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To The Reader

These are the notes for the course on The Mathematics of
Risk Management, given at the Annual STAM meeting for
1998 in Toronto.

Comments, suggestions, etc. will be welcome at any time.

They can be forwarded to

secoOmath.toronto.edu
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Trivia
First known case of a mathematician in finance?
Thales bought options on the use of mills, in a year when a
huge olive harvest was expected. Made a ton of money.
Risk:

If you know that a certain investment is going to lose 10%,

there is no risk.

If you know a certain investment is guaranteed to earn be-

tween 10 and 20 percent, there is risk.

Besides banks, Math-Finance theories are also relevant in
e Government finance programs
e utility companies (debt refinancing).

e Insurance companies (environmental risk)

Medicine (Vaccines, biotechnology risk)

UNESCO: ecological risk.
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Example 1.

In 1986, the Olympic Committee announces that Barcelona
will hold the 1992 Games. The local organizing committee
needs to prepare a budget (in USD) to submit for approval.
The expenses will take place over a multi-year period, and
will be in Spanish Pesetas (ESP).

In 1986, the USD exchanges at a rate of
1 USD = 142 ESP

The OC obtains a contract to purchase USD at a fixed rate of
114 ESP over the next six years. In 1992, USD has dropped
to 90 ESP.

e Q1 (Pricing). How much does it cost to purchase

such a contract?.

e Q2 (Pricing). At what rate does it come free? (Is
it 1147).

e Q3 (Hedging). Did the financial institution that

sold the contract loose money?

e Q4 (Risk Management). How can the financial in-
stitution know, back in 1986, how much money they

could loose on the deal?
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Financial Instruments — Equity

European Options Expire at a preset future time. Their
pay-off f depends on the price of the underlying S at expi-

ration.

Call options with strike K have pay-off given by
f(8)=(S—-K)+.

Put options have pay—off given by

F(S) = (K - S);.

American Options Can be exercised at any time in the
future. Their pay-off is a function of the value of the under-

lying at that time.

Call options with strike K have pay-off given by

£(S,4) = (S(t) — ).

Put options have pay—off given by

£(S,1) = (K — S(t))+.
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Asian Options Their price depends on the average value of
the underlying. Can be issued with a European or American

style.

Bermudan Options They are American options that can

be exercised only at prescribed discrete future times.
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Financial Instruments — Monetary

Bonds They pay a fixed amount (e.g., $1) at a future time.
They are sold at a discount; their price determines interest
rates. They usually pay coupons every few months or every

year.

Bond Options Bonds can be bought or sold any time be-
fore they expire. Their price will fluctuate. As a consequence,
they can be used as financial underlying for options. They
are quite similar to equity, except for the fact that at the
time of expiry of the bond, options make no sense. This in

fact have very important implications.

Caps They are contracts that offer protection against time
dependent interest rates rising over a certain ceiling, by pay-

ing the corresponding exceeding interest on a fixed notional.

Floors They charge the corresponding missing interest on

a fixed notional. They have negative value.

Collars A combination of a cap and a floor. By setting the

ceiling and floor appropriately, they can be issued for free.
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Swaps They exploit the different interest rates that differ-
ent parties will be charged for fixed and floating rate loans;
a swap is a contract that exchanges future payments at fixed

and floating rates.

Swaptions When a swaps is viewed as an underlying, op-

tions are issued on them.

Cross Currency swaps Same as swaps, but the exchange

is between payments in two currencies.

Many other financial instruments are available for trade.
Most of the time, they are designed with the objective of
removing risk from uncertain future situations. They also

offer risky speculative alternatives.
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Common Terminology

Long Positions. Term used when the number of units of

a certain instrument is positive.

Short Positions. Term used when the number of units of

a certain instrument is negative.

Hedge.

Arbitrage.
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Pricing Theories

| el R

Prices should not be based on probabilistic expectations; that belongs
in a casino. Instead, prices of instruments should be consistent with
market prices of the instruments used in their hedging strategies. If one
uses probabilistic considerations, the prices that mirror them should be
in harmony with the observed market prices. One needs to search for

the mathematical theory that supports this.
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Contents
e Heuristic considerations
— One period
— Multiperiod

— Continuous

Pricing Theory
— One Period
— Stochastic Calculus
e Numerical Methods
— Monte Carlo
— Principal Components

— Low Discrepancy

Hedging
— Implied volatilities

— Greeks



Luis A. Seco Math-Risk Page 13

Example 2

Example. (Ignore interest rates). Call Option. Pays
fo(S) = (5 —31)4.

/ p

-p $0.50 '

1-Period Stock Tree Option Value =

Assume p = 95%. Is V = 0.957

Answer: Nol.

v =1/38.

Problems:
e How do we guess p?.

e Do we care”.
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Discounted Values

Time is money. Assume the existence of a bond with con-

stant interest rate r.
We build the following portfolio II:

IT = 2 Stock units + (—3) bond

Wl

S S

$2/3-1/3B
Portfolio Values Option Value

No matter what p is, absence of arbitrage implies

Option Price = B

Wi WiN
W= Wl

e T

where T is the time to expiration and 7 is the (constant)

interest rate.
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Implied Probabilities

We can still achieve

Option Price = E (e_rT fo)

. —rT
—pe )

by selecting

In other words, we can construct a probability measure IP for

the stock process, such that
Option Price = Ep (Br_,T1 fo) :
More generally, if we define the (arbitrage-free) price to equal
the discounted pay-off
V =Br" fo,

then, there exists a measure P under which V' is a martingale:

its value today is its expected future value.
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Implied Market Data

Example: Assume the previous call option is sold for $0.50.

e " =0.5.

wino
|
W=

Hence, the risk-free rate must equal

r =—In2.

Example. Assume the stock valued at $1 today, can be

worth
( $2

S =4 $1

L $0.5

after a year. How can we price the call option with strike 17.
Two possibilities:
e Another derivative price is known

e We can re-balance our hedge once before maturity.
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Multiperiod Pricing

Assume

S0

A call option with strike $75 can be priced as follows (r=0):

S0

So its value today is $15.

This is the arbitrage-free price. Implied probabilities can be

obtained as usual.
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Passage to the continuum
We think of infinitesimal time intervals dt.

Brownian motion moves up or down with probability %, by
an amount of v/dt:

AW = +Vdt,  E(dW) =0.

It is distributed at time ¢ according to

1 z?
P(x,t) = \/2_7Ttexp ~ 5 )

Infinitesimal stock movements will be
dS =S -(pdt+odW).

Note that
dlogS = (u— 30°)dt + o dW.

Ito’s Lemma:

O f(S,t) = s f(S,t)dS + 0, f(S,t) dt — 20 dt.
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Expected Discounted Payoff

European call option with payoff fy(S), expiration at time
T

F(S.t) = 7T / fo (o= 002 Py (2, T1) da

— 0

P(n.t) = —— exp( 7 )

\V 2mto? - 2to?
Problems
e What is u?.
e What is o7

e Can we replicate the price?

