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1
Introduction

In this thesis we consider two problems in the area of option pricing. The fundamental problem

of option pricing is the following: suppose St denotes the price of some stock t years hence, and

we are offered a contract which promises to pay £X in one years time, where X is specified

as a function of fSt : t � �0� 1�g, the path taken by the stock in the coming year. How much

is this contract worth today? An elegant answer to this question is provided by the ‘arbitrage-

free’ pricing methodology pioneered by Black & Scholes (1973), Merton (1973), Harrison &

Kreps (1979) and Harrison & Pliska (1981). The premise is that any realistic financial market

should not permit the manufacture of a risk-free profit from zero initial capital, the so-called

no-arbitrage assumption. It turns out that for many classes of stock models, there is a common,

unique price for X consistent with the no-arbitrage property. The most tractable of these, the

Black-Scholes model, is still an area of active research; in Chapter 3 we will develop efficient

techniques for calculating the arbitrage-free price of various types of option in this model. This

model frequently arises when the underlying stochastic processes are assumed to be lognormal;

in Chapter 2 we examine some theoretical properties of a class of interest-rate models based on

a Gaussian random field. The problem of option pricing in one of these models often reduces

to a calculation in a Black-Scholes model.

The remainder of this chapter is divided as follows: in Sections 1.1 and 1.2 we describe

the arbitrage-free pricing methodology, first in discrete time and then continuous time. In Sec-

tion 1.3 we present the Black-Scholes model; finally in Section 1.4 we give an introduction to

interest-rate models.

1.1 Option pricing in discrete time

First consider a finite, discrete time model for the stock price: Sn, n � 0� 1� � � � � N , where S0

is deterministic, and the sample space � is finite. Let Fn denote the history of the stock price

up to time n and suppose that we are trying to price a contract which makes a single payout
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of £X at time N , where X is a specified function of FN . We assume that an investor can buy

and sell stock in arbitrary quantity without transaction costs; they can also ‘short-sell’ stock

(hold a negative number of units) and can invest in a bank account paying interest at a constant

interest-rate r (so £ 1 invested in the bank account at time 0 will be worth £ �1� r�n at time n).

A concept central to the arbitrage-free pricing methodology is the following:

Definition 1.1 A probability measure Q is said to be an equivalent martingale measure (EMM)

if Q is equivalent to P (that is, P and Q have the same null sets) and the discounted stock

price �1 � r��nSn is a Q -martingale: for all m � n, we have

E Q�Sm j Fn� � �1 � r��m�n�Sn�

Definition 1.2 A self-financing trading strategy is a pair ��� �� of processes such that �n and �n

are Fn-measurable and such that the trading strategy which holds �n units of stock and £ �n
over the time period �n� n� 1� requires no injections or removals of cash after time-0:

�nSn�1 � �1 � r��n � �n�1Sn�1 � �n�1 for n � 0� � � � � �N � 1�.

An important property of self-financing trading strategies is the following:

Lemma 1.3 If ��� �� is a self-financing trading strategy and Q is an EMM, the discounted value

process Vn � �1 � r��n��nSn � �n� is a Q -martingale.

Proof It is enough to consider the expected increment in V over a single step, so choose an

arbitrary n � f0� 1� � � � � �N � 1�g and note that since ��� �� is self-financing and �1 � r��nSn is

a Q -martingale we have:

E Q�Vn�1 � Vn j Fn� � �1 � r��nE Q��1 � r��1��n�1Sn�1 � �n�1�� �nSn � �n j Fn�
� �1 � r��nE Q��1 � r��1��nSn�1 � �1 � r��n�� �nSn � �n j Fn�
� �1 � r��n�nE Q��1 � r��1Sn�1 � Sn j Fn�
� 0�

Thus Vn is a Q -martingale. �

Definition 1.4 A self-financing strategy is said to be an arbitrage if it satisfies (i) �0S0 � �0 � 0,

(ii) �NSN � �N � 0, and (iii) E ��N SN � �N � � 0.

Definition 1.5 A stock model is complete if for each random variable X with E jX j ��, there

is a self-financing trading strategy ��� �� with �NSN � �N � X . We say that such a trading

strategy hedges X .

We can now state a version of the most important theorem in option pricing.
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Theorem 1.6 (Harrison & Pliska) A finite, discrete time stock model is arbitrage-free if and only

if there is at least one EMM. The model is complete and arbitrage-free if and only there is exactly one

EMM.

Proof First suppose that Q is an EMM and there is also an arbitrage ��� ��. Since ��� �� is

self-financing, its discounted value process Vn is a Q -martingale; thus E QVn � V0 for all n.

But ��� �� is an arbitrage so V0 � 0. Also from the properties of an arbitrage, we have VN � 0

and EVN � 0; thus as Q and P are equivalent, we have E QVN � 0, giving a contradiction.

Conversely, suppose that there are no arbitrage opportunities, and define the sets

X� � fX : X � 0� EX � 1g (1.1)

X 0 � fX : X � VN ��� �� where ��� �� is self-financing and V0��� �� � 0g (1.2)

Since � is finite, the set of FN -measurable functions is a finite-dimensional vector space. Note

that X� is closed and convex and that X 0 is a linear subspace. Since there are assumed to be no

arbitrage opportunities, X� and X 0 are disjoint. By the separating hyperplane theorem, there

exists a linear functional L with L�X� � 0 for X � X 0 and L�X� � 0 for X � X�. Now define

the probability measure Q by Q �A� � L�I�A���L�1� where I�A� denotes the indicator function

of A. Since L�X� � 0 for any X � 0 with E �X� � 1, P and Q are equivalent. We will show

that Q is an EMM.

Let � be a stopping time with values in 0� 1� � � � � N and let ��� �� be the strategy

�n � I�� � n�

�n � I�� � n��1 � r��n���S� � �1 � r�nS0�

Observe that ��� �� is self-financing and V0��� �� � 0, so we have L��NSN��N � � 0. By the def-

inition of Q , for any random variable Z, E Q�Z� � L�Z��L�1�, so we have E Q��NSN��N � � 0,

and hence

�1 � r�NS0 � E Q
�
I�� � N��1 � r��N���S�

�
� �1 � r�NE Q

�
�1 � r���S�

�
�

Thus S0 � E Q
�
�1 � r���S�

�
for any stopping time � with values in 0� 1� � � � � N which implies

that �1 � r��nSn, n � 0� 1� � � � � N is a Q -martingale.

Turning to the other other equivalence, we will first show that if the market is complete,

there can be only one EMM. Let Q 1 and Q 2 be EMMs, let A � FN be an arbitrary event and

let ��� �� be the hedging strategy for I�A�. Since ��� �� is self-financing, its discounted payoff

function is a Q 1-martingale. Thus we have

V0��� �� � �1 � r��NE Q1�I�A��

� �1 � r��NQ 1�A��
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But Q 2 is also an EMM, so using the same argument we deduce that Q 1�A� � Q 2�A� and there

can be at most one EMM.

Conversely, suppose that the market is arbitrage-free but not complete, so there exists an

EMM Q 1 and also a contract X which cannot be hedged. Let

S � fVN ��� �� : ��� �� is self-financingg�

a finite dimensional vector space containing 1, and write X � A � U where A � S and U is

non-zero and orthogonal to S (in particular E �U� � 0). Since P and Q 1 are equivalent and � is

finite, we can find 	 � 0 such that

Q 2�A� � Q 1�A� � 	 E �U I�A��

defines a probability measure equivalent to Q 1 and P. An argument similar to that used in the

second part of this proof shows that �1 � r��nSn is a Q 2-martingale. Thus the EMM is not

unique. �

If the model is complete and arbitrage-free, the time-0 value of an option must be the ini-

tial value of its hedging portfolio. From Lemma 1.3 and the fact that if ��� �� hedges X , we

have �NSN � �N � X , we deduce the pricing equation for the initial value of X :

X0 � �1 � r��NE QX (1.3)

where Q is the EMM. In general, the time-n value of X is given by

Xn � �1 � r��n�N�E Q�X j Fn��

Observe that once we have identified the EMM Q , the problem of pricing X is just an expecta-

tion calculation.

1.2 Option pricing in continuous time

We now turn to the continuous time setting. The stock price St, t � �0� T �, is assumed to be

a continuous semimartingale on a filtered probability space ���F �P� where the filtration F is

the P-augmentation of the filtration generated by a one-dimensional Brownian motion B. The

stock price St then admits the decomposition St � Mt � At where At is a continuous process

of finite variation and Mt �
R t

0 
u dBu for some previsible process 
u, (see Rogers & Williams

(1987), Theorem IV.36.5, for example).

Again we assume that a risk-free bank account is available, now paying interest at the con-

tinuous rate r, so £ 1 invested at time 0 grows into £ exp�rt� by time t.
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Remark 1.7 The restriction to a constant interest-rate is mainly for notational convenience.

If rt is a strictly positive deterministic process (so £ 1 invested in the bank account at time 0 is

worth exp�
R t

0 r�u� du� by time t) the natural generalisations of the results in this section can be

proved in a very similar way.

We now replace Definitions 1.1–1.4 with their continuous time versions.

Definition 1.8 A probability measure Q is said to be an equivalent martingale measure (EMM)

if Q is equivalent to P, and the discounted stock price exp��rt�St is a local Q -martingale.

Definition 1.9 A self-financing trading strategy is a pair ��� �� of previsible processes such that

the process �tSt � �t is a semimartingale (for example, P�
R T

0 ��2
t 


2
t � j�tj� dt � �� � 1 is

sufficient for this) and such that

�tSt � �t � �0S0 � �0 �

Z t

0
�u dSu �

Z t

0
r�u du for all t � �0� T �. (1.4)

Before we define what we mean by a continuous-time arbitrage, it is necessary to impose

some restrictions on the set of trading strategies to exclude examples such as the following: sup-

pose At � 0 and 
t � 1 for all t and consider the strategy which buys 1 unit of stock at time 0,

and at time 1 � 2�n for n � 1� 2� � � � either sells all its stock, if its gain by this time is at least

£ 1, and otherwise doubles its stock holding. By time 1, this strategy shows a profit of at least £ 1

with probability one, and also makes a finite number of trades with probability one. To exclude

this type of strategy, we introduce the concept of an admissible trading strategy.

Definition 1.10 A self-financing trading strategy ��� �� is said to be admissible if for some

EMM Q , the discounted value process Vt �� exp��rt���t St � �t� is a Q -martingale.

Lemma 1.11 If ��� �� is a self-financing trading strategy and Q is an EMM then the discounted

value process Vt is a local Q -martingale.

Proof Applying Itô’s Lemma to the semimartingale Vt gives

dVt � �rVt dt� e�rt��t dSt � r�t dt��

and applying it to exp��rt�St we have

d�exp��rt�St� � �r exp��rt�St dt� exp��rt� dSt�

Combining these gives

dVt � �rVt dt� �t�d�e
�rtSt� � re�rtSt dt� � re�rt�t dt

� �t d�e
�rtSt��

Thus Vt is a local Q -martingale. �
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Definition 1.12 An arbitrage is a self-financing trading strategy ��� �� for which (i) the strat-

egy ��� �� is admissible, (ii) we have �0S0 � �0 � 0, �TST � �T � 0 and E ��T ST � �T � � 0 (the

generation of a riskless profit from zero capital).

