of course, this is
an unrealistic example, the financial markets wouldn’t have assigned the same price to
these two instruments; arbitrage would be a distinct possibility in such a situation. But
since we allow for any collection of instruments, there is the distinct possibility that
there are practical instances when one can’t find a ‘smooth’ discount factors curve so
that the NPV of all cash flow streams factors out to 0. So, given that we want to be
able to deal with any eclectic collection of instruments, as well as the ‘standard’ ones,
instead of asking for the NPV of all cash flow streams to be 0, we are going to ask that
they be as close to 0 as possible.

Smoothness is going to be achieved by restricting the choice of the discount factors curve
to Cq,pl, i.e., curves whose qth derivative is continuous and piecewise linear; cf. §5 for a
more detailed description of such curves. To render our presentation more concrete, and
easier to follow, we are going to proceed with q = 2.

The problem is now well defined mathematically:

find a discount factors curve: df ∈ C2,pl([0, T ], N) so that ‖v‖p is minimized .

where ‖v‖ is the `p-norm of v,

v = (v1, v2, . . . , vI), vi =

Li∑

l=1

df(til)pil;

vi is the net present value of instrument ‘i’ given that the cash flow is discounted using the
discount factors df(til). The EpiSolutions Inc., implementation relies on the `∞-norm,

‖v‖∞ = max [ |v1|, |v2|, . . . , |vI | ],

so let’s proceed with this criterion but it should be noted that one can choose any
p ∈ [1,∞) that might better represent the decision maker’s preferences or concerns. In
fact, except for extremely unusual portfolio, the differences between the solutions should
be insignificant.

Since df belongs to C2,pl([0, T ], N , it’s of the form: for k = 1, . . . , N , δ = 1/N , t ∈
(δ(k − 1), δk] and τ = t− δ(k − 1)

df(t) = 1 + v0t +
1

2
a0t

2 +
τ 3

6
xk

+
k−1∑
j=1

xj

[
δ3

2

(1

3
+ (k − j − 1)(k − j)

)
+ δ2τ(k − j − 0.5) +

δτ 2

2

]
;
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where a0, v0, x1, x2, . . . , xN are parameters to be determined; note that the discount
factor at time t = 0 is 1, so we can fix this ‘constant’ (z0). But simply being of this form
doesn’t make df a discount factors curve. We already have that df(0) = 1, we need to
add two conditions:

• df should remain non-negative, thus we have to introduce the constraints: df(t) ≥ 0
for all t ∈ [0, T ];

• df should be decreasing, at least non-increasing, this means that df ′(t) ≤ 0 for all
t ∈ [0, T ], a condition that translates into the constraints:

df ′(t) = v0 + a0t +
k−1∑
j=1

xj

(
δ2(k − j − 0.5) + δτ

)
+

τ 2

2
xk ≤ 0, ∀ t ∈ (0, T ].

Putting this all together with df as defined above, we end up with the following opti-
mization problem:

min θ

so that θ ≥
Li∑

l=1

df(til)pil, i = 1, . . . , I,

θ ≥ −
Li∑

l=1

df(til)pil, i = 1, . . . , I,

df(t) ≥ 0, t ∈ [0, T ],

v0 + a0t +
k−1∑
j=1

xj

(
δ2(k − j − 0.5) + δτ

)
+

τ 2

2
xk ≤ 0, t ∈ (0, T ],

v0 ≤ 0, a0 ≥ 0, xk ∈ IR, k = 1, . . . , N ;

the restriction v0 ≤ 0 means that df ′(0) can’t be positive, and a0 ≥ 0 says that the curve
should have positive curvature at t = 0. The constraints involving θ tell us that

θ ≥ max
i=1,...,I

[∣∣∣
Li∑

l=1

df(til)pil

∣∣∣
]

,

and by minimizing θ, we minimize the max-error; this inequality is split into 2I con-
straints so that all constraints are linear.

We have a linear optimization problem with a finite number of variables (N+3), but with
an infinite number of constraints (∀ t ∈ [0, T ]). To solve this problem, one could consider
using one of the techniques developed specifically for (linear) semi-infinite optimization
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problems. Because of the nature of the problem, however, one can safely replace the
conditions involving ‘for all t ∈ [0, T ]’ by for all t ∈ {1/M, 2/M, . . . , T/M} with M
sufficiently large; in the EpiSolutions Inc. implementation M is usually chosen so that
the mesh size (1/M) is 1 month. After this time-discretization, the problem becomes
a linear programming problem that can be solved using a variety of commercial packages.