Bachelier (1900) worked out similar formulas.
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The Black-Scholes Formulas

The price of a European call option on a stock S, valued
today at Sp, maturing at time 7" with strike K, (constant)

volatility o and interest rate r is given by
V(t,K,0,7) = So- N(d1) — K - e "T7 N(dy),

where N(d) is the cumulative normal

d
_g2/9 dx
N@y= [ e

and

g In(So/K) + (r+ 202%) (T — 1)
t ovI —1 ’

In(So/K) + (r — 50°) (T — t)
ovi —1t .
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The Black-Scholes Theory

Assume an option has price f(¢,S), at any given point in

time, and any possible value of the underlying.
Let’s set up the following arbitrage free argument:

At any point in time ¢, build a portfolio II consisting of
a = _an(Sv t)
units of stock, and the option.

Using Ito’s formula,

dtH:dtf+adS
=102 S?0%f + 0,f + 0sfdS +adS
— %0-2 82 8‘%][.—'_8{;]6

This is a risk-free investment. Hence, it must earn risk-free

interest and we obtain:

Of 1 500°f of
5 = 505 55 — rSaz +rf,

f(SvT> — fO(S>

It is a backward parabolic equation.
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Pricing Theory (One Period)

Implied probabilities can be obtained, not only from prices

dictated by arbitrage arguments, but also from market prices.

The implications of this is that a probabilistic approach to
pricing is more useful than might have seemed from the con-

siderations above.

In this section we assume there is a probability space for the

payoffs of NV securities available for trading,

A security is characterized by its cost now, and its payoff

after one unit of time.

The cost of the i-th security, : =1,..., N, is g;.
The payoff is given by the random variable D;(w).
The expected payoff of a security is E(D;(w)).

A portfolio is a vector § = (61,...0x) € RY, which rep-
resents the holdings of each security. 6; can be positive or
negative. If #; is positive, our position is said to be long. If

f; is negative, our position is said to be short.

The payoff of the portfolio 8 is 6 - D(w).
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A market is said complete if
Span {0 -D(w), 8 € RV} = L*(p).

and markets are usually assumed to be complete. In a com-
plete market, for any payoff there is a portfolio with that
payoft.

The cost of a portfolio 8 is ¢ - 6.

If a portfolio has nonzero cost, i.e. g -6 # 0, one defines its

return to be

In a real market, there are hedgers (people trying to min-
imize risk), speculators (people trying to maximize return)

and arbitrageurs (people detecting market inefficiencies).

We say that there is an arbitrage opportunity if there is
a portfolio € such that

qg-0<0,and D-0>0 a.e.,
and D -6 > 0 with nonzero probability.

The Efficient Market Hypothesis (EMH) states that

there is no arbitrage and there are no transaction costs.
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Theorem. (Riesz representation) If p; are linear func-
tionals of the payoffs L?(u), then there exists a random vari-
able w(w) such that

p-0 = E(@n-D), all # € RY. (1)

If markets are complete, 7 is unique. If there are no arbitrage

opportunities, m > 0.

In the case that we consider the cost as that linear functional,
we obtain that the cost of a portfolio is the expectation of
its payoff with probabilistic weight 7 (w), which is called the

state—price deflator. The name comes from the fact that
E(Rgm) = 1 (2)
for all portfolios 6.

We always assume that Dg(w) is constant for all w € Q. This

is a savings account.

A riskless bond is a portfolio 6y of constant payoff i.e. such
that 0 - D(w) = 0- D(w’) for all w,w’ € Q. It always exists:
put # = (1,0,...,0). Then from (2) we find

R = E(Ry,) = Ba)
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The riskless interest rate is given by

1
r = —TIHE(RQ()) .

Theorem. A price deflator exists if and only if there is no

arbitrage.

Proof. If a price deflator exists, then II(0) = FE(7 II(T)).
Since 7 is positive as a functional on L, if II(7) > 0 then
I1(0) > 0 and if II(7T") = 0 then II(0) = 0.

On the other hand, let us suppose that there is no arbitrage.
Let us consider the price-payoft vector space V. = R x L.
The (cost , pay-off) hyperplane is

M = {(-0-q¢,0-P): 6 c RV},

The cone K = R4 X Li contains all securities of non-
positive price and non-negative payoff. If there is no arbi-
trage, then K "M = {0}.

By the separating hyperplane theorem, there exists a func-

tional
F:V —-1R

such that F(x) = 0 for all x € M and F(x) > 0 for all
x e K\ {0}.
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The Riesz representation of F'(x) is
F(v,c) = av + E(¢-c).
In terms of o and ¢, we have that
—af-q + E(p-(0-P)) =0

for all # € RY. Hence

SRIRSS

is a price deflator.
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1-Period Summary

There is a measure P, given by the up-ward probability

T
e’ Snow — Sdown

Sup — Sdovvn

p:

An option with pay-off fy(S) at time T has a price f given
by
f=Ep(B:' fo) Martingale condition.

The option can be replicated with a portfolio consisting of

fO(Sup) - fO(Sdown>

a = units of stock
Sup) - Sdown

B~'(f —a- S) units of bonds.

Moreover, the random variable B, 1. S is also a martingale:

B_l : Snow =D Sup + (1 _p> ) Sdown-
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Binomial Trees
General facts:
e {F;},i1=0,1,2 = n. Filtration (co-algebras).
o {p;}",is a process if ¢; is F;—measurable for all «.
e The conditional expectation is
Ep (¢;|7:) ,
is the projection of ¢; onto L?(F;).

e Given a measure P, ¢ is a martingale when

Ep (¢;|Fi) = ¢4, 1< J.

Trivial Fact: Given IP, and any function X on L?(F,), the
process given by Ep(X|F;) is a martingale.

Theorem Binomial Representation Theorem: Given
two processes {S;} and {P;} a binomial tree which are mar-

tingales with respect to the same measure IP, there exists a
process {¢;} such that

Pi=P0+Z¢k'(Si—Si—1)-

k=1
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Arbitrage Pricing (Multi-Period)
An option is an Fpr—measurable function.

The stock process generates a measure P under

which it is a martingale.

The arbitrage-free option price is then given by the

new martingale

P, =Ep (B;' X|F).

The replication strategy is given by the Binomial

Representation Theorem.

Pi:PO+Z¢k'(Sz’_Si—1)-

k=1
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Continuous Pricing
Stock prices follow the Ito Process

d

Pricing theories will be an extension of the multi-period case.

Agenda

Elementary review of stochastic process.

e Brownian motion

Stochastic integrals — Stochastic differential equa-

tions.
e Martingale representation

e Martingale pricing and hedging.
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Stochastic Processes

A Filtration is {F;},
e F; is a o-algebra for all .

o F; C F, whent < s.

Take a function ¢ € L?(F;). Its conditional expectation at
time s < t defined as

Es¢ = Pr2(r,)¢,

where the right hand side denotes its projection onto L?(F,).

A Stochastic Process ¢, is such that

e ¢; is F; measurable

A Stochastic Process ¢; € L1(F;) is a martingale when
Ei(¢ps) = ¢y, for s >t.

We define the quadratic variation to be adapted process
2" —1 ,
2 9
9l = nh—{%o z% (¢2—n(j+1)t — ¢2—njt) -
J:

M? denotes the class of martingales with finite quadratic

variation.
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Predictable Processes

An adapted process ¢, is left continuous if

lim¢s = ¢¢, almost surely.
sTt

Consider the filtration F’ generated by all left continuous

adapted process.
A process is predictable if it is adapted to F’.

Equivalently, it is approximated by processes ¢; which are

constant on intervals (¢;,%;11].
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Brownian Motion

A process W; is a P-Brownian motion when
e W, is continuous in ¢t and Wy = 0.

o W, — W; is distributed, under IP, as a normal dis-

tribution with mean 0 and variance t — s.

e For 0 <ty < --- <t, < oo, we have that B;, and

all By, — Bt,_, are all independent.