Lemma 1.13 There are no arbitrages.

Proof If ��� �� is an arbitrage, there is an EMM Q under which its discounted value process is

a Q -martingale, so V0 � E QVT . Since VT � 0 P-a.s. and P�VT � 0� � 0, from the equivalence

of P and Q , we have PQ�VT � � 0. But V0 � 0, giving a contradiction. �

Remark 1.14 The existence of an EMM also excludes another type of arbitrage. If ��� �� is

a self-financing trading strategy which satisfies condition (ii) in Definition 1.12, and has a

discounted value process which is bounded below, Vt � K for some K � R, then there

can be no EMMs. To see this, suppose Q is an EMM; from Lemma 1.11, Vt is a local Q -

martingale. A local-martingale bounded below is a supermartingale, from Fatou’s Lemma, so we

have E QVT � E QV0. Thus (ii) cannot hold, by an argument similar to the proof of Lemma 1.13.

Definition 1.15 A arbitrage-free stock price model is said to be complete if for each random

variable X and EMM Q with E QjX j ��, there is an admissible self-financing trading strat-

egy ��� �� with �TST � �T � X . We say that ��� �� hedges X .

Clearly if ��� �� hedges X and our model is to remain arbitrage-free, the value of X at time 0

must be �0S0 � �0. Since its discounted value process is a martingale under some EMM Q , the

time-t value of the claim, Xt satisfies the pricing equation

Xt � e�r�T�t�E Q�X j Ft�� (1.5)

Remark 1.16 In a way similar to the proof of Theorem 1.6 we can show that if the stock model

is complete, then there can be at most one EMM. The only complication is that we need Vt,

the discounted value process of the hedging strategy used in the proof of Theorem 1.6 to be a

martingale under an arbitrary EMM. Since Vt is bounded �as it is the conditional expectation

of an indicator function, and is a martingale under the EMM admitting ��� ���, and a bounded

local-martingale is a martingale, this condition holds.

Theorem 1.17 Suppose 
 � 0 and j
�1
t �rSt � A�t�j � K for some constant K, then there is a

unique EMM Q , whose Radon-Nikodým derivative is given by

dQ

dP
� exp

�Z T

0
�t dBt � 1

2

Z T

0
j�tj2 dt

�
(1.6)

where �t � 
�1
t �rSt �A�t�. In addition, the stock model is complete.

Proof The stock price satisfies the SDE

dSt � 
t dBt �A�t dt�
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and with � and Q as defined in the statement of the Lemma, the Cameron-Martin-Girsanov

Theorem (see Rogers & Williams (1987), Theorem IV.38.5 for example) shows that the pro-

cess 	Bt � Bt�
R t

0 �u du is a Q -Brownian motion, provided that the expectation of the right-hand

side of (1.6) equals one. The condition j�tj � K together with Novikov’s criterion (see Revuz

& Yor (1994), Chapter VIII, Proposition 1.15) are sufficient for this purpose. Noting that the

discounted stock price exp��rt�St has SDE

d�e�rtSt� � e�rt�
t dBt � �A�t � rSt� dt�

� e�rt
t d 	Bt (1.7)

we see that Q is an EMM. In terms of the Q -Brownian motion 	Bt, the stock price follows the

SDE

dSt � 
t d 	Bt � rSt dt�

Uniqueness of the EMM will follow from completeness, which we now prove.

Let X be a random variable with E QjX j �� for some EMM Q . Defining vt � E Q�X j Ft�,
which is a continuous Q -martingale with vT � X , we will look for a trading strategy whose dis-

counted value process is vt. Since 	B has the predictable representation property with respect

to F , there is a previsible process ht with
R T

0 h2
t dt � � and vt � E QX �

R t
0 hu d

	Bu. Suppose

the strategy ��� �� is self-financing and has discounted value process vt. Writing Et � exp�rt�vt
for its undiscounted value process, we have

dEt � ert�rvt dt� ht d 	Bt�

� �t dSt � r�t dt

if the strategy is to be self-financing. Substituting dSt � 
t d 	Bt � rSt dt and equating finite-

variation and non-finite-variation terms gives

�t � ertht�
t

�trSt � r�t � rertvt�

The first of these we can use to define �t, while the second determines �t. The strategy ��� �� is

the required hedge for X . �

Remark 1.18 If St is Markov and X depends only on ST , then the time-t value of the op-

tion has the form V �St� t� for some function V . If V is sufficiently smooth, we can apply Itô’s

Lemma, giving �t � �V �s� t���s. Thus with a way of calculating the time-t value of the option,

we can obtain the hedging strategy by differentiating.
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1.3 The Black-Scholes model

The Black-Scholes model assumes that the stock price follows a diffusion with SDE

dSt � St�
 dBt �  dt�

where 
 and  are constants and 
, the volatility is strictly positive. This fits into the framework

of the previous section through the choices 
t � 
St, At � 
R t

0 Su du. These choices for 
t and

At reflect the idea that it is more likely that the percentage increments in the stock price will be

stationary over time than the increments themselves.

Proposition 1.19 (i) The Black-Scholes model is complete. (ii) The time-0 value of a contract pay-

ing the FT -measurable amount X at time T is exp��rT �E QX where logSt is a Brownian motion

with drift under Q , specifically, logSt � �r � 1
2


2�t � 
 	Bt for a Q -Brownian motion 	Bt. In

particular, the law of logST under Q is normal with mean
�
r � 1

2

2
�
T and variance 
2T .

Proof (i) Since j
�1
t �A�t�rSt�j � 
�1j�rj is constant, the conditions of Theorem 1.17 hold

for the Black-Scholes model; thus the model is complete.

Parts (ii) and (iii) follow from the SDE for exp�rt�St under Q given in (1.7). �

The popularity of the Black-Scholes model is due to its tractability, which arises from the

simple law of fStg under the martingale measure. This law is unchanged if  is replaced with

a fairly general stochastic process (e.g. a bounded previsible process) so the assumption of con-

stant  is not very significant. With a deterministic but time-dependent volatility and interest-

rate, ST is still lognormal, so pricing a contract of the form X�ST � is generally no harder,

but logSt is now a Brownian motion with time-dependent drift, and the problem of pricing a

fully path-dependent contract can be significantly harder.

Example 1.20 Convention dictates that our first example of a option which can be priced ex-

plicitly in the Black-Scholes model is the European Call option. This grants the holder the right,

but not the obligation, to buy one unit of stock at a predetermined strike price K, at the exercise

time T . At time T , we see that the option effectively has the value �ST �K�� � max�ST �K� 0�
since the option will be exercised and the stock immediately re-sold if the stock price has risen

above the strike price (giving an immediate profit of ST �K) and be allowed to lapse otherwise.

We can calculate the time-0 value of this option using (1.5),

X0 � e�rT E Q�ST �K��

� e�rT E Q
�
S0 exp

�
�r � 1

2

2�T � 


p
TN

��K
��

for some random variable N which is standard normal under Q . This has a closed form solution

known as the Black-Scholes formula:

X0 � S0


�
log�S0�K� �

�
r � 1

2

2
�
T



p
T

�
�Ke�rT


�
log�S0�K� �

�
r � 1

2

2
�
T



p
T

�
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where 
 denotes the normal distribution function.

Other examples, where X depends on more than just ST , and for which explicit pricing for-

mulae still exist are lookback options, such as X � ST � inf fSt � t � �0� T �g, and barrier options,

like X � �ST � K� I
�
supt��0�T � St � H

�
for a constant H . Derivations of pricing formulae

for these examples can be found in Musiela & Rutkowski (1997). With a general determinis-

tic time-dependent volatility process, neither of these types of options have simple closed-form

expressions.

An important example of an option which does not have a simple pricing formula even in

the Black-Scholes model with constant volatility is the Asian option: X �
�R T

0 Su du �K
��.

An explicit formulae exists in the form an inverse Laplace transform (see Geman & Yor (1993)

and Geman & Eydeland (1995)) but it appears to be difficult to evaluate numerically.

1.4 Interest-rate models

The underlying assets in an interest-rate model are the (zero-coupon) bonds, for each time t and

future time T � t, we can buy and sell a T -bond, an asset making a single cash payout of £ 1 at

time T . We denote the time-t price of a T -bond Pt�T and refer to the curve fPt��g as the term

structure at time t. Note that PT�T � 1, and in general we would expect Pt�T � 1 for t � T . We

will assume that a bank account is available, or equivalently assume the existence of a cash bond

whose value at time t is

Yt � exp
�Z t

0
ru du

�

where rt is the instantaneous riskless interest-rate, or spot-rate, at time t. Note that unlike in

the discussion of stock-models we must allow the spot-rate to be non-constant; indeed, un-

less rt is non-deterministic, the no-arbitrage condition implies that Pt�T takes the (non-random)

value exp�� R Tt ru du�. For simplicity, we will consider trading strategies which only ever invest

in the savings account and a finite number bonds.

Remark 1.21 Consider a contract paying out the random amount X at time T , which will

become known by the earlier time T � � T ; a simple argument using the no-arbitrage condi-

tion implies that the time-T � value of X is XPT ��T . Similarly, the time-t value of a contract

worth
P

i aiPT�Ti at time T , (for constants ai� Ti, i � 1� � � � � n) is
P

i aiPt�Ti .

In what follows we will use two types of interest-rate. Normally we will work with contin-

uously compounded rates—a loan of £ 1 at rate � for a period of length t requires a final pay-

ment of £ exp��t�, but occasionally we will refer to simple compounding, in this case a payment

of £ �1 � �t� is indicated.
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Definition 1.22 The �-LIBOR rate L�t �� ��1�P�1
t�t�� � 1�, is the simple rate of interest avail-

able at time t on a loan from the current moment to the later time t � �. The instantaneous

forward rate Ft�T at time t for time T � t is defined by Ft�T � �����T � logPt�T (assuming the

derivative exists).

Remark 1.23 Consider an agreement fixed at time t � T to loan £ 1 over �T� T � � � at (con-

tinuously compounded) rate �. At time T the borrower will receive £ 1 and subsequently return

£ exp���� at time T � �. The borrower’s position is thus equivalent to holding a T -bond and

shorting exp���� �T � ��-bonds, a portfolio whose time t value is �Pt�T � exp����Pt�T�� �. If

we consider the rate 	�, determined by the term-structure at time t, at which we would be

willing to both borrow and lend over the period �T� T � � �, the no-arbitrage assumption im-

plies that 	� � ��1 log�Pt�T �Pt�T���. From this observation, we see that we can interpret the

instantaneous forward rate Ft�T as the rate implied by the time-t term structure for the pe-

riod �T� T � dT �. We assume that rt � Ft�t.

1.4.1 Interest-Rate derivatives

We now introduce the major interest-rate derivatives.

Definition 1.24 A cap at rate � for the period �T� T �� � gives the holder the option, at time T ,

of borrowing £ 1 at rate � over �T� T � � �.