One important component of the EpiCurves solution is that the zero-curves are defined
at every time t, there is never any need to resort to interpolations to fill in missing time-
gaps. This, of course, gives us great flexibility in choosing the right approximations
when building pricing mechanisms.

8 More examples

There remains only to ‘look’ and analyze some examples.

Bond-Portfolio. The first one is a Bond-portfolio. This data-set includes U.S. Treasury
Bill and U.S. Treasury Bond data from August 3, 2001. There are 7 instruments in all,
including 3 U.S. Treasury Bills with term-to-maturities ranging from 3 to 7 months and 4
U.S. Treasury Bonds with term-to-maturities ranging from 2 to 30 years. This data was
obtained from the Bloomberg U.S. Treasuries web page; details can be found in Table
4 in the Appendix. As a point of comparison, we use the results of the BootStrapping
technique supplied by Financial Provider no. 2; Financial Provider no. 1 BootStrapping
functionality can’t deal with a Bond-[portfolio. The results are graphed in Figure 7.
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Figure 7: Spot and Forward Rates associated with a Bonds portfolio.

DFS2-Portfolio. This next example is a relatively challenging one. The portfolio in-
cludes 51 instruments: Deposits, Futures and Swaps from August 3, 2001 with quite a
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bit of overlap of maturity-dates. A short description of the composition of this portfolio
follows here; details can be found in Tables 5–6. in the Appendix. There are 51 in-
struments in all, broken down as follows: 3 Eurodollar Deposits with term-to-maturities
ranging from 1 to 6 months, 40 Eurodollar Futures with 90-day deposit maturities rang-
ing from 4 months to 10 years, and 8 Swaps with term-to-maturities ranging from 1 to
10 years. This data was obtained from the Federal Reserve (Statistical Release H.15)
and the Chicago Mercantile Exchange (CME).
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Figure 8: Discount Factors curve for the 51-instruments portfolio

In the EpiSolutions Inc. implementation of the EpiCurves methodology, there is an
option that allows the user to fine tune the level of accuracy that will be acceptable;
accuracy being defined in terms of the max-error, i.e. in terms of the objective of the
optimization problem. Asking for a higher level of accuracy will usually result in a more
jagged curve since one must accommodate/adjust more rapidly to even small changes in
the cash flow. This is effectively illustrated by curves graphed in Figure 9. In the first
one the tolerance is 5 basis points, in the second one just 1 basis point.
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Figure 9: Variations of the zero-curves under max-error tolerance

Notwithstanding this fine tuning, EpiCurves is really the only methodology that pro-
vides ‘serious’ zero-curves associated with such a portfolio. The only BootStrapping
approach that one could rely on, if one can use the word ‘rely,’ is the one implemented
by EpiSolutions Inc. But the results are less than satisfactory. Both the Spot and the
Forward Rate curves were derived for this portfolio with the Forward Rate curve gener-
ated by BootStrapping spiking up to 30% at one point and then immediately thereafter
going negative! Both the Spot and the Forward Rate curves were derived for this port-
folio with the Forward Rate curve generated by BootStrapping spiking up to 30% at
one point and then immediately thereafter going negative! Of course, introducing a
convexity adjustment to the futures substantially improves the BootStrapping results,
although the Forward Rate curve still comes with some abrupt rate changes; note that
this convexity adjustment has only a minor effect on the EpiCurves results.
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Figure 10: Spot and Forward Rates with and without Convexity adjustments
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9 Summary

The major objective in developing the EpiCurves methodology was to overcome the
inconsistent assumptions and limitations of the standard BootStrapping technique and
its Maximum Smoothness variant. This is accomplished by allowing for inclusion of
the complete portfolio of term structure instruments, while at the same time providing
the smoothness so crucial to practitioners as the solid foundation on which to build
believable valuations, forecasts, and other financial analytics.
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10 Appendix

Settle Maturity Rate

06/10/97 06/11/97 0.054688
06/11/97 07/11/97 0.056250
06/11/97 08/11/97 0.057500
06/11/97 09/11/97 0.057344
06/11/97 12/11/97 0.058125
06/11/97 06/11/98 0.061875

Settle Maturity Rate

06/11/97 06/11/99 0.062010
06/11/97 06/11/00 0.064320
06/11/97 06/11/01 0.065295
06/11/97 06/11/02 0.066100
06/11/97 06/11/04 0.067860
06/11/97 06/11/07 0.068575

Table 1: Eurodollar Deposits Table 2: Swaps .