If s <t,
Wy =W, — Wy + W,

Hence, since [E4(W; — W) =0 and E,W, = W,
EsWt — W87

and Brownian motion is a martingale.

Moreover, |W;|* =t, so W € M?2.
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Stochastic Integrals

Given a stochastic process ¢, on (2, F,T,P), and a function
f(t), the stochastic integral

[ sts)do

is simply defined as a random variable on (€2, F, T, P), whose

value for any w € €2 is given by the Stiljes integral

/ " F(s) dlw).

Appropriate conditions on the paths ¢s(w) are required, such
as ¢s(w) to be an increasing function of s. Note that Brow-

nian motion does not satisfy this.

For general processes, we first note that, if f is piecewise

constant, on intervals (¢;,%;11], then

: k
/0 f(5> dgbs — Zf(t1> (¢tz - ¢t¢—1) .
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Brownian Integrals

Let W € M?2. Since |W|? is increasing, we can define

t
2 _ 2dW2
613 (1) L¢s|u,

the norm
T
2
913 = | gtdwi
and the corresponding Hilbert Space L?|S|.

If ¢; is piecewise constant

7 k
Variance/ pdW =E Z oy (Wti — Wti_l)
0

1=1
i 2
< ]EZ ‘thz (Wti - Wti—l)
1=1
k
< ]EZ |¢tz 2. (|W i o |W i’—l)
1=1
= ¢l5-

Hence, [ ¢+dW; can be defined by extension for all ¢ €
L?|W].
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In particular, fot ¢+ dW; is normal with mean 0 and variance
t
Eo? = / ¢ ds.
0

Hence, we can derive the following formula, which will be of

use later:

t
2 2 dx

Ep ex / dW)z/ex_x /(207) :

P P( . th t n Tmﬂ

2
— /2,

t
e%Efo ¢2 ds
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SDE

A process of the type

t t
Xt:X0+/ Udes+/ /,Lst
0 0

will be written down as

th = O0¢ th + e dt.

SDE appear when the terms o and p above are made X

dependent, as

dXt = O'(Xt, t) th + ,U(Xt, t) dt.

They are also called Ito processes.
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Ito’s Lemma

Ito’s Lemma, in this context, reads as follows:

PO = J(0) + [ (/50 e dt+ 317 (X0) o)
! t) O¢ th
[

We can rewrite it as

di f(X:) = (f'(Xe) + 507 f(X)) dt + f/(X)t) dW:.

The product rule: if
dX; = p;dt +o; dW, 1=1,2,
then

d(Xl . X2) = X1dXo+ XodXq + 01 - 09 dt.
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Feynman-Kac

The Feynman-Kac formula provides a solution to parabolic
PDE’s in terms of a stochastic integral. It can be viewed as

the inverse of the Black—Scholes equation.

Consider the following simple formulation. Let’s try to solve

Orp(,t) = 505 (x, 1) — V() (1)
= —Hy.

Define

X, = exp (— /Ot V(x4 W,) ds) Fl@+Wh).

Using the product rule and Ito’s formula,

dXF:ap(—/ﬁva(—Vf+fﬂdWQ+%%fﬂ)
0
= exp <—/tVdS> (—H f+ f-dWy).
0

Hence

d;EX = —E [exp (— /tVds) Hf] :
0
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Therefore, the linear operator defined by

Pf=—E [exp <— /Ot V(e +W,) ds) Flo+ Wt)] |

satisfies the equation

Oy Py = —Py(Hv)
Py = 1.

This yields

and
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Girsanov Theorem

Assume a measure IP and a filtration F. If W, is P-Brownian

and v; is F—adapted, with the property
T

]EIPB(% fo " dt) < 00

Y

define @Q such that

dQ T T
ap - &P <—/0 %th—%/o 7t2dt>

Then, W, = W, + fot v, ds is a Q—Brownian motion.
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Martingale Representation Theorem

If X; is a martingale, and ¢; is predictable and bounded,
then [ ¢-dX is a martingale. The converse:

Theorem : Assume M; is a Q—-martingale with non—zero
volatility o¢. If Ny 1s any other Q-martingale, there exists a
predictable ¢ such that

t
N, = Ny +/ b5 dM, ds.
0

Furthermore,
_ o(Vy)
Pt = :
O'(Mt>
Corollary : If P admits a Brownian motion, all martin-

gales M, are of the form

th = 0t th
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Arbitrage Pricing (Multi-Period)
An option is an Fpr—measurable function.

The stock process generates a measure P under

which it is a martingale.

The arbitrage-free option price is then given by the

new martingale

P, =Ep (B;" X|F) .

The replication strategy is given by the Binomial

Representation Theorem.

t
Pt:P0+/¢SdS
0

or

_ 0P,

" =5

The Black-Scholes equation follows from the

Feymnan-Kac formula.
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Continuous Pricing

Stock price process

% =rdt+vdW.

European call option with payoft fo(S)
£(S,1) = e 7TV / fo (soev—%w—wﬂ) P, (z, T—t) dz

— OO

where

1 2
P,(x,t) = exp | — L
o V2mv2t 202t )

Multifactor options involve higher dimensional integrals.
They are studied using MonteCarlo methods, or Low-dis-

crepancy sequences.

Also

of 1 4 00%f of
o = 2V %95z ~TO%s T

f(8,T) = fo(S).

American options give rise to free boundaries.

For Interest rate options, the underlying S € R is replaced
by a yield curve, r(t,T).
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The Real World.
Stock prices are not log-normal.

Transaction costs make continuous trading in-

finitely expensive.
No one knows future volatility.
Markets are not liquid, complete or efficient.

The counterparty you are dealing with may not ex-

1St tomorrow.
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Greeks

Provide an intuitive basis for understanding price changes,

and risk.

Delta. Change in price as a function of the underlying.

_om

0= —.
0S5

Gamma. Change of delta as a function of the underlying.

0?11

Vega. Change of price as a function of volatility

oIl
V — %.
Theta. Essentially:
oIl
0 — ——

ot
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Numerical Methods

Consider stocks with price processes given by
d(log Sj> = My dt + Oj de,

where the Brownian motions de have correlation coeffi-

cients V = (pi ;).

If the time to expiration is T', the interest rate is r, and the
pay—off of an option is fy(S1,...,Sy), its price is

e_rT / S S T —1
1 n) p—(B=)' V7" (S—pu)
e’l,...,e e dsS.
VvV (2m)" det V' JRrn ol )

With a change of variables, the problem then reduces to com-
puting integrals of the type

/ f(x1,...,xn)dxy - - day,
[0,1]™

for appropriate integrands f.

Multidimensional integrals are not easy to compute. There
are three basic methods:

1. Grid Methods.

2. Monte Carlo Methods.

3. Low discrepancy methods.
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Grid points. We put N evenly spaced points x; in the unit

cube, and approximate

The error in this approximation is like N—1/™.

It can be improved to the trapezoidal rule

| fde =5 Yoxtr 1)

where x is the characteristic function of the cube,
1 if z € Int @,
x(z) = ,
2% if z belongs to k faces of Q,

which gives an error comparable to N —2/™.

Pros—Cons

As a function of n, it require an exponentially large number

of points. (Compare with Numerical Recipes).