If L�T � � the owner of the cap will borrow £ 1 from the seller of the cap and invest the

money in the market at the higher rate. When the interest payments are exchanged at time T��,

the holder of the cap will show a profit of

P�1
T�T�� � �1 � ����

Since the profit available by exercising the option is known at time T , it follows from Re-

mark 1.21 that the time-T value of the cap is

�1� �1 � ���PT�T�� �
��

Thus a cap is an option on a linear function of a bond price. In a complete model with EMM Q ,

the value of the cap is given by

Yt E
Q
�
Y �1
T �1� �1 � ���PT�T�� �

�
��Ft�� (1.8)

Letting 	�T be the solution of 1� �1 � 	�T ��PT�T�� � 0, this may be written as

Yt E
Q
�
Y �1
T PT�T����	�T � ���

�

so the cap effectively pays ��	�T � ��� at time T � �.
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Definition 1.25 A swap at rate � is an agreement between two parties, the payer and the re-

ceiver, denoted P and R respectively, in which P pays R interest on a loan of £ 1 at rate � over

each of the time intervals �T0� T1�� � � � � �Tn�1� Tn�, while R pays P interest on a loan of £ 1 at the

LIBOR rate L�Tj�Tj�1�
Tj�1

over �Tj�1� Tj �, j � 1� � � � � n. We consider the case where the payments

are made in arrears, so the interest payments corresponding to the time interval �Tj�1� Tj � are

exchanged at time Tj .

Normally Tj � Tj�1 � � is the same for all j. At time Tj�1, the LIBOR rate L�Tj�1
becomes

known and P subsequently shows a profit of P�1
Tj�1�Tj

� �1���� when the interest payments are

exchanged at time Tj . Thus the time-Tj�1 value of this ‘leg’ of the swap is 1� �1� ���PTj�1�Tj

and the time-t value, for t � Tj�1, is

Pt�Tj�1 � �1 � ���Pt�Tj �

We conclude that from the payer’s point of view, for t � T0, the time-t value of the whole swap

is given by

Pt�T0 � Pt�Tn � ��

nX
j�1

Pt�Tj � (1.9)

Definition 1.26 A swaption with rate � is an option giving the holder the right to assume the

rôle of the payer in a swap contract at a specified time T � T0.

From (1.9), we see that a swaption is effectively an option on a linear combination of bond-

prices with time t value

Yt E
Q
h
Y �1
T

�
PT�T0 � PT�Tn � ��

Pn
j�1PT�Tj

�� ���Ft
i
� (1.10)

For the case where fYT � PT�T0 � � � � � PT�Tng are joint lognormal under Q , we will present an effi-

cient way of estimating (1.10) in Chapter 3.

1.4.2 Models for the spot-rate

Early attempts at modelling interest-rates concentrated on modelling the spot-rate directly. The

model proposed by Vasicek (1977) assumes that rt satisfies the SDE

drt � ��� � rt� dt� 
 dBt

where Bt is a Brownian motion under an EMM, while Cox, Ingersoll & Ross (1985) (CIR)

suggest the model

drt � ��� � rt� dt� 

p
rt dBt�
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which has the advantage of guaranteeing a non-negative spot-rate.

In order to calibrate a spot-rate model using the current bond prices, it is useful to have a

formula for the price of zero coupon bonds in terms of the model’s parameters and the current

spot-rate. In the Vasicek model, bond prices are given by the formula

Pt�T � a�t� T �e�b�t�T �rt (1.11)

where, if � �� 0,

b�t� T � � ��1�1� e���T�t�
�

a�t� T � � exp
�
�b�t� T �� T � t���2� � 1

2

2�

�2 � 
2b�t� T �2

4�

�

while if � � 0, bt�T � T � t and at�T � exp
�

2�T � t�3�6

�
. In the CIR model, bond prices are

again given by (1.11) but now a�t� T � and b�t� T � are given by

b�t� T � �
2�e��T�t� � 1�

�� � ���e��T�t� � 1� � 2�

a�t� T � �

�
2�e������T�t��2

�� � ���e��T�t� � 1� � 2�

�2����2

where �2 � �2 � 2
2.

Since both of these models have a finite number of parameters but there are potentially an

infinite number of bond prices, we cannot hope to fit either of these models perfectly to a gen-

eral initial term structure. The models of Ho & Lee (1986) and Hull & White (1990) address

this problem by introducing time-dependent coefficients; in the continuous time version of Ho

& Lee’s model, the spot-rate has SDE

drt � at dt� 
 dBt

while Hull & White suggest

drt � �at � brt� dt� 
 dBt�

By suitable choice of the function at, both models can be made to fit any initial term struc-

ture. Unfortunately at must be re-calibrated as time evolves since we cannot capture all possible

movements in the term structure with a single driving Brownian motion. An important advance

in interest-rate modelling which solves this problem is described in the next section.

Both the Vasicek and CIR models are examples of affine term structure models as identified

by Duffie & Kan (1994). If the term structure is described by a n-dimensional state variable X ,

which satisfies an SDE of the form

dXt � �Xt� dt� 
�Xt� � dWt
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where  and 

� are affine functions, rt � R�Xt� forR affine and W is an n-dimensional Brow-

nian motion under an EMM, the zero-coupon bond prices have the form Pt�T � at�T exp��bt�T �
Xt� where the functions a and b can be obtained by solving a pair of differential equations. In

the Vasicek and CIR models, the spot rate itself serves as a state variable.

1.4.3 Forward-rate models

Instead of modelling the spot-rate and deriving a pricing formula for the zero-coupon bonds, an

alternative approach is to model the collection of instantaneous forward-rates, fFt�T g. Since the

bond prices are given by Pt�T � exp�� R T
t
Ft�u du�, this method will automatically fit the initial

term structure.

The HJM framework

Heath, Jarrow & Morton (1992) consider modelling the evolution of the instantaneous forward-

rates with a family of semimartingales adapted to the natural filtration of a finite-dimensional

Brownian motion; they assume that for each t � T , the forward-rate Ft�T satisfies the SDE

dFt�T � �t�T dt� 
t�T � dBt

where B is a an n-dimensional P-Brownian motion, and � and 
 are predictable processes satis-

fying
R T

0 �j�t�T j� j
t�T j2� dt ��, for all T . Defining the vector processes at�T and bt�T by

at�T � �
Z T

t


t�u du�

bt�T � �
Z T

t

�t�u du�
1
2 jat�T j2�

the dynamics of the zero-coupon bond prices Pt�T can be shown to be

dPt�T � Pt�T ��rt � bt�T � dt� at�T � dBt��

To ensure the non-existence of arbitrage opportunities, we assume that there is a vector pro-

cess �t with

bt�T � at�T �t � 0 (1.12)

and

E exp
�Z T

0
�t � dBt � 1

2

Z T

0
j�tj2 dt

�
� 1�
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The probability measure Q , defined by dQ�dP � exp
�R T

0 �t � dBt � 1
2

R T
0 j�tj2 dt

�
is then an

EMM, and the process 	Bt � Bt �
R t

0 �u du a Brownian motion under this measure. Differenti-

ating (1.12) with respect to T , noting that �t does not depend on T , gives

��t�T � 
t�T �
Z T

t


t�u du� 
t�T � �t � 0�

thus the forward-rate dynamics under Q are

dFt�T �

�

t�T �

Z T

t


t�u du

�
dt� 
t�T � d 	Bt� (1.13)

The case where 
t�T is deterministic, the ‘Gaussian HJM model’, gives rise to lognormal

bond prices, and is particularly tractable. Kennedy (1994) considers a more general form of

Gaussian forward-rate model, based on a Gaussian random field, and derives the dynamics of

the forward-rates under an EMM. We will examine some probabilistic properties of this type of

interest rate model in Chapter 2.

1.4.4 Other models

Many other models have been proposed for interest-rates; we will mention a few here. Fle-

saker & Hughston (1996) propose a model in which the bond prices are modelled directly

as Pt�T � A�1
t E �AT j Ft� where At is a strictly positive supermartingale. They show that

if At � ft � gtWt where Wt � exp
�
Nt � 1

2

2t
�

for a P-Brownian motion Nt, then all caps

and swaptions can be priced with a Black-Scholes-type formula. In addition, if ft and gt are

strictly positive and strictly decreasing, we guarantee positive rates. A related approach was sug-

gested in Rogers (1997). Another idea is to model the LIBOR rate of some fixed maturity as

lognormal, see Goldys, Musiela & Sondermann (1994), Sandermann, Sondermann & Miltersen

(1994), and Brace, Ga̧tarek & Musiela (1997). This again gives a Black-Scholes-type formula

for the price of caps, but does not posses an exact swaption valuation formula.



2
Gaussian Forward Rate Models

2.1 Introduction

In this chapter, we consider interest-rate models which use a continuous Gaussian random field

to model forward-rates; this includes HJM-type models where the forward-rates are driven by a

finite-dimensional Brownian motion, and also certain ‘infinite factor’ generalisations.

Let H denote the diagonal upper half plane,

H �� f�s� t� � t � sg� (2.1)

and suppose that Fs�t, �s� t� � H , is the surface of instantaneous forward-rates, related to the

zero-coupon bond prices, Ps�t, via

Ps�t � exp
�
�
Z t

s

Fs�u du

�
� (2.2)

We will assume that F is continuous, and to ensure the no-arbitrage condition, we assume that

there exists a measure Q under which the discounted bond prices,

Zs�t �� exp
�
�
Z s

0
Fu�u du

�
Ps�t (2.3)

are Q-martingales with respect to the filtration

	Fs �� 
�Fu�v � u � s� v � u�� (2.4)

Let us start by investigating some implications of the martingale measure assumption, following

Kennedy (1997). From (2.2) and (2.3), we have

Zs�t � exp
�
�
Z s

0
Fu�u du�

Z t

s

Fs�u du

�
�

so the martingale measure condition, E �Zs2 �t j 	Fs1� � Zs1�t for s1 � s2 � t, amounts to

E
�
exp�A�

�� 	Fs1

�
� 1� (2.5)
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where

A � �
Z s2

s1

�Fu�u � Fs1�u� du�
Z t

s2

�Fs2�u � Fs1�u� du�

Since A is a Gaussian random variable, we have

E
�
exp�A�

�� 	Fs1

�
� exp

�
E �A j 	Fs1 � �

1
2 var�A j 	Fs1�

�
� (2.6)

Also from the Gaussian property, var�A j 	Fs1� is constant with probability one; combining this

with (2.5) and (2.6), it follows that E �A j 	Fs1 � is constant with probability one; thus A is inde-

pendent of 	Fs1 . Now let s � s1 and v � s. Since Gaussian random variables are independent if

and only if they are uncorrelated, A is uncorrelated with Fs�v , and we have

�
Z s2

s1

cov�Fs�v � Fu�u � Fs1�u� du�
Z t

s2

cov�Fs�v � Fs2�u � Fs1�u� du � 0�

which we can differentiate with respect to t to give

cov�Fs�v � Fs2�t � Fs1�t� � 0 for s � s1 � s2 � t, and v � s; (2.7)

thus 	Fs1 and 
�Fs2�t�Fs1�t : s1 � s2 � t� are independent. As F is Gaussian, its distribution is

determined by its mean and covariance structure; accordingly, for �� � � H� define

� �� E �F� � (2.8)

���� �� �� cov�F�� F��� (2.9)

Condition (2.7) implies that we can write

��s1� t1� s2� t2� � c�s1 	 s2� t1� t2� (2.10)

for some function c, symmetric in t1 and t2, where s1 	 s2 denotes min�s1� s2�. The martingale

measure assumption also gives rise to an HJM-style drift condition:

s�t � 0�t �

Z t

0
�c�s 	 v� v� t�� c�0� v� t�� dv� (2.11)