Delivery Maturity Price Delivery Maturity Price

06/16/97 09/16/97 94.195 06/19/00 09/19/00 93.220
09/15/97 12/15/97 94.040 09/18/00 12/18/00 93.190
12/15/97 03/16/98 93.820 12/18/00 03/19/01 93.190
03/16/98 06/16/98 93.725 03/19/01 06/19/01 93.120
06/15/98 09/15/98 93.610 06/18/01 09/18/01 93.080
09/14/98 12/14/98 93.510 09/17/01 12/17/01 93.050
12/14/98 03/15/99 93.410 12/17/01 03/18/02 92.980
03/15/99 06/15/99 93.390 03/18/02 06/18/02 92.980
06/14/99 09/14/99 93.360 06/17/02 09/17/02 92.940
09/13/99 12/13/99 93.330 09/16/02 12/16/02 92.900
12/13/99 03/13/00 93.260 12/16/02 03/17/03 92.830
03/13/00 06/13/00 93.250 03/17/03 06/17/03 92.830

Table 3: Eurodollar Futures

Settle Maturity Price

08/03/01 11/01/01 3.44
08/03/01 01/31/02 3.36
08/03/01 02/28/02 3.33

Settle Maturity Coupon Price

08/03/01 07/31/03 0.03875 99 + 30/32
08/03/01 05/15/06 0.04625 99 + 26/32
08/03/01 02/15/11 0.05000 98 + 25/32
08/03/01 02/15/31 0.05375 99 + 00/32

Table 4: Bond portfolio — U.S Treasury Bills and Bonds
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Delivery Maturity Pric Convex. Delivery Maturity Price Convex.
09/17/01 12/17/01 96.430 0.023 09/18/06 12/18/06 93.340 13.999
12/17/01 03/18/02 96.295 0.117 12/18/06 03/19/07 93.250 15.364
03/18/02 06/18/02 96.150 0.274 03/19/07 06/19/07 93.290 16.794
06/17/02 09/17/02 95.805 0.494 06/18/07 09/18/07 93.260 18.283
09/16/02 12/16/02 95.420 0.775 09/17/07 12/17/07 93.230 19.826
12/16/02 03/17/03 95.020 1.121 12/17/07 03/17/08 93.140 21.444
03/17/03 06/17/03 94.780 1.533 03/17/08 06/17/08 93.180 23.128
06/16/03 09/16/03 94.514 2.005 06/16/08 09/16/08 93.150 24.870
09/15/03 12/15/03 94.315 2.539 09/15/08 12/15/08 93.125 26.665
12/15/03 03/15/04 94.100 3.138 12/15/08 03/16/09 93.035 28.537
03/15/04 06/15/04 94.030 3.803 03/16/09 06/16/09 93.075 30.474
06/14/04 09/14/04 93.905 4.529 06/15/09 09/15/09 93.050 32.468
09/13/04 12/13/04 93.800 5.314 09/14/09 12/14/09 93.030 34.514
12/13/04 03/14/05 93.660 6.166 12/14/09 03/15/10 92.940 36.641
03/14/05 06/14/05 93.650 7.085 03/15/10 06/15/10 92.980 38.831
06/13/05 09/13/05 93.575 8.064 06/14/10 09/14/10 92.950 41.079
09/19/05 12/19/05 93.505 9.183 09/13/10 12/13/10 92.930 43.376
12/19/05 03/20/06 93.395 10.294 12/13/10 03/14/11 92.845 45.756
03/13/06 06/13/06 93.420 11.379 03/14/11 06/14/11 92.885 48.199
06/19/06 09/19/06 93.375 12.707 06/13/11 09/13/11 92.855 50.700

Table 5: 51-Instruments portfolio — Eurodollar Futures

Settle Maturity Rate

08/03/01 09/03/01 0.0366
08/03/01 11/03/01 0.0359
08/03/01 02/03/02 0.0360

Settle Maturity Rate

08/03/01 08/03/02 0.0385
08/03/01 08/03/03 0.0444
08/03/01 08/03/04 0.0491
08/03/01 08/03/05 0.0523
08/03/01 08/03/06 0.0547
08/03/01 08/03/08 0.0576
08/03/01 08/03/11 0.0598
08/03/01 08/03/31 0.0632

Table 6: 51-Instruments portfolio — Eurodollar Deposits & Swaps
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