It can easily be turned into an adaptative grid process. (Cal-

derén—Zygmund. Compare with Numerical Recipes).
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Monte—Carlo.

Monte—Carlo methods appeared officially in 1949, but they
had been used by the U. S. Defense Department in secret
projects for several years before that. The name was a code
name used by Von Neumann and Ulam at Los Alamos in
projects related to The Bomb (simulation of random neutron

diffusion in fissionable material).

Applied to integration,

/Qf(a:) dz = %ﬁ;f(aci) + (’)(N_l/2).

if the x; are uniformly distributed.

Pros—Cons

Reasonable speed is the same in all dimensions.
Not easily turned into an adaptative scheme.
Ignores smoothness of the integrand.

It’s hard to generate random numbers, but it is otherwise

easy to implement.

The birthdate effect (clustering).



Luis A. Seco Math-Risk Page 50

Higher Dimensions

Generating random numbers in higher dimensions is a diffi-
cult task. For the case of a multivariate normal, with given

variance/covariance matrix V, one proceeds as follows:

Consider the Cholesky decomposition of V,
V=H"H.

Let v = (y1,...,Yn) be independent normally-(0,1) dis-

tributed random variables.

Then
r=y -H
produces random vectors which are normally distributed with

covariance given by V.

Indeed,

Cova::]E(a:T-x)
=FE (H'y"y H)
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Principal Components

The biggest limitation in the algorithm for generation of ran-
dom numbers in higher dimensions is the inability to produce
clean univariate normally distributed numbers, when the di-

mension is very high.

In practice, covariance matrices have directions that will hap-

pen with high probability, and others that are very unlikely.

Set
V = PDPT,

with D diagonal and P orthogonal.

A1

An

1

Assume A1 > Ay > ---. One may choose to trim the covari-
ance matrix, by selecting only the first few eigenvalues of ID.

These are the principal components.

The significance of a selection Aq,...,Ax is given by

A+ A
Trace V.
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Sub—random methods. Uses other limit theorems (i.e.,
ergodic theorems and number theory). Consider an example
in dimension 1:

If v is irrational, and {t} denotes the fractional part of ¢,

|ty = Jim > (fm).

Moreover, we can estimate the remainder:

EOWITIEES o) N L

1=1 k=—00

= /01 f(x)dx

+> f(k) %

k0

Wznk’y

||M2

The speed of convergence is therefore closely related to the
diophantic properties of v, and the smoothness of f.

Theorem : If f is of bounded variation, and v is an alge-
braic number, then

N
7) da — % ;f ({ny})| < N1 log V.

The constant C depends on f.
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Higher Dimensions. The speed of convergence is based
on the concept of discrepancy of a finite set of points in the

unit cube in dimension d, P € [0,1]¢:

Consider sets of the form

The discrepancy is defined as

|P N B
1P|

D(P) = sup
B

|B| -

Theorem :

%éf(m - 1

<V(f) -D(x1,...,xN).

A sequence {x,} is usually referred to as low discrepancy if
D(z1,...,zN) = O(N~'*9), for all € > 0.

Let v = (v1,...,74) such that 1,71,...,74 are linearly inde-
pendent over the rationals, and the ; are algebraic, Then,

{k - v} is a low—discrepancy sequence.
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HEDGING

Problem: to generate a buy/sell strategy that replicates pay-
offs.

Used to remove risk from option writing.

For frictionless ideal markets:

of
(8,1

units of the stock replicates the option price at all times.
In real situations:
e Transaction costs: viscosity solutions.

e Incomplete markets: incomplete hedges.

e Discrete time. Dynamic programming.
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INVERSE PROBLEMS (implied parameters)

If certain options are liquid enough,

H(8.1) = e—nT=D / fo (520704 2) P, (@, T~ 1) da

—o0
is known. This implies a certain value for the volatility.
e Interest rates: term structure
e American options: inverse scattering.
e Time dependent volatilities. Volatility smiles.
e Implied volatility surfaces.

e Calibration risk.



Luis A. Seco Math-Risk Page 56

Interest Rate Theory.

Time is money. The implications of this fact in pricing theo-
ries are tremendous. There is no established way to analyze
this. We have to content ourselves with a botanical theory

of interest rate models with different properties.
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Bonds, Yields

Consider a bond that, with a payment of P(¢,T) at time ¢,
pays $1 at time 7' (and has no other intermediate payments).

If the interest rate r is assumed constant, then we would have
P(t,T) =e "T7Y,
Hence,

log P(t,T)
(T

 —

This is useful since it is P, not r that is observed (not quite:
see next section). When r is not constant, we simply define
the yield rate
log P(t,T)

(T—t)

r(t,T) = —

Since r determines P, r determines the entire term structure.

As a function of T', r is smooth. As a function of ¢, it is a

random.
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Forward Rates

Short rate: the cost of instantaneous borrowing:

re =1t t) = — 8% log P(t,T) .
T=t

e Similarity with stock prices

e loss of information.

Forward Rate: f(t,T): “our prediction at t of rp.”

Consider the following futures contract:
e Agreement date: now (time t).

e Product to deliver: a zero-coupon bond B issued at

T1, paying $1 at 1.

Delivery date: Tj.

e Price: P(t,71,T5) (Unknown).

Payment date: Tj.
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It has the only two cash flows:
o At time Ty: P(t,11,T>) (Unknown).
o At time T5: $1.

Consider a portfolio IT of 1 bond unit worth P(¢,T3) each,
and —x bond units worth P(¢,T7) each, with

P(t,Ty)
P(t,Ty)

€r —

Because it costs nothing now, it has only two cash flows:

e At time T, an cash out-flow equal to —z (or in-flow
of x).

e At time Ty, a cash in-flow of $1.

Hence,
P(t,T3)
P(ta Tl) .

P(t7 T17 T2) —

The corresponding forward yield is, by definition
log P(t, Tl, T2>
Ty — 11

_ log P(t,T3) — log P(t,T1)
a T, — Ty

T(t7 T17 T2) -
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The forward rate is defined to be
ft, T)y=r(tT,T)
0

=37 log P(t,T).

The term structure is reconstructed from f as follows:

P(t,T) = exp (—/t f(t,u) du) :

r volatility matrix, if these are taken at discrete times.
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Bootstrapping

In practice, bonds pay coupons. Hence, the calculation of

the yield needs to be modified.

Example (J. Hull) Consider the following set of bonds,
with $100 principal and associated prices, with coupons paid

every six months as described below:

Time to Maturity |annual coupon| price
3 mo. $0 $97.5

6 mo. $0 $94.9

1 yr. $0 $90.0

1.5 yr. $8 $96.0

2.0 yr. $12 $101.6

2.75 yr. $10 $99.8

Solving the obvious set of (non-linear equations), we can ar-
rive at the yield curve with values given by

Term |annualized rate
3 mo. 10.12%

6 mo. 10.47%

1 yr. 10.54%

1.5 yr. 10.68%

2 yr. 10.81%
2.75 yr. 10.87%
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Black 76

Consider a caplet: pays at ;11 the difference between the

excess between the yield rate r(t;,t;11), and a strike K.

Absence of arbitrage implies that, for valuation purposes, we
should treat ’I“(ti, tz'_|_1) as f(to, tz', tz'_|_1).