A proper proof of this can be found in Kennedy (1994). To give an indication of why (2.11) is

plausible, we will use the HJM drift constraint (1.13) and the fact that the covariance structure

of the infinitesimal increment in the forward-rate curve over �s� s � ds� is given by 
�s� t1� �

�s� t2� ds for an HJM model, and by

c��s� t1� t2� ds � ����s�c�s� t1� t2� ds
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in the current framework. Integrating the HJM drift term over �0� s� gives

s�t � 0�t �

Z s

0

�u� t� �

Z t

u


�u� v� dv du

�

Z s

0

Z t

u

c��u� v� t� dv du

�

Z t

0

Z s�v

0
c��u� v� t� du dv

�

Z t

0
�c�s 	 v� v� t�� c�0� v� t�� dv�

Thus  is completely determined once c and f0�t : t � 0g have been specified. Also, c

and f0�t : t � 0g can be chosen arbitrarily, provided (2.10) and (2.11) hold for some sym-

metric non-negative definite function � � H2 
H2 � R . All the conditions we discuss in this

chapter will be conditions on �—we will only ever be interested in the ‘stochastic’ part of the

field F . To simplify the notation, henceforth we will ignore the deterministic part of F , and

assume � � 0, with the understanding that the actual forward-rates are the sum of F and a

deterministic function. It is also convenient to assume that F is defined on all of R2 rather than

just H ; note that setting Fs�t � Ft�t for s � t preserves property (2.7) (trivially); indeed F now

satisfies the condition that Is is independent of Fs, denoted

Is � Fs (2.12)

where

Is �� 
�Fs��t � Fs�t � s
� � s� t � R� (2.13)

Fs �� 
�Fs��t � s
� � s� t � R� (2.14)

which we will refer to as the independent increments property. A continuous Gaussian field F sat-

isfying (2.12) will be called a random field model. Another property we shall frequently consider

is stationarity

�
F�1 � � � � � F�n

�
�D

�
FS�x��1 � � � � � FS�x��n

�
� for x � R� n � N� �i � R2 (2.15)

where �D is equality in law and S�x� denotes translation parallel to the line s � t:

S�x��s� t� � �s� x� t� x��

One benefit of assuming Gaussian forward-rates is that it becomes easy to investigate ‘global’

properties such as Markov conditions. In Section 2.2 we will follow a similar course to Kennedy

(1997) by investigating different versions of the Markov property, and seeing how they restrict

the form of the covariance structure. Kennedy (1994) shows how transformations of the Brow-

nian Sheet, the zero-mean, continuous Gaussian field on �0���2 with covariance structure

cov�Xs1�t1 �Xs2�t2� � �s1 	 s2��t1 	 t2�
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can be used to construct random field models. In Section 2.2.1 we show that if such a field is

stationary, its covariance structure is determined by just three parameters and has the form

cov�Fs1�t1 � Fs2�t2� � 
2 exp
����t1 	 t2 � s1 	 s2�� jt1  t2 � s1 	 s2j

�
� (2.16)

for 0 � � � 2, where s1  s2 denotes max�s1� s2�, which is also the form of the covariance

structure under the strongest formulation of Kennedy (1997). Kennedy (1997) also shows that

this covariance structure arises from the transformation

Fs�t � 
e�	tXe�s�e�2����t �

where X is a Brownian Sheet.

In the remainder of this section we will introduce some more notation and prove a few

elementary results about stationary random field models.

Remark 2.1 If F is stationary, the distribution of F is determined by the stationary distribu-

tion of the forward-rate curve fF0�t � t � Rg. To see this, recall that the independent increments

property implies that ��s� t� s�� t�� � c�s 	 s�� t� t�� for some function c; by stationarity we have

c�s 	 s�� t� t�� � cov
�
Fs�s��t� Fs�s��t�

�
� cov

�
F0�t�s�s� � F0�t��s�s�

�
� f�t� s 	 s�� t� � s 	 s��� (2.17)

where we define f�t� t�� �� cov�F0�t� F0�t��.

Define the maps p1� p2 � R
2 
 R2 � R by

p1�s� t� s
�� t�� � t 	 t� � s 	 s�� (2.18)

p2�s� t� s
�� t�� � t  t� � s 	 s�� (2.19)

and the map p � R2 
 R2 � H by p�s� t� s�� t�� � �p1� p2�; thus if � is the covariance structure

of a stationary random field model, then � � p�1 is well defined and equals f . Later, we will

need the simple result that since F is continuous, so �, and hence also c and f , are continuous

functions.

The HJM approach specifies an interest-rate model via the forward-rate volatilities, 
� � � � �,
which amounts to specifying the covariance structure of the infinitesimal increments:

lim
��0

��1 cov�Fs���u � Fs�u� Fs���v � Fs�v��

We will begin by showing that this limit exists for Gaussian random field models. Denote

by �Df��x� y� the ‘diagonal’ directional derivative, defined by

�Df��x� y� �� lim
��0

��1�f�x� �� y � ��� f�x� y���
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Proposition 2.2 For each t� t� � R,

�s�t� t
�� ��

�

�s
c�s� t� t�� (2.20)

exists for (Lebesgue) almost all s � R. Moreover, if F is stationary and s� u� v � R are such that

either ����s�c�s� u� v� or �Df��u� s� v � s� exists, then both derivatives exist and

�s�u� v� � ��Df��u� s� v � s� � lim
��0

��1 cov�Fs���u � Fs�u� Fs���v � Fs�v��

Proof For the first part, let s � s� and t� t� � R; from the independent increments property,

we have

var�Fs��t � Fs��t�� � var
�
Fs�t � Fs�t� � �Fs��t � Fs�t� � �Fs��t� � Fs�t��

�
� var�Fs�t � Fs�t�� � var�Fs��t � Fs�t � Fs��t� � Fs�t� �

� var�Fs�t � Fs�t��

so var�Fs�t � Fs�t�� is non-decreasing in s. Similarly, we can show that var�Fs�t � Fs�t�� is non-

decreasing in s. Since

cov�Fs�t� Fs�t�� � 1
4 �var�Fs�t � Fs�t��� var�Fs�t � Fs�t���

we deduce that c�s� t� t�� is of finite variation in s, and hence for each t and t�, the deriva-

tive ����s�c�s� t� t�� exists for (Lebesgue) almost all s (Dudley 1989, Section 7.2.7). Secondly,

let � � 0 and consider the covariance structure of the increment in the forward-rate curve

between times s and s� �. By independent increments we have

cov�Fs���u � Fs�u� Fs���v � Fs�v� � cov�Fs���u� Fs���v�� cov�Fs�u� Fs�v�

� c�s� �� u� v�� c�s� u� v�

and by stationarity,

cov�Fs���u� Fs���v�� cov�Fs�u� Fs�v� � cov�F0�u�s��� F0�v�s���� cov�F0�u�s� F0�v�s�

� f�u� s� �� v � s� ��� f�u� s� v � s�� (2.21)

Dividing throughout by � and letting � � 0 completes the proof. �

From (2.21) we see that

f�u� s� �� u� s� ��� f�u� s� u� s� � var�Fs���u � Fs�u�� (2.22)

so f�t� t� is non-increasing in t. A straightforward consequence of this, together with the sta-

tionarity property is that the stochastic part of the ‘long rate’ is constant over time.

Corollary 2.3 Suppose the limit Fs�� � limt�� Fs�t exists for all s with probability one, then the

process Fs�� is constant in s with probability one.
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Proof First define

F 	s�t � sup
x��s�s�1�

�Fx�t � Fs�t�
2

F 	s�� � sup
x��s�s�1�

�Fx�� � Fs���2�

and observe that if �tn��n�1 is any sequence of times tending to infinity, the event fF 	s�� � 	g is

certainly contained in fF 	s�tn � 	 i.o.g by the continuity of F . Now consider the sequence tn � n

and note that for each u � R, Fu�n is a martingale since it has independent increments and mean

zero. By Doob’s submartingale inequality and (2.22),

P�F 	s�n � 	� � 	�1 var�Fs�1�n � Fs�n�

� 	�1�f�n� s� 1� n� s� 1�� f�n� s� n� s���

As f�m � s�m � s� is positive and non-increasing in m, we have
P

n P�F
	
s�n � 	� � �. Thus

by the first Borel-Cantelli Lemma, P�F 	s�n � 	 i.o.� � 0. Hence P�F 	s�� � 	� � 0, and with

probability one, Fs�� is constant on �s� s � 1�. As R is a countable union of unit intervals, it

follows that with probability one, Fs�� is constant on R. �

We can also use the stationarity property to prove that if s�� �� limt�� s�t exists for all s,

then s�� is constant in s; thus long forward-rates are constant (cf., Dybvig, Ingersoll & Ross

(1996)).

Remark 2.4 When the derivative Df exists everywhere, we can write

c�0� x� y� � c��s� x� y� �
Z 0

�s
�u�x� y� du�

If the limit lims�� f�x� s� y � s� exists for all x and y, we can let s�� and deduce that

f�x� y� � lim
s��

f�x� s� y � s� �

Z �

0
�0�x� u� y � u� du�

This has the form

f�x� y� � ��x� y� �

Z �

0
��x � u� y � u� du� (2.23)

where � � R 
 R � R is a non-negative definite function satisfying
Z �

x

��u� u� du �� for all x � R� (2.24)

and � � R 
 R � R is the covariance structure of a stationary Gaussian process on R. Con-

versely, given any such � and �, defining f via equation (2.23) and � by Remark 2.1 gives the

covariance structure of a stationary field with independent increments. The Cauchy-Schwarz

inequality combined with (2.24) ensure that f is finite. Thus F is the sum of a field which is

constant in s and a field that tends to zero as t��.
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2.2 Markov Properties

Recall the definition Fs � 
�Fu�t � u � s� t � R�, of the 
-algebra generated by the forward-

rates up to time t, and define

Gs �� 
�Fs�t � t � R�

Hs �� 
�Fu�t � u � s� t � R��

The natural interpretation of the Markov condition is that Fs and Hs be conditionally inde-

pendent given Gs. Another Markov property, which is a common feature of one-factor models,

is for the short rate, Fs�s to be Markov as a one-dimensional process. It is easy to show that the

independent increments property (2.12) automatically implies the former, but the latter requires

something stronger. In this section, we will consider stronger forms of the Markov property and

investigate their consequences for the covariance structure of F . Kennedy (1997) also considers

this problem; under his strongest formulation, the covariance structure of a stationary model is

determined by just three parameters, and has the form (2.16). Recall that the Brownian Sheet is

the zero-mean, continuous Gaussian field on �0���2 with covariance structure

cov�Xs1�t1 � Xs2�t2� � �s1 	 s2��t1 	 t2��

This field satisfies the severe Markov property that for all s1 � s2 � s3, t1 � t2 � t3 and

all s1 � s2 � s3, t1 � t2 � t3, we have Fs1�t1 � Fs3�t3 jFs2�t2 . Kennedy (1994) demonstrates

how continuous injective transformations of the Brownian Sheet can be used to construct in-

teresting random field models; here we will show that any stationary model which arises from

a continuous injective transformation of a Brownian Sheet must be the three parameter model

with covariance structure given by (2.16).

Before we define our Markov properties, we must introduce some more 
-algebras; define

F�s�t �� 
�Fu�v � u � s� v � t�

F�
s�t �� 
�Fu�v � u � s� v � t�

and define G
s�t and H
s�t similarly.

Definition 2.5 We say that F has the SWNE-Markov property if for all s and t we have F�s�t �
H�
s�t j
�Fs�t�. Similarly, we say that F has the NWSE-Markov property if for all s and t we

have F�
s�t � H�s�t j
�Fs�t�.

Remarks (i) Using the independent increments property, we can replace H�
s�t with G�s�t in the

definition of SWNE-Markov and H�s�t with G�s�t in the definition of NWSE-Markov. An imme-

diately consequence of the SWNE-Markov property is that forward-rates of fixed maturity are

Ornstein-Ulhenbeck processes; in particular, the spot rate is Markov.
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(ii) We can think of the NWSE-Markov property as imposing a form of independence be-

tween long and short rates; for example, supposeWt and W �
t are independent Brownian motions

and let Bt �Wt for t � 0, Bt �W �
�t for t � 0. The field F , defined by

Fs�t � �Bs �Bt� I�s � t�� (2.25)

is NWSE-Markov, is zero on s � t and non-deterministic on s � t.

Two related Markov properties are introduced in Kennedy (1997):

Definition 2.6 If for all s1 � s2 � s3 and t1� t2 � R,

Fs1�t1 � Fs3�t2 jFs2�t1 � (2.26)

we say that F has the second Markov property (MP2). If F0�t is Markov as a one-dimensional

process indexed by t, we say that F is t-Markov.

Remark 2.7 From the independent increments property, it is enough to consider the case

s3 � s2 in (2.26).

We will split MP2 into the upper second (MP2.1) and lower second (MP2.2) Markov proper-

ties by restricting (2.26) to t2 � t1 and t2 � t1 respectively.

Proposition 2.8

(i) The random field F is SWNE-Markov iff F is t-Markov and satisfies MP2.1.

(ii) The random field F is NWSE-Markov iff F is t-Markov and satisfies MP2.2.

Proof We will only prove the first statement; the proof of the second is very similar. The im-

plication that if F is SWNE-Markov, then it is t-Markov and satisfies MP2.1 is immediate.

A

B

D

C

Conversely, let s1 � s2� t1 � t2 � t3 and set A � Fs1�t1 , B � Fs2�t3 , C � Fs2�t1 and D � Fs2�t2 .

From MP2.1, we have A � B jC and A � D jC so provided var�D jC� � 0 we have

cov�A�B jC�D� � cov�A�B jC�� var�D jC��1 cov�A�D jC� cov�B�D jC�
� 0�
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If var�D jC� � 0, then D is a.s. a function of C and cov�A�B jC�D� � cov�A�B jC� � 0. We

also have

cov�A�B jC�D� � cov�A�B jD�� var�C jD��1 cov�A�C jD� cov�B�C jD��

and cov�B�C jD� � 0 by t-Markovness, implying cov�A�B jD� � 0. (If var�C jD� � 0,

then C is a.s. a function of D; thus cov�A�B jC�D� � cov�A�B jD� and cov�A�B jD� � 0

again.) Thus A � B jD and the result follows. �

Recall the definitions of H � f�x� y� � y � xg, and of the map p � R2 
 R2 � H , given

by p�s1� t1� s2� t2� � �p1� p2� where p1 and p2 are defined by (2.18) and (2.19), and the fact that

if F is stationary with covariance structure �, then � � p�1 is well defined and equal to f , the

covariance structure of fF0�t � t � Rg. We now introduce a property which will be central to the

discussion of transformations of a Brownian sheet.

Definition 2.9 A random field F is said to SWNE-factorise if for all �x� y� � R2 , there ex-

ists �s1� t1� s2� t2� � p�1�x� y� with s1 � s2� t1 � t2 and open neighbourhoods, U1, U2

of �s1� t1�, �s2� t2� respectively such that for all � � U1, � � U2� we have

���� �� � �1����2���

for some functions �1 � U1 � R , �2 � U2 � R . A field is said to NWSE-factorise if it SWNE-

factorises after reflection in the horizontal axis.

Theorem 2.10 Suppose that F is a stationary random field model which is not deterministic every-

where. If F SWNE-factorises then for some constant ,

f�x� y� � exp
�
g�x 	 y�� jx� yj�� �2 � g�y�� g�x�

y � x
� 0� (2.27)

while if F NWSE-factorises then

f�x� y� � exp
�
g�x  y�� jx� yj�� g�y�� g�x�

y � x
� 2 	 0� (2.28)

where we allow g to take the value �� in this case.

Proof We will break down the proof into several steps, but first observe that the restrictions

on g and  follow from (i) the fact that f�x� x�, and hence g�x� is non-increasing in x, and (ii)

the Cauchy-Schwarz inequality applied to f�x� y�.

Step 1 Consider the case � � 0. We will first show that f has the correct form locally. Suppose F

SWNE-factorises (the NWSE case will be very similar). Let x � y and �s1� t1� s2� t2� � p�1�x� y�

with s1 � s2, t1 � t2. Let U1 and U2 be open discs with centres �s1� t1�� �s2� t2� respectively,

such that for all � � U1, � � U2

�x � �x� �y � �y� (2.29)
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Now let � � U1, � � U2 be arbitrary. By SWNE-factorisation and Remark 2.1 we have

���� �� � �1����2���

� f��y � �x� �y � �x�� (2.30)

so �2��� cannot depend on �x. Since � � 0, w.l.o.g. �1 and �2 are both positive. Setting

s��� � �y � �x and writing �2��y� for �2���, we have

log���� �� � log f�s� �y � �x�

� log�1��x� �x � s� � log�2��y�� (2.31)

Using that fact that for any continuous functions a, b and c satisfying a�x�� b�y� � c�x� y� on

a connected open subset of R2 , c must be linear, condition (2.31) implies that log f�s� �y ��x�

is linear in �y � �x for each s. Now let r be the radius of U1 and V be the open disc with cen-

tre �s1� t1� and radius 1p
2
r. Let �	 � �s2� t2�, and for � � V , let �	 � �s1� s1�s����. Restricting

attention to � � V , we have �	 � U1 and s��� � s��	� so

log�1��� � log�2��� � log f��y � �x� �
	
y � �	x�� �s����y � �x�� ��	y � �	x��

for some function �s�. Considering the dependence of both sides on �y, and noting that s

depends on � but not �, we see that �s� must independent of s. Thus we have

log���� �� � log f��y � �x� �
	
y � �	x� � ��	y � �	x�

� ��y � �x�� ��y � �y�� (2.32)

for some constant . Defining

g�s� �� log f�s� �	y � �	x� � ��	y � �	x�� s

and noting that �y � �x � �y � �x in (2.30), we see from (2.32) that f has the correct form

on p�V 
 U2).

Since  is uniquely determined by f jp�V�U2�, so too is the function gjp1�V�U2�. As the

set f�x� y� : x � yg is connected, f must take the required form on the whole of f�x� y� � x � yg,
for some constant  and function g. As f is continuous and symmetric, it has the required

form on all of R2 . The proof in the NWSE case is identical, except that we replace (2.29)

with �x � �x, �y � �y and now have �y � �x � �y � �x.

Step 2 Suppose that ���� �� � 0 for some � � R2 . It follows that Fs�t is deterministic

for t � s � �y � �x. To see this, first note that stationarity implies that FS�x�� is deter-

ministic for all x � R. Now let t � s � �y � �x. By the independent increments prop-

erty, FS�t��y�� � Fs�t � Fs�t, thus Fs�t is deterministic.

Step 3 Now consider the case of general �. Let r � ������ be the unique r such that F is

deterministic on the set Z � f�s� t� � t � s � rg and var�F � � 0 on Zc � f�s� t� � t � s � rg.
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If r � �� then F is deterministic everywhere, a case excluded in the statement of the theorem,

so suppose r � ��. We know that f � 0 on p�Z 
 R2� and p�R2 
 Z�, so we now consider

the form of f on p�Zc 
 Zc�. Let A � f��� ��� � Zc 
 Zc � ���� ��� � 0g, which is open,

and non-empty since r � ��. We note that f��� �� � � � Zcg is a connected subset of A,

and let B be the connected component of A containing f��� �� � � � Zcg. It will turn out

that p�B� � p�Zc 
 Zc�. As p is a continuous open mapping, p�B� is open and connected.

Our aim is to apply Step 1 to f jp�B�, but we must check that we can choose U1 and U2 such

that U1
U2 � B. If �x� y� � p�B�, say p�s1� t1� s2� t2� � �x� y�, then �s1	s2� t1� s1	s2� t2� � B.

As B is open, we can find neighbourhoods U1� U2 such that U1 
U2 � B as required. Applying

Step 1 to f jp�B�, we deduce that f takes the required form on p�B�. Finally let ��� �� � �B,

which cannot be empty unless B � R2 
 R2 when � � 0 and we are done by Step 1. We

will show that p��� �� �� p�Zc 
 Zc�. Pick a sequence f��nx � �ny � �nx � �ny �g of points in B such

that ��n� �n�� ��� ��. If we are dealing with the SWNE case set

yn � �ny 	 �ny � �nx 	 �nx �

and otherwise set

yn � �ny  �ny � �nx 	 �nx �

so that

���n� �n� � exp
�
g�yn�� j�ny � �ny j

�
�

As ��� �� �� A, � is continuous and  � �� is constant throughout B, it follows that

as n � �, g�yn�� ��. Thus we must be dealing with NWSE rather than SWNE factorisa-

tion. Since p2��
n� �n� � yn and ���n� �n� � 0, we have yn � r, so �0� yn� 0� yn� � B. Now

var�F0��y��y��x��x� � lim
n��

var�F0�yn�

� lim
n��

exp
�
g�yn�

�

� 0�

Thus we must have �y  �y � �x 	 �x � r, so p��� �� �� p�Zc 
 Zc�, and so p��B� �
H � p�Zc 
 Zc�. Since p�B� is open and connected and p�B� � p�Zc 
 Zc� (which is also

open and connected) we must have p�B� � p�Zc 
 Zc�. Thus we have established that f has

the correct form on all of p�Zc 
 Zc� � f�x� y� � x � y � rg. Defining g�x� � �� for x � r

gives the correct form for f on the whole of R2 . �

Remarks (i) If F has either factorisation property, � is non-negative and interest-rates are posi-

tively correlated, a property usually observed in real interest-rates. In the SWNE-Markov case, �

is strictly positive.
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(ii) When F has both factorisation properties, f has the equivalent forms

f�x� y� � 
2 exp
���x 	 y � jx� yj�

� 
2 exp
���x  y � �� ��jx � yj�

where 0 � � � 2. This is the three parameter model of Kennedy (1997).

A consequence of the form of f given by Theorem 2.10 is that each factorisation property is

equivalent to the corresponding Markov property:

Corollary 2.11 Let F be a stationary random field model.

(i) The field F is SWNE-Markov iff F SWNE-factorises.

(ii) The field F is NWSE-Markov iff F NWSE-factorises.

Proof We will only prove the first statement; the proof of the second is virtually identical.