If we assume this is log-normally distributed, we are just
looking at a call option with f(¢,¢;,t;+1) as the underlying
risk factor, whose price is given by the usual Black—Scholes

formula
Caplet = (F(to, ti,tfH_l) . N(d_|_) — KN(d_>> : P(to, tl),

with
ID(F/K) + %O‘z(ti — to)

do =
+ O'\/ti—to

In practice, caps prices are fixed by the market, and the
formula above is used in an attempt to extract the implied

volatility from the market.

Since caplets involve two future dates, implied vols are a
two parameter function, the volatility surface or volatility

matrix, when these are a discrete set of points.
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Implied Vol Surface
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Decaf Heath—Jarrow—Morton

dof(t,T) = a(t,T) dt + o dW,

This SDE has a trivial explicit solution

FLT) = F(0.T) + / a(s.T)ds + o Wi,
0

Model properties:
e At a fixed time ¢, f(¢,T) is smooth in T
o f(t,T)— f(t,5) is deterministic.
e The only source of randomness comes from t.
e f (and r;) can become negative.

e ¢ is independent of the term and time.
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The Money Market Account

We invest $1 permanently in the short rate:
dBt:’I“tBtdt, B():l

Since

r(t) = £(0,1) + /Otoz(s,t) ds+ o Wy,

we have

t
Bt:exp(/ fr'sds>
0
t t t pt
:exp<0/ Wsds+/ f(O,u)du+/ / a(s,u)duds)
0 0 0 Js
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Replicating Strategies

We have an option X on a bond. The option expires at S,

while the bond matures at a later time 7.

We will use the money market account for the discounting

factor.

Hence, The discounted bond is given by

Zy = B P(t,T).

A replicating strategy will be given by:

e Finding a measure IP so Z; is a martingale.

In this way,
E;=Ep (Bg'X|F,).

is a P-martingale. By the martingale representation theo-

rem, there is a process ¢; such that
dEt — ¢t dZt7

which gives us a replicating strategy.
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The Measure

We had

B; = exp (a fot W ds—l—fot f(0,u) du-l—fot f: a(s,u) du ds)

P(t, T) = exp <— LT f(0,u) du—ftT fot a(s,u) ds du—(T—t) aWt)

Hence, Z; is given by
exp <— fOT f(0,u) du—fot fsT a(s,u) duds—(T—t) o Wy—o fot W ds)
Using Ito’s Lemma, we get

dZ;

T
Ef:_/‘Mn@@fa@—wﬂm+§&an¢ﬁﬁ
t t

In order to use Girsanov’s theorem, set
AW, = dW, +~(t,T),
1 1 g
t,T)=—0(T—t)+ ——— t,u) du.
A(6T) = o (T =)+~ [ altu)de

This yields
dZ, = o Z; (T — t)dW,.

and Z; is a martingale.
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Absence of Arbitrage

If different durations T give different drifts v(¢,7T"). we would

have arbitrage. Therefore, We must have

O _

aT—O.

Equivalently, we have the following condition on the drift:

a(t,T) = o*(T —t) +ov(t,T).
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Heath—Jarrow—Morton

For 0 <t<T,

f(t,T):f(O,T)+/O a(s,T)dWs+/0 a(s,T) ds,

Equivalently,
dif(t,T) =0o(t, T)dW; + a(t,T) dt.

Features:
e 0 and « are t-adapted processes.

e f(0,T) is deterministic.
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Short Rate Models

dr(t) = v(re, t) dt + p(rs, t) dWs.

Bond Prices:

T
—logP(t,T):/ f(t,u) du

— g(,rtvth)'

T
= log Eq <e_ft rls) ds | = :1:) :
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The Hull-White Model

Given a, o (assumed constant), and a time-dependent rever-

sion level 6(t), we write the SDE for the spot rate:
d’l“t = (9(t> — CL’I“t) dt + O'th.

Assuming bond prices are given by P(r,t,T), Ito’s lemma

tells us

diP = [0,P-(0(t) —ary) + 0, P+ L0?02P] dt + 0 0, P dW;
= u(t,T)dt +v(t,T)dW;.

The portfolio
I(t) = P(t,T) + a P(t,T3),

where

is deterministic. Hence,

d,P(t,T) — a(t,T)d,P(t,Tz) = r(r) IL(t) dt
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which implies

p(t, T)—r(t)P(r,t, T).

A(t,r) = . T)

must be independent of T'. Subbing 1 above, we obtain

0,P-(0(t) —ary) + 0+ 020" =rP + Av(t,T)
—rP + \oO, P.

or
0P+ (¢(t) —ar) 6,P+ 20°9?P =r P,

with

The quantity A is the market price of risk.
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We now make the following assumption:
P(r,t,T) = A(t,T) exp (—B(t,T)r).
This implies

{8tB—a(t)B+1:0 {8tA—¢(t)AB+%(72AB2:O

B(T,T) =0 A(T,T) = 0.

where

B(t,T) = a~? (1 ~ e—a<T—t>) ,

P(0,T)
P(0,t)
o2 (e—aT _ e—at)2 (e2at _ 1)

4 g3

log A(t,T) = log + B(t,T) - f(0,t)
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Other short rate models

Ho-Lee
dr :etdt—l—O'th

Vasicek

dr = (0 — ar)dt+ o dW;

Cox-Ingersoll-Ross

dr:(ﬁt—atr)dt—katx/f?th

Black-Derman-Toy

d(logr) = (9'(15) — al%:(t) log 7') dt + o(t) dz.

Black-Karasinski

d(logr) = (0; — ay logr) dt + oy AWy
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Calibration

All these models assume a certain set of parameters, such as

the volatility, mean reversion parameters, etc.
There is no well established way of doing this.

A popular method is to observe market prices for standard
instruments, and work out the parameters that best fit mar-

ket data. This process is called calibration.

While probably inadequate for risk management purposes, it
is probably the right attitude for hedging (and hence pricing)
purposes, if one uses observed market prices for the hedging

instruments in the calibration exercise.
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Portfolio theory.

Prices have been established in the comfort of the indifference

provided by arbitrage-free arguments.

The investor needs to select the investment that will maxi-
mize returns with a given level of risk, or will minimize risk

with a target rate of return.



Luis A. Seco Math-Risk Page 77

Markowitz Mean Variance Model

Assume n instruments available for trade, with stochastic

returns given by .5;.
Return = Mean: R; = E(S;).

Risk = Variance: o7 = [E(S?) — R?.
Consider also the variance/covariance matrix
W:{O'i,j}, 0'2 :]E(stj)—RzRJ

2]

An investment choice is given by a weight vector w =

(w1, ..., wy). Such investment will have a return equal to

N
E w; - Ri7
1=1

and a variance given by
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(Static) Investment decisions

Usual investment choices:
e For a given level of return « , minimize risk:

e For a given level of risk o , maximize return:

This can be generalized to quantifying the relative impor-
tance of risk into a parameter A in order that we now seek

max(w-R—)\thw),

w

subject to restrictions, which may include a cap the amount
of money invested (> w;), and taking only long positions

All these are quadratic programming problems, and due to
the interaction between risk and return, they always involve

two-dimensional choices.
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They can be summarized in a two dimensional risk/return

graph.

25

"out”

15 -

05

1 1 1 1 1 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

All possible investments will give rise to a convex subset of
RZ . Its boundary is the Efficient Frontier.

Theorem : The Efficient Frontier is conver.