Let s1 � s2 � s3, t1 � t2 � t3 be arbitrary. To show F is SWNE-Markov, we must show

that Fs1�t1 � Fs3�t3 jFs2�t2 , i.e., that

�
�
�s1� t1�� �s2� t2�

�
�
�
�s2� t2�� �s3� t3�

�
� �

�
�s1� t1�� �s3� t3�

�
�
�
�s2� t2�� �s2� t2�

�
�

Using the form of f given by Theorem 2.10 we see both sides reduce to

exp
�
g�t1 � s1� � g�t2 � s2� � �t3 � t1�

�
�

Conversely, suppose x � y; set r � �y � x��4 and choose U1� U2 as the open discs, radii r, with

centres �0� x�� �y � x� y� respectively. Let � be the point �3r� x � r�. For � � U1� � � U2 we

have F� � F� jF� by the SWNE-Markov property. Thus

���� �� � var�F���1 ���� F�� ���� F���

so F SWNE-factorises. (If var�F�� � 0, it is easy to show that ���� �� � 0 for all � � U1, � �
U2 (see Step 2 of the proof of Theorem 2.10) so F trivially SWNE-factorises.) �

Remark 2.12 When F has both Markov properties, f has the form

f�x� y� � 
2 exp
���x 	 y � jx� yj��

Kennedy (1997) proves the equivalent result that a stationary t-Markov random field model

satisfying MP2 has a covariance structure of this form. He also observes that this covariance

structure arises as a continuous transformation of the Brownian Sheet

Fs�t � 
e�	tXe�s�e�2����t �

In the next section we will show that this is the only continuous injective transformation of a

Brownian Sheet to give rise to a stationary random field model.
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2.2.1 Transformations of a Brownian sheet

Recall that the Brownian Sheet is the continuous Gaussian field on �0���2 with mean zero and

covariance structure

cov�Xs1�t1 �Xs2�t2� � �s1 	 s2��t1 	 t2�

(see Adler (1981) or Rogers & Williams (1994)). In this section, we will show that the only

stationary random field model which arises from an injective transformation of a Brownian

Sheet, is the three parameter model shown in (2.16). Throughout this section, F will denote a

stationary random field model of the form

Fs�t � Ks�tW
�s�t� (2.33)

where K � R2 � R and � � R2 � �0���2 are continuous functions, and � is injective. We

let �x and �y denote the coordinate projections of �, so

��s� t� � ��x�s� t�� �y�s� t���

Lemma 2.13 If ���� �� � 0 for some �, �, then F ��� � 0 a.s. for all � � R2 .

Proof If ���� �� � 0 then either at least one of K� and K� is zero, or at least one of ����

and ���� lies on the coordinate axes. Therefore, w.l.o.g., we may assume that var�F�� � 0 im-

plying that the field is zero a.s. on the diagonal upper half plane through � (see Step 2 in the

proof of Theorem 2.10). Now suppose that there exists � � R2 with var�F�� �� 0. Let � be

the point on fS�y���� � y � Rg closest to �, let �� � S�2��y � �y��� and � � S��y � �y��.

Since F� � 0 a.s. (by stationarity) and F� � �F�� � F��, we have F� � F�� . Thus ���� ��� � 0,

so by the previous argument, at least one of var�F�� and var�F��� is 0. Stationarity implies that

both these variances are equal, and we conclude var�F��� � var�F�� � 0, a contradiction. �

To exclude this trivial case, we will assume from now on that � � 0. We will now exploit

the special Markov structure of the Brownian Sheet to show that F both SWNE and NWSE-

factorises. Introduce the notation T �d� for the translation parallel through a distance d parallel

to the x-axis, T �d��s� t� � �s� d� t�.

Theorem 2.14 The field F both SWNE and NWSE-factorises.

Proof We break up the proof in to several pieces.

Step 1 We first show that F SWNE-factorises. Let x � y, 	 � 0, and define

cro�u� v� �� f�s� t� � s � u or t � vg

to be the ‘cross’ formed by the union of the horizontal and vertical lines through �u� v�. Let

� � 1
2 ���0� x� � ��	� y��. Note that either both ��0� x� and ��	� y� are contained in cro��� or

neither is, so we have two cases to consider.



2 Gaussian Forward Rate Models 28

Case 1a If ��0� x�� ��	� y� �� cro���, we consider the situation when

�x�0� x� � �x�	� y�� �y�0� x� � �y�	� y��

(the other cases can be handled in a similar way). Let U �1, and U �2 be open neighbourhoods of

��0� x�, ��	� y� respectively which do not intersect cro���.

�	� y�

�

U �1

U �2

��1�U �2�

��1�U �1�

�0� x�

�

Now set U1 � ��1�U �1�, U2 � ��1�U �2�. By the Markov properties of the Brownian Sheet, we

have

F� � F� jX� for � � U1, � � U2.

Thus F SWNE-factorises in a neighbourhood of �x� y�.

Case 1bi Suppose ��0� x�� ��	� y� � cro���, but ��T �t��0� y�� �� cro���0� x�� for some t � 0.

Since p��0� x�� T �t��0� y�� � �x� y� for all t � 0, a similar argument to the one used in Case 1a

shows that F SWNE-factorises near �x� y�.

Case 1bii Now suppose that ��fT �t��0� y� � t � 0g� � cro���0� x��. Let A � �0� x�, B � �0� y�,

C � �y�x� y� and D � � 3
2 �y�x�� y�. Since � is injective, ��C� �� ��A�, and by continuity, ��C�

and ��D� lie in the same ‘branch’ of cro���A�
�
. For all s� t � 0, p�S�s�A� T �t�S�s�B� � �x� y�.

Thus, either F SWNE-factorises by an argument similar to Case 1bi, or ��fT �t�S�s�B � t �
0g� � cro���S�s�A�� for all s � 0. As S�s�A, S�s�C and S�s�D are distinct and � is injec-

tive, ��S�s�A�, ��S�s�C� and ��S�s�D� are also distinct. From the continuity of �, we deduce

that ��S�s�C� and ��S�s�D� lie in the same branch of cro���S�s�A�� for every s � 0.

�

A

B
C

C �

D

D�Z

��C� ��D� ��C �� ��D��
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Now choose s � y�x, and letC � � S�y�x�C and D� � S�y�x�D. As S�y�x�A � C, continu-

ity of � implies that ��C�, ��D�, ��C �� and ��D�� are collinear; in addition
��������
��C���D� points in

the same direction as
���������
��C ����D�� . Finally let Z � �Cx� Cy � y � x�. We have FD � FD� jFC� ,

so ��C �� � ���D�� ��D���, FC � FC� jFZ , so ��Z� � ���C�� ��C ���, and FZ � FD jFC , so

��C� � ���Z�� ��D��, which imply ��C� � ��Z�. Hence � is not injective, a contradiction.

Step 2 We now show NWSE-factorisation (the first two cases are very similar to Cases 1a and

1bi above). Let 	 � 0 and consider the points ��	� x� and ��0� y�. Let � � 1
2���	� x� � ��0� y��.

Case 2a If ��	� x�� ��0� y� �� cro��� we can prove that F NWSE-factorises using a very similar

argument to Case 1a.

Case 2bi Suppose ��0� x�� ��	� y� � cro���, but ��T �t��0� x�� �� cro���0� y�� for some t � 0.

Since p�T �t��0� x�� �0� y�� � �x� y� for all t � 0, the argument of Case 1bi shows that F NWSE-

factorises near �x� y�.

Case 2bii Now suppose ��fT �t��0� x� � t � 0g� � cro���0� y��. Let A � �0� y�, C � �0� x�

and D � � 1
2 �y � x�� x� and note that ��C� and ��D� lie in the same branch of cro���A��.

C

C �A

D

D�

�

��A� ��C� ��D�

��C �� ��D��

Since p�S�s�A� T �t�S�s�C� � �x� y� for all s� t � 0, either F NWSE-factorises by the argu-

ment of Case 2bi or ��fT �t�S�s�C � t � 0g� � cro���S�s�A�� for all s � 0. As � is con-

tinuous and injective, ��A�, ��C� and ��D� are distinct and collinear. Let C � � S�y � x�C

and D� � S�y�x�D. As � is continuous,
��������
��C���D� is parallel to and points in the same direc-

tion as
���������
��C ����D�� . Finally, observe that FD � FD� jFC� , FA � FD jFC and FC � FC� jFA.

Together these imply that ��C� � ��A�. Hence � is not injective, giving a contradiction. �

Corollary 2.15 The field F has the same law as


e�	tWe�s�e�2����t (2.34)

where 0 � � � 2 and W is a Brownian Sheet.

Proof Since F is NWSE-Markov it NWSE-factorises, by Corollary 2.11, and similarly, since

it is SWNE-Markov, it SWNE-factorises. Thus by Remark (ii), on page 26, it has a covariance

structure of the form

f�x� y� � 
2 exp
����t1 	 t2 � s1 	 s2�� jt1  t2 � s1 	 s2j

�
� 0 � � � 2�
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where f�x� y� � cov�F0�x� F0�y�. But this is also the covariance structure of the field given by

(2.34), so the result follows. �



3
Option Pricing Techniques

3.1 Introduction

In this chapter, we consider the problem of calculating option prices in a generalisation of the

Black-Scholes model. The normal Black-Scholes model assumes constant volatility and interest-

rate (see Section 1.3), but here we will suppose that the volatility and interest-rate are time-

dependent but deterministic. Specifically, we assume that the stock price obeys the SDE

dSt � St�
�t� dWt � �t� dt�� (3.1)

for a Brownian motion Wt, and deterministic functions 
�t� and �t�, where �t� is bounded,

and 
�t� is bounded away from zero. The instantaneous riskless interest-rate, r�t�, is also as-

sumed to be deterministic and bounded, and we define D�t� T �, the discount factor for the

period �t� T � by

logD�t� T � � �
Z T

t

r�u� du�

Recall from Section 1.3 that the time-t value of an option, which confers the right (but not

the obligation) to receive the amount X at time T , is given by

Vt � D�t� T � E Q
�
X�

��Ft�� (3.2)

where X� � max�0� X�, the filtration F is the filtration generated by Wt, and Q denotes the

martingale measure—under which the discounted stock price, D�0� t�St, is an F-martingale.

Using the Cameron-Martin-Girsanov theorem, we can rewrite (3.1) as

dSt � St�
�t� d 	Wt � r�t� dt� (3.3)

where 	Wt is a Q -Brownian motion. To calculate time-t prices, we will use the function ��s�,

defined for fixed t, by

��s� � 0 for s � t, (3.4)

� ��s� � 
�s�2 for s � t, (3.5)
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and the function ��s�, defined by

��s� � log�Ss�St� for s � t,

���s� � r�s� � 1
2
�s�

2 for s � t.

Notice that with these definitions ��s� is Ft-measurable and we can write the solution to (3.3)

as

Ss � St exp
�
B��s� � ��s�

�
(3.6)

where B is a Q -Brownian motion, independent of Ft.
If, like all the options considered in Section 1.3, an option contract can only be exercised

at a predetermined time, it is referred to as a European option. In contrast, an American option

may be exercised at any point, up to some prearranged expiry time; for example, a standard

American call option with strike price K, is worth St � K if it is exercised at time t, but the

holder may decide to wait if St is below or only just above K. If St never reaches K before the

expiry time, the option will never be exercised. The new methods developed in this chapter deal

with European, rather than American options.