It will be convenient to subtract the risk—{ree rate from re-
turns. In this way, the efficient frontier will go through the

origin if the risk-free rate is available.
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The Efficient Frontier

The efficient frontier carries a lot of graphical information.

As a sample:

Normal Markets: o} )

er in Incomplete Markets —

Incomplete Markets: T S

Arbitrage Opportunities: =+
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Sharpe’s ratio

It provides a one-dimensional approach to performance eval-

uation. It is defined as

(Return) — (Riskfree rate)
risk '

Sharpe’s ratio =

For pay-off distributions that are not symmetric, downside-

risk

\/]E(Si - R;)?,

can be used to replace the standard deviation.
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Regret /Reward Model
(R. Dembo, D. Rosen, D. Saunders.)

Regret. Replaces the concept of risk.

Let D be the pay-out matrix, and 7 a benchmark portfolio.
Set
Dr—1=y" —y~

denote the positive and negative tracking errors with respect
to the benchmark.

Regret is the expected underperformance:

Reward. It is the expected excess profit:

The expected profit is
pT(Dx) o qTx7
and the expected profit earned by the benchmark is

pI'r—c.
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Reward is

R (Dz) —q¢"x —p't +c

+

pT
Py —yT)—q'zte
We restrict our attention to portfolios with cost less than or

equal to that of the benchmark (i.e., ¢Tx < ¢).

The efficient frontier can then be defined in a similar manner,

and all previous considerations hold.
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Financial Risk

“Even in this age of high-tech computing, the basic
architecture of risk management remains primitive —
it 1s as if all that fancy technology is stored in the

intellectual equivalent of a wooden shack.”

— Seeing Tomorrow, R. Dembo and A. Freeman.
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History

Orange County. Bob Citron (County Treasurer), built a
leveraged portfolio of short term loans with long term notes.
This proved to be a profitable investment, since short term

rates were low and long term rates were high.

When interest rates began to rise in 1994, losses occurred;
a snow ball effect happened when investors found out about

the losses, and attempted to withdraw the money.

Such portfolios are usually perfectly hedged against parallel
shifts in the yield rate, but show big exposure to tilts in the

yield curve.

The snow ball effect is a usual device through which liquidity

risk shows up.
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Barings Bank.

Nick Leeson had derivative positions on the Nikkei, that bet
on a stable market. The decline of 15% of the Nikkei, which
followed the earthquake of Kobe in 1995, produced large
losses. The situation lead to a total loss of $1.3 Billion, after
the positions were further increased after the initial losses.
Some of the positions were unauthorized. although his su-
periors had approved a cash infusion of $1billion to cover

margin calls.

The price of shares dropped to $0. Baring’s Bank was worth
about $1 billion in terms of market capitalization. Bond hold-
ers received 5c. for each $1. ING offered to purchase Baring’s
for 1 British Pound.

The Bassel convention (1991).
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Risk Management

Problem: to determine potential losses.
e Calibration risk

Market risk

Credit risk

e Model risk

J.P. Morgan introduced RiskMetrics about 3 years ago, and
CreditMetrics last summer. They are industrial standards

now.

Banks must meet Market-Risk calculation criteria following

from the Bassel convention in 1991.
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Estimating Volatility
Volatilities are the quantification of the risk of the market.

Portfolios will have a volatility adapted to them, but esti-
mating volatility is at the heart of analyzing the risk of any

portfolio.

Three ways of estimating volatility:

Implied volatility methods. Used for hedging and trad-
ing. Possibly inadequate measure of future market move-

ments.

Averaging Methods. Provides a simple estimation based

on historical market movements.

Stochastic volatility models. Accounts for the possibil-
ity of volatility jumps. Useful for the study of longer-time

horizons.
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Averaging Methods

Consider a historical series of risk factors (stock prices, yield
rates, etc.) given by {s;}, fori =0,...,n. We adopt the con-
vention that sy is today’s observation, and the values move

backward in time with increasing .

If they are log-normally distributed, we can define

> i A'log (ss_l)
o= T ,
2 it A

for a parameter A < 1 (0.95, for example), which gives more

weight to recent observations. Similarly, we set

| Zh ¥ (s (%) )

For multifactor series {35 )}, covariances are found in a sim-

n , s(.":)1 s(."’)l
zz’:1 A’ (log (SZ(;) ) — Nk:) (log (;@) ) — ,Uk:)

2
Ok, = n i ’
27;21 A

ilar way:
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GARCH models

It is a stochastic volatility model. It is popular because it
accounts for volatility jumps. The general GARCH process

is given by the coupled system of equations

{Tz‘ =¢-0;
o, =w+a- o1+ B-ri_1.
where the label ¢ now goes forward in time.

The model is used as follows: given a known series of log-

returns (normalized to mean 0),
r, = log(si) —log(si_l), 1= 1,...,77,,

and a choice of parameters, the likelihood of that given choice

is given by the expression

We calibrate the GARCH parameters w, o and (3 to this series

of returns by maximizing this likelihood.

The parameters we obtain, together with today’s return, will
tell us the volatility today; they can also make predictions

about future volatilities.
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GARCH list

ARCH(q).

q
0; =w + E A - Ti—k-
k=1

GARCH(p,q).

q P
0i=w+g CYk:"f’z'—k:‘f‘E Be - 1Ti—sp.

AGARCH.

oci=wta-(rio1 =&+ ri—1.
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Value at Risk

VaR of a portfolio IT is what the portfolio can loose overnight

with a certain probability:

Prob {II(0) —II(t) > VaR } = 5%.

1.2

0.8 |

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

95%
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Methodologies.

Three methods.
e Historical Methods.
e Monte Carlo.

e Analytic. RiskMetrics.

Caution:
e Lottery ticket

e Identical short and long positions
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Historical Methods

Profit and Loss statistics are computed using the value of the

actual portfolio under a set of historical scenarios.

Optimization problems:

Portfolio Compression Replace a portfolio with a smaller
one that preserves certain characteristics (price, VaR, sensi-

tivities, etc.)

Portfolio Replication Replace exotic or "unwanted” in-
struments by a (probably larger) portfolio of standardized

instruments, in a way that certain properties are preserved.

Basically, given a target portfolio II, and a base basket of
instruments m;, for: = 1,...,n, we try to choose the position

numbers 6; that minimize the expression

)

IT — zn:&m
1=1

where |-| can denote a variety of things, such as absolute

value of price, VaR, downside risk, etc.
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Monte Carlo

Historical scenarios are replaced by "random” ones. Let the

variance/covariance matrix given by V:

Consider the portfolio II(S), as a function of n risk factors
S distributed normally according to V, with present value
given by Sg. Let V% be the Cholesky decomposition of V.
Let &1, ..., &N 1.i.d. normal random vectors in R"™, with mean

0 and var/covar equal to the identity.

Future scenarios are then given by
&-V24+8y, i=1,....N.
The P&L of the portfolio is given by
I, = II (gi-w% +so> ~I(Sy), i=1,...N.
VaR can then be computed in two ways:

Parametric VaR: fit the distribution of II; to a normal distri-

bution and compute its standard deviation . Then

VaR =1.65-0.