In Section 3.2 we consider two examples of ‘Asian’ options. Here the payoff depends on the

average of St over some time period,

At ��

Z t

0
Su d��u��

where � is a positive measure with ��0� T � � 1. In practice, the average is usually discrete, such

as one sample per month, but the case of continuous averaging is sometimes simpler to handle

theoretically. Note the time-t value of such an option will generally depend on At, in addition

to t and St. The two Asian options we will consider are the fixed-strike call option, correspond-

ing to the choice X � AT �K and the floating-strike call option, where X � AT � ST . We

will derive accurate upper and lower bounds on the value of both kinds of option.

Another interesting type of option is the barrier option: we let Gt and Ft be deterministic

functions with G0 � S0 � F0 and consider an option containing a knock-out clause, cancelling

the contract if St ever hits Gt or Ft. A standard example is the knock-out call option, where

X � �ST �K� I�Gt � St � Ft� 0 � t � T ��

In Section 3.3 we derive bounds on the price of barrier options, which are accurate when Ft

and Gt are twice-differentiable and approximately linear.

In Section 3.4, we modify our technique developed for Asian options to price options of

the form X � f�
P

Li� where flogLig are joint normal under Q . This covers many types

of options: basket options, swaptions (see Section 1.4) and stock index options, provided the

underlying stochastic processes (exchange-rates, interest-rates, stock prices etc.) are lognormal

under Q.
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There is an extensive literature describing numerical methods for option pricing. The most

robust and widely applicable approach to European options is Monte-Carlo simulation: simply

draw a large number of samples of all the variables on which X depends from Q , and take an

average of the discounted payouts. General discussions of applying the Monte-Carlo method to

option pricing can be found in Boyle (1977) and Boyle, Broadie & Glasserman (1997). Its main

drawback is its slow convergence, but it can be used to get a rough estimate (or even an accurate

estimate if speed is not a factor), and can handle very complex options and stock price models.

Techniques of variance reduction can increase its accuracy considerably; see for example Newton

(1994) and Newton (1997) for a discussion of these techniques in the context of the simulation

of diffusion sample paths. Stochastic volatility models are natural candidates for a Monte-Carlo

approach; Carverhill & Clewlow (1994) use control variates to speed up the valuation of look-

back options, while Fournié, Lasry & Touzi (1997) use importance sampling to price European

call options. Recently, methods based on so-called quasi-random sequences have been tried (see

Berman (1997) and its references).

To get fast, accurate answers we leave aside Monte-Carlo methods. Two remaining methods,

applicable to both European and American options are the tree method (see Baxter & Rennie

(1996) for example) and the PDE method (Wilmott, Dewynne & Howison (1993) being the

standard reference). Both of these methods are efficient for simple option pricing problems, but

rely on discretising all the variables relevant to the price of the option, and as a result, the meth-

ods converge slowly for options with discontinuous payouts (such as barrier options which are

discontinuous in the stock price). They also suffer from the so-called ‘curse of dimensionality’:

if the option value depends on more than just time and stock price, but on time and the posi-

tion of an n-dimensional Markov process (as is the case for an Asian option which depends on

At), it becomes necessary to discretise a sufficiently large region of Rn . If n is more than about

two or three, this can be computationally difficult. If the option does not suffer either of these

problems, the PDE and tree methods are effective ways of solving a wide range of option pricing

problems. A recent development of the tree method is to allow random, rather than fixed time-

steps, (see Rogers & Stapleton (1998) and Leisen (1997) for example); these methods appear to

enjoy faster convergence than trees with fixed time-steps.

The original material of this chapter takes a different approach. Relying on simple optimisa-

tion techniques, we derive bounds on the value of several types of option, which turn out to be

accurate for typical option pricing problems. (A similar approach has been applied to American

call options with considerable success, see Broadie & Detemple (1995) and Broadie & Detemple

(1996).)

Notational Note 3.1 Henceforth, unless otherwise indicated, all expectations and probabili-

ties will refer to the martingale measure, which will now be denoted P. We will also use the

notation E t� � � for E � � j Ft � expectation under Pt, the martingale measure conditional on the

history up to time t, (and similarly, covt� �� � � and vart� � �).
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3.1.1 Tree methods

For simplicity, consider an option whose payout at time T , depends only on the final value

of the stock, ST . Setting v � E t�X
��, it follows from the Markovian property of St, that v

is a just function of St and t. By discretising time, by restricting to the set f0��t� � � � � N�tg,
where �t � T�N , we can calculate v�St� t� recursively, working backwards from time T , using

the relation

v�x� t� � E �v�St��t � t��t� jSt � x��

The option price at time 0 is then D�0� T �v�S0� 0�.

In practice, since we can only store a finite set of values of v�x� t� at each stage, we must

restrict the range of St��t �and we will now only have v�x� t� � E t�X
���. The simplest solu-

tion, which works when the volatility and interest-rate are constant, is the binomial model of

Cox, Ross & Rubinstein (1979). They assume that St��t takes the value uSt with probability p

and dSt with probability 1 � p for constants u, d and p. It is convenient to take d � u�1 so

that the tree ‘recombines’, and no more than N � 1 values need ever be stored. We determine u

and p from the fact that log�St��t�St� has mean �r � 1
2


2��t and variance 
2�t under Q .

As �t � 0, the price produced by this procedure converges to the true value. (If 
�t� and r�t�

are non-constant, we can use a ‘trinomial’ tree instead. This has the flexibility to cope with time-

varying coefficients, even of the form 
�St� t� and r�St� t�, and still give rise to a recombining

tree.)

The tree method is simple to implement, but the condition p � 0 can force �t to be very

small. It also suffers from the usual problems associated with discretising the stock price (poor

convergence for barrier options) and often exhibits an ‘odd-even’ bias for options with non-

smooth payoffs, whereby the value produced by the method oscillates with the parity of N . For

a European call option with K � St, for even values of N , the sequence of approximate option

prices converges to the true price from above, while for odd N it converges from below. Some

form of averaging or extrapolation is usually employed to counter these problems.

3.1.2 PDE methods

Like the tree method, the PDE method finds the time-t price of an option by first calculating the

value of a related martingale. In this section, we consider the process vt � D�0� t�Vt, where Vt is

the time-t value of the option; from (3.2) it can be seen that this is indeed a martingale. If the op-

tion’s payout is a function of the time-T stock price, then V will be a function of t and St alone.

More generally, V could depend on t and the time-t position of a Markov semimartingale Yt;

for example, if we were pricing an Asian option, we could well have Yt � �St� At�. Provided v

is sufficiently smooth, we can use Itô’s Lemma to derive a partial differential equation satisfied
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by V . To keep the notation simple, we will consider the case where Yt is the one-dimensional

process St, so V � V �St� t�. Applying Itô’s Lemma to D�0� t�V �St� t� and setting the finite

variation term to zero, gives

1
2
�t�

2x2 �
2V

�x2 � r�t�x
�V

�x
�
�V

�t
� r�t�V � 0� on �0� T �
 R, (3.7)

the Black-Scholes equation, to be solved subject to the boundary condition that V �x� T � must

equal the payout of the option when ST � x.

Numerical methods for solving PDE’s of this form are well developed; here will give a quick

description of three methods, and refer the reader to Wilmott et al. (1993) for further details.

The general approach is to restrict �x� t� to a rectangular lattice

t � fn�t : n � 0� 1� � � � � N � 1� Ng
x � fm�x : m � �M��M � 1� � � � �M � 1�Mg

where N�t � T and M�x is ‘large’, about 3�varST �1�2, and to interpret (3.7) as a system of

linear equations, by replacing the partial derivatives with linear combinations of V evaluated at

nearby points in the lattice. We must also specify boundary conditions on fx � �M�xg, but

this choice is generally not crucial provided M�x is large; if no asymptotic boundary condition

is available, simply assuming that the stock grows at the risk-free interest-rate for the remaining

period up to time T usually works.

The explicit method

If we use the approximations

�V

�t

����
x�t

� ��t��1�V �x� t��t�� V �x� t��

�V

�x

����
x�t

� �2�x��1�V �x��x� t��t�� V �x��x� t��t��

�2V

�x2

����
x�t

� ��x��2�V �x��x� t��t�� 2V �x� t��t� � V �x��x� t��t��

we can rearrange the resulting system of linear equations implied by (3.7), to give V �x� t� explic-

itly in terms of V �x��x� t��t�, V �x� t��t� and V �x��x� t��t�. This is really no more

than a trinomial tree method, as shown by Brennan & Schwartz (1978). The standard objection

to the explicit method is that it is only stable if �t � ��x�2�
2, which can require a very small

time-step. (This is similar to the problem of ensuring p � 0 in the binomial method.)
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The implicit method

The implicit method uses the approximations

�V

�t

����
x�t

� ��t��1�V �x� t��t�� V �x� t��

�V

�x

����
x�t

� �2�x��1�V �x ��x� t�� V �x��x� t��

�2V

�x2

����
x�t

� ��x��2�V �x ��x� t�� 2V �x� t� � V �x��x� t���

This time V �x� t� is not just a function of V � � � t � 1�, and solving the system of equations

resulting from (3.7) requires a matrix inversion. This can impose a significant memory bur-

den, particularly if Yt is actually two or three dimensional, when the curse of dimensionality

becomes apparent. The advantage of the implicit method over the explicit method is that is

unconditionally stable, so a much larger time-step can be used.

The Crank-Nicolson method

The only difference between the implicit and explicit methods is the discretisation of the par-

tial derivatives. Other choices are possible; if we take the average of the implicit and explicit

discretisations, we obtain the Crank-Nicolson scheme. Like the implicit method, this method

is unconditionally stable and thus does not need a very small time-step. It also requires matrix

inversion, but unlike the previous schemes, it has the advantage of being accurate to second

order in �t. (All three methods are accurate to second order in �x.)

3.2 Asian options

The term ‘Asian option’ is a generic term covering any contract whose payout involves the av-

erage of some quantity over a period of time. The underlying quantity is often an exchange

rate, though for our discussion, we will assume that it is a stock price (all we really require is

lognormality under the martingale measure). Such options are usually less sensitive to sudden

price movements than normal European call options. In consequence, they are generally easier

to hedge, and they are more effective at reducing certain types of risk.

In this section we will consider two examples of Asian options: the fixed-strike call option

and the floating-strike call option. A fixed-strike Asian call option on a stock price St, with av-

eraging measure �, exercise time T and strike K � 0, is a contract with value �AT � K�� at
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time T , where

At �

Z t

0
Su d��u��

The measure � is assumed to be positive and satisfy ��0� T � � 1; typically it is concentrated in

a set of equally spaced points or it is just proportional to Lebesgue measure, d��t� � dt�T . We

will usually assume the latter; it will normally be obvious how to extend the results to other

cases. To simplify the notation we will assume without loss of generality that T � 1.

Using the expressions for Su given in (3.6), and for the value of a general European option

given by (3.2), we can write the time-t value of a fixed-strike Asian option as

D�t� 1� E t

�Z 1

0
St exp

�
B��u� � ��u�

�
du�K

��
(3.8)

where D�t� T � is the discount factor for the period �t� T � and the expectation is performed under

the martingale measure; the definitions of the functions � and � may be found on page 31.