Non—parametric VaR: order the values of II; in an increasing

way; VaR is the 95% percentile.
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Watch out!
e Cancellation problems

e Dimensionality problems

1.6 T T T T T T T
"exact" ——

14+ -

1.2 - -

0.8 _

04 —

0.2 —

0 I I I I I I I
0 0.5 1 15 2 25 3 35 4

Actual calculation
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Analytic Methods

Delta Normal VaR (RiskMetrics)

Approximate
oIl &
I(t) — I1(0)  — + d; - [Si(t) — S;(0)],
ot |, —
where
5. — 011
L 08 =0

VaR is then given by

Prob {zn: d; - [Sz(t) — SZ(O)] < —VaR } = 0.05.

If S;(t) — S;(0) is normally distributed, with 0 mean and

variance/covariance matrix given by V, this is equivalent to

/ e Vo2 4T 0e
§-x<—VaR, det(27V)

We now introduce the Cholesky decomposition of V. = HHT,

and change variables

cH™ ! = Y,
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to obtain

/ e lvl*/2 ﬂn/ = 0.05.
§Hyt<—VaR (2m)™=

Let A be the rotation that sends §H into (|0H|,0,...,0), and

change variables y = zA, to obtain

/ e~ 12I°/2 Ln/ — 0.05.
|6H|2; <—VaR (2m)™

Since

/ a2 42 / TR e da
€ oL = € —=—
|6H|z; <—VaR. (2m)" — 00 V2T

we conclude that

VaR = —z+/|0H]

= —2V6T . V-1.4,

where V is the variance/covariance matrix, and z is the 95%

percentile of the univariate normal distribution.
e Simple

e Inaccurate for non—linear instruments.
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Example
Let’s attempt to recreate the situation at Orange County.

We would have a portfolio II(ry,...,r,) of interest rate in-
struments, depending therefore on yield rates r;, for ¢ ranging
from 1 (overnight lending rate) to 14 (the 30 year rate).

The yield curve will have a covariance matrix V that mea-
sures the market volatility with respect to motions of the

interest rate curve.

We can find the principal components of V, which will give
us the directions of movement in the market that will tend

to be more pronounced.

In doing this, we may find that parallel shifts of the yield
curve will be most likely, with a 60% chance. Tilts will be

next, with a 25% chance.

Our portfolio is perfectly hedged against parallel shifts; it is
exposed to tilts. In other words, if we map the risk factors
r; into the principal components, and keep only the first two

ones (then most likely ones), we may find
d = (0,50%),

expressed in percentage points.
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It would be a mistake to think that the portfolio is risk-
free because it is insensitive to parallel shifts. Similarly, it
would be a mistake to think (as the OC officials did) that
the portfolio is risk-free because if we hold to maturity, it

will make money with certainty.

In fact, Delta-Normal-VaR will, in our situation, yield
1.65 - VTV§ = 40.

This means that we should expect our portfolio to lose 40%

of its value once a month.
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Bond — VaR
(joint with P. Fernandez.; A. Kreinin)

Zero coupon bond with notional Ny. Its price is
P(R(t)) = Noe™ ™9,
where R(t) is the one-year interest rate.
R=Rye",

where Ry is today’s interest rate and ( is a normal distributed
random variable with mean zero and variance ¢ (the daily

volatility of the interest rate).
Ry and R today’s and tomorrow’s interest rates, respectively.
a-Var is defined through
Prob {Noe * — Noe #* > P, } = .
We solve this by setting Ao, = PN "effo:

o = Prob {1 _ pRo(l—e®) )\a}

1
= Prob {GC >1—-— log(]- — Aa)}
Ry

= Prob {C > log (1 1 log(1 — )\a)> } :
Ry
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As ¢ is a N(0,0?%) random variable, we obtain that

1
log <1 — R_o log(1 — )\a)> = 0{q,

where ¢, is the a-quantile of the standard normal distribu-

1 o 2
o= — e Y /2dy.

With the above definition of A\, we can solve for P, to obtain

tion, that is

Pa — NOG_RO (1 . eRo(l—eU(Ia)> .

It is important to note that this exact calculation is possible
because the increment in the value of the bond P(0) — P(1)
is an increasing function of the random variable (. And this

allows us to invert the relation between both of them.
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0. 008

0. 006

0. 004

0. 002

VaR in terms of the interest rate Ry
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An approximation Approach

Taylor series:

oP 1 0%P
P(R) ~ P(Ry)+ —— R—Ro)+= —— R—Ryp)?
( ) ( 0>—|— 0R R:RO( 0)+2 0R2 R:RO( 0)
S———— N ~~ d
) r
Linear approx.
—R
J = a(Noe ) — —N()G_RO.
OR R=Ro

The P&L:
f(¢) = P(Ry) — P(R) = —6(R — Ry) = NoRpe 0 (e¢ — 1) .
And, as is an increasing function of (,

P, = Noe_RORo(eaqo‘ — 1).
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Quadratic attempt.

10%(Nye B
r=5° (81?262 = e,
R=R,
P& 1
9(C) = Noe~ " R, [e< 1= Hoe g

And this not an increasing function any more. In fact, it

attains a maximum at ¢ = log(1 + 1/Ry).

-0.2¢

-0.3¢

Picture of the function g(().
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RiskMetrics

The principal assumption of RiskMetrics methodology is that
the log-returns of the underlying are small, and so, we can
estimate the difference between two consecutive values keep-
ing only the first term of the corresponding Taylor series. In

our case, that means
R — Ry = Roe® — Ry ~ RyC.

With this assumption, we can perform the same calculation

as before:

P(Ry) — P(R) = —0(R— Ry) —T'(R— Ry)* — ...
— —SRo(C+C?+..)=TRYC+..)%+...

For the )-approximation, we should only keep the first order

terms in (, that is,
P(Ry) — P(R) = —6¢ = Nye " Ry(.

Again, this is an increasing function of (, and the VaR is

easily calculated:

a — VaRs = Noe o Ryoq,,.
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For the second order approximation, we should keep all the

terms up to second order in (, that is,

P(Ry) — P(R) = —6Ro( — 6 Ro¢* — T R2(?

= Noe PR, [§+§2 (1 — %)] :

And the o« — Vars_r, P, is now calculated as:

Ro\ .5 P,
= Prob 1 — —
o ro (C—I—( 5 )C >N06R0R0>

Again, this can be solved numerically for P,.
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0.5

Comparison of the different VaRs obtained. In continuous

line, the RiskMetrics approach. In small-dotted line, the ex-

act value. In big-dotted, the first order approximation.
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Quadratic Finance
Consider portfolio of price II with Sq,..., S, as underlyings.
Underlying vector
S =(51,...,5n)-
Portfolio parameters:

Delta : A = Vgl = ( o o )

55 35,

2
Gamma : I' = [Hessian|gll = { ol }

9S; 05,
Finance Time
A Linear Short Term
r Non-linear Long Term

Quadratic approximation:

It) ~TO0) +A-E+26-T- &, £=5S(t) —S(0)
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Quad—-VaR

Under the quadratic approximation, this becomes
Prob {A-¢+1¢-T-¢"<—VaR } =0.05

for

log—normally distributed. After some elementary analysis,

VaR changes into a related quantity K, given by

I(K) = e @A) dr = 0.05

L'A+% (z,2)<K

e Complexity is independent of number of instru-

ments
e Complexity — number of underlying risk factors.

e Monte Carlo friendly

(full instrument valuation replaced by algebraic formula).



Luis A. Seco Math-Risk Page 111

Two Analytical Issues

Asymptotic Analysis. Regard VaR as the solution of
Ih(K) = a,
for « = 0.05, and solve in the limit o — 0.
e Explicit algebraic expressions.
e Vega friendly.

Visualization of Risk. Display the dependence of VaR as

a function of the delta, gamma and V of the portfolio.
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Portfolio Volatility.

Lemma :
IH(K) :/ exp(—az\/_lazt/2) dz
Az+latra<-K Vvdet 27V

dx
- exp(—|z — v /2)
/% rDxt<R (27T> 2

where v replaces delta, D replaces V and I', and R replaces
VaR, given by —K .

PROOF:

Change variables for x = yvlb,

dy

Io(K) = xp(—1yl*/2) G

/A’-y—l—%ytI"ySK

where

A=AV,  T'=V"IV"

Put
I =% DS

with D diagonal and $ orthogonal. Change variables again,

z = 3y

dz

Io(K) = (2r)

exp(—|2|*/2)

/A”-z—l—%z]th<—K
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with
A =A§ = AV2 gL

Finally, put
z=(r—-v), v=A"-D1
which yields

dz
(27T>n/2 9

Io(K) = exp(—|z — v[2/2)

/%z]thgKJrA”]D—lA”t

QY

Remark Putting

AL Z A2 2 2 A 2 2 2

1

the risk factor largest responsible for VaR is the one corre-

sponding to fiy,.
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Reduction to positive Gamma

”The eleventh commandment was ‘Thou Shalt Compute’ or ‘Thou Shalt Not Compute’
. I forget which.”

— Epigrams in Programming, ACM SIGPLAN Sept. 1982

For D as before (real diagonal),

I(R) = / e~ 17— qg.
r-D-xt<R

DY 0
D =
0 -D;!

with Dy, Do positive diagonal.

I(R) = / e~ (@P12)=(¥,D2y) g4 gy,
|z—v1|?=|y—v2[?<R

%)
— / / 6_(ya ID2y)/ e_(maIDlm) 7«1”2_1 d,r.
0 |ly—va|2=r2 lz—1v12<r?+K
00

:/ Inl(\/'r2‘|‘K) 217}2(7“2>7“n2_1 dr

0 87“
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Harmonic VaR

(joint work with C. Albanese).

/ e—w(m—v)ID_l(m—v)tdx
[z|<R

Jn (27 R IE) "
= R" / 2 o m(&DE) cog(ore - v
n |RE|=2 (2 )\/de‘wr]D—1

S . . dé
_ Rn—i—Qk 7rk—|—j a / 2k (¢ v 27 6—7T£ID£ :
> [l —

The ap; are basically the Taylor coefficients of the Bessel

functions and the cosine function.

To compute each Gaussian moment, put
_1
f(a,B) = {det(D + i + i 0" v)} 2.
This can be easily computed, since ID is diagonal, and

_1/2 _1/2

(A; 11 J
1;[ +za +;)\j+m
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Then
[ 1ePHevpemt g — it ) 2
Rn

a= 086‘7

ak:

oo

ﬂ%ﬁ)

Further,

ai—i_j LA |~ Loon A
9ot 82-7' (0,0) = /]R2 (2mic)" (ZMB)J f(&, B)dadp.

A technical point: f is not integrable in 3, but dgf is. Hence,

) SR
Faf) = [ e 2L, p)dads

G(6) = /R e=27i50 £ 0) dar.

which yields

I(R) = R® {/0 d&J% <2R7r\/@) G(&

00 (2]a))*

NN

cos( —1J3 (2B[Al) F(@,B)
+m// zﬁzg 2]al) dadﬁ}

Lemma F(@, ) is supported inside
0 <6 <tan™!|u|?

where 6 is the angle between & and B
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Visualizing Risk

Large VaR-Large Delta —

Low VaR-Large Delta —
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Low Delta

Large Var --

1.18 -
0.88 -
0.584

0.288 -—-
-0.00801 -----
0.294 ----
0.22 -----
0.072 -~
-0.002 -----

Low Delta
0.146

Low Var --

15 -
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Asymptotic VaR
Joint work with R. Brummelhuis, A. Cérdoba, M. Quintanilla

We want to solve
I(R) = «a,

for o near 0. Note that this is equivalent to the limit R — oc.

V2 exp(=2R*A1 )

I(R) ~
S I, 0 ) RA

Hence, VaR is approximated by the solution to the equation

V2 exp(—2R*ATY)

= 0.05.
M7 (A = A DY2RATY
Sketch or proof.
—|x|? /2t
e~ Io1?/2 — (o)n/2 6
— (2m)"25 /A it

hence

_1/ L/ e~ 171%/2) 4y
2 tn/2 :1:1[):1:>R

The following lemma takes care of the rest.
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Lemma Let D be a manifold, with x¢ closest to then origin.
Then,

/ Alexp(=Alz[*/2)) da = e ol*/?
D

) (Z CV)\—(n—S)/2—1/ + O()\—(n—S)/Z—N>> :

v<N
The first term is
co = 2(2m) V2 zo| - det(I + |z K) ™2,
where K s the principal curvature matriz at x.

Application to Value-at-Risk

1.2

08 -

0.6 -

04 |

02 |

95%
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Credit risk

Hedging credit risk is difficult, although Credit Der-
ivatives provide a replicating approach to managing
credit risk. Hence, arbitrage—free pricing is replaced

by risk neutral pricing.

Credit risk assumes an option contract with a party
that is default prone. Credit exposure is based on
default probabilities, which we assume to be inde-
pendent of the underlying security of the option.

This simplifies calculations but it is not realistic.

When default occurs, a portion of the value of the
asset can be usually recovered. This sill be modeled
into the theory through the recovery rate, which we

will simply assume to be constant.
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Credit Premium

Losses due to credit risk will follow a certain probability dis-

tribution.

Expected Loss The expected losses under the default
probability distribution.

Unexpected Loss The standard deviation of the losses.

As a trader, you want to charge for both.

Problems.

e The distribution of losses is not normal. And non-

parametric approaches are hard.

e Discounting. A pricing scheme should discount to
present value losses that will take place in the fu-

ture.
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Credit Spread
We define the credit spread s as follows:

let P*(t,T) be price of the bond issued by the default-prone

party:

L P0.T)
= —log ——=.
ST T %% P0,1)

More generally, if we know the price V* of a contract with

the counterparty with cash flows ¢; at times ¢;,

V* = Z C; P(O, tz) G_Sti.

Note that the default-free price is

V = ZCzP(O,tZ)

Remark: Liquidity constraints will give rise to similar ef-

fects.
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The Hazard Rate

Let T be the default time, and F' its probability distribution:
F(t) = Prob {t* > t}.

The process h(t) is the hazard rate when

F@ﬁﬂEG_ﬂM@“>.

F' can be calibrated through the observed price of coupon

bearing bonds maturing at t;, as follows:

P =Y ¢ P(0,]) F(t]) + P(0,Ty) F(TV)
+R-YPO,8]) (F(H_, - F()).

R is the recovery rate.

This admits a solution in the form
F(t) — e fo a(s) ds,

for a piecewise linear a.
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Hazard Rate Models

We can now use the similarity between the hazard and the
short rate, to translate the methodology for interest rate

models into the modeling of the hazard rate evolution.

In a general setting, we can consider h(t) = F(X;), where
dXt = ,LL(Xt> dt + O'(Xt> th,
It gives rise to a Markovian model.

The joint evolution of the interest rates and the hazard rate

gives rise to two factor models.