Unfortunately, the distribution of the arithmetic mean of a collection of lognormal random

variables does not have a simple form (though in Section 3.4 we will derive a very accurate ap-

proximation), and the expectation calculation in (3.8) is distinctly non-trivial. The other Asian

option we will look at is the floating-strike call option, with a value of �A1 � S1�
� at time 1.

Several different approaches to the problem of valuing Asian options have been tried; the first

attempts were Monte-Carlo simulations (Kemna & Vorst 1990) followed by formulae for the

approximate price, obtained by replacing the law of A1 with a lognormal random variable with

appropriate parameters by Levy (1992) and Turnbull & Wakeman (1991). (Levy & Turnbull

(1992) compares many methods of this type.)

Since the time-t price of an Asian option generally depends on three variables: t, St and At,

we might expect the PDE approach of Section 3.1.2 to be rather slow. For fixed-strike and

floating-strike options however, we can reduce the problem to just two variables, making the

PDE approach competitive. This was first observed for floating-strike options by Ingersoll

(1987), and for fixed-strike options by Rogers & Shi (1992). We will describe this work in

Section 3.2.1.

Although it is unlikely that simple pricing formulae will ever be found, exact pricing formu-

lae have been discovered (see Yor (1992) and Geman & Yor (1993)), based on an inverse Laplace

transform. This can be inverted numerically (Geman & Eydeland 1995) but this method is rel-

atively slow and appears difficult to implement accurately.

Lower bounds on the price, in the form of single and double integrals have been presented

by Curran (1992) and Rogers & Shi (1992); these formulae can be evaluated rapidly and are

surprisingly accurate. In Section 3.2.2 we derive the lower bound of Rogers & Shi, and in Sec-

tion 3.2.3 we give an alternative derivation, leading to a simpler formulae. In this form, the

bound can be evaluated more quickly and is similar to the formula of Curran (1992). We ex-

amine the continuous-averaging limit of Curran’s formula in Section 3.2.4; specifically, we give
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a derivation of his bound for fixed-strike options (Curran’s article gives little indication of how

his bound is derived) and show how a similar argument leads to a bound for floating-strike

options. To complement these lower bounds, and to justify our earlier assertion of their accu-

racy, in Section 3.2.5 we find new upper bounds on the price of fixed-strike and floating-strike

options; these upper bounds are rarely more than 0.5% above the lower bounds. (A numerical

comparison of all these bounds may be found in Section 3.2.6.)

We will be interested in the time-t value of fixed-strike and floating-strike options for any

t � 1, including times before the start of the averaging period (t � 0). Two observations reduce

the number of case we need to consider:

Remark 3.2 If we are trying to calculate the time-t price of a fixed-strike option, we can as-

sume, without loss of generality, that t � 0. To see this, let t � �0� 1�, and write the payout of

the option as

A1 �K � �A1 �At�� �K �At�

� �1� t�

�
1

1� t

Z 1

t

Su du� 1
1� t

�
K �At

�	
�

By time t, we can already observe At; thus the payout of the option is proportional to the payout

of a fixed-strike option at the start of its averaging period, with strike �1� t��1�K � At�.

Remark 3.3 For floating-strike options we can assume that t � 0. For t � 0, we can write the

time-t value of the option as

Vt � D�t� 1� E t

�
S0

�Z 1

0

Su
S0

du� S1

S0

�	�

� D�t� 1� E t�S0� E

�Z 1

0

Su
S0

du� S1

S0

��
(3.9)

using the fact that fSu�S0 : u � 0g is independent of fSu : u � 0g, which follows from (3.6).

Since the discounted stock price is a martingale under the martingale measure,

D�t� 1� E t�S0� � D�t� 0�D�0� 1� E t�S0� � D�0� 1�St�

Thus (3.9) is just the time-0 value of the same floating-strike option when the time-0 stock price

equals St.

3.2.1 A PDE formulation for Asian options

We now describe the PDE method of Rogers & Shi (1992), showing that the problem of pricing

fixed-strike and floating-strike Asian options can be reduced to solving a PDE in two variables.

This is straightforward for the case of floating-strike options, as noted by several authors (e.g.,
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Ingersoll (1987) and Wilmott et al. (1993)), but was first shown to hold in the fixed-strike case

by Rogers & Shi (1992). For floating-strike options, observe that since fSu�St : u � tg is

independent of Ft, we have

E t�A1 � S1�
� � St E t

�Z t

0

Su
St

du�

Z 1

t

Su
St

du� S1

St

��

� Stf�Xt� t�

for some function f�x� t�, where Xt � At�St. The process Xt satisfies the SDE

dXt �
1
St
St dt�At

1
S2
t

dSt �At
1
S3
t

d�S �t

� dt�Xt�
�t� d 	Wt � r�t� dt� �Xt
�t�
2 dt (3.10)

using the SDE for St given in (3.3), from which it may be seen that Xt is Markov. Now apply

Itô’s lemma to the martingale Stf�Xt� t� (assuming that f is sufficiently smooth) and equate the

finite-variation term to zero, giving

r�t�f�x� t� �
�f

�t
� �1� xr�t��

�f

�x
� 1

2x
2
�t�2 �

2f

�x2 � 0 (3.11)

with boundary condition

f�x� 1� � �x� 1���

We now have a PDE in two variables, which could be solved using one of the finite-difference

schemes described in Section 3.1. Once we have the function f , the time-t value of the option

is just D�t� 1�Stf�At� t�. In the fixed-strike case, we have

E t

�Z 1

0
Su du�K

��
� St E t

�Z t

0

Su
St

du�

Z 1

t

Su
St

du� K

St

��

� St g�Xt� t�

for some function g�x� t�, where now Xt � �At �K��St. Using (3.10), we see that Xt satisfies

the SDE

dXt � dt�
�
Xt �

K

St

�
�
�t� d 	Wt � r�t� dt� �

�
Xt �

K

St

�

�t�2 dt

�
K

S2
t

dSt � K

S3
t

d�S �t

� dt�Xt�
�t� d 	Wt � r�t� dt� �Xt
�t�
2 dt

which is exactly the same as (3.10). Thus g�x� t� satisfies PDE (3.11) but now with the boundary

condition

g�x� 1� � x��

With g�x� t� determined, the time-t price of the option is D�t� 1�St g�Xt� t�. Extending the

method to handle more general averaging measures and to time-t prices for t � 0 is straightfor-

ward.



3 Option Pricing Techniques 40

3.2.2 The lower bounds of Rogers & Shi

Rogers & Shi (1992) obtain a lower bound on Asian option prices by using the inequality

EX� � E
�
E
�
X�

��Y ��
� E

�
E
�
X
��Y ��� (3.12)

which holds for any random variables X and Y . To bound the time-t price of a fixed-strike

option, we choose X � A1 �K and Y �
R 1

0 B��u� du, giving the bound

Vt � D�t� 1� E t�E t�A1 �K jY ���

� D�t� 1�
Z �

��
Pt�Y � dy��E t�A1 �K jY � y���

� D�t� 1�
Z �

��
Pt�Y � dy�

�Z 1

0
E t�Su jY � y� du�K

��
�

Since the conditional distribution of B��u� given Y � y is normal with mean �cu�v�y and

variance ��u� � c2
u�v, where cu � covt

�
B��u�� Y

�
and v � vart�Y �, we have

E t

�
Su jY � y

�
� St exp

�
��u� � �cu�v�y �

1
2 ���u�� c2

u�v�
�
�

Thus, a lower bound on the value of a fixed-strike option is

D�t� 1�
Z �

��

1p
v
�

�
yp
v

�



�Z 1

0
St exp

�
��u� � �cu�v�y �

1
2 ���u�� c2

u�v�
�
du�K

��
dy�

(3.13)

Note that for u � t, we have ��u� � cu � 0 and ��u� � log�Su�St). Thus if t � 0, the only

dependence in (3.13) on fSu : u � tg is through �At� St� as we would expect.

Remark 3.4 In the Black-Scholes model with constant volatility 
, and interest-rate r, for t �
0 � u we have

��u� �
�
r � 1

2

2
�
�u� t� (3.14)

��u� � 
2�u� t� (3.15)

cu � 
2�u�1� u�2�� t� (3.16)

v � 
2� 1
3 � t

�
� (3.17)

For t � 0, by Remark 3.2), we can write the value of the fixed-strike option in terms of the value

of an option at the start of its averaging period, reducing the problem to the case t � 0.
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To bound the time-t price of a floating-strike option, we set X � A1 � S1 and Y �R 1
0 B��u� du�B��1�. With cu � covt

�
B��u�� Y

�
and v � vart�Y �, the lower bound is

D�t� 1�
Z �

��

1p
v
�

�
yp
v

��Z 1

0
St exp

�
��u� � �cu�v�y �

1
2 ���u�� c2

u�v�
�
du

� St exp
�
��1� � �c1�v�y �

1
2 ���1� � c2

1�v�
���

dy�

(3.18)

Remark 3.5 With the Black-Scholes assumptions of constant volatility 
, and interest-rate r,

the functions � and � are given by (3.14) and (3.15). If t � 0 � u, we have

cu � � 1
2


2u2

v � 1
3


2�

while for t � 0, u � 0 we have

cu � � 1
2


2�u� t��u� t��

v � 1
3


2�1� t3��

3.2.3 An alternative derivation of the bounds of Rogers & Shi

The bounds (3.13) and (3.18) are slightly awkward to evaluate numerically since the outer inte-

gration involves a non-smooth integrand. In this section, we give simpler versions of (3.13) and

(3.18) which are easier to evaluate; they are also similar to the formula given by Curran (1992)

as an approximate price for fixed-strike options.

Fixed-strike options

We start off in a rather different direction, by trying to approximate the event that the option

eventually pays off with something more tractable. Let A � fA1 � Kg be the event that the

option makes a positive payout, and note that for any event A� we have

E t�A1 �K�� � E t��A1 �K� I�A���

�

Z 1

0
E t�Su �K A�� du (3.19)

with equality if A� � A. We will use

A� �

Z 1

0
B��u� du � �

�
�

where B is the Brownian motion of (3.6), allowing us to write the expectation on the right-

hand side of (3.19) as a Black-Scholes type formula involving �. This just leaves us with a
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one-dimensional integral of a smooth integrand, which should be very fast. To determine the

optimal value of �, let Y �
R 1

0 B��u� du and let fY �y� denote the density function of Y , con-

ditional on Ft. Substituting A� � fY � �g into (3.19) and differentiating the right-hand side

with respect to � gives

�

��

Z 1

0
E t�Su �K  Y � �� du � �

Z 1

0
E t�Su �K jY � ��fY ��� du� (3.20)

At a stationary point, we must have
R 1

0 E t�Su jY � �� du � K� which, noting t � 0, gives

Z 1

0
St exp

�
��u� � �cu�v�� �

1
2 ���u�� c2

u�v�
�
du � K (3.21)

where cu � covt
�
B��u�� Y

�
and v � vart�Y �. The problem of pricing the option when K � 0 is

trivial (since the option is sure to payout) so we will assume that K � 0. Since

cu �

Z 1

0
��u� 	 ��s� ds

we see that cu � 0 on �0� t� and cu � 0 on �t� 1�. Thus, the left-hand side of (3.21) is strictly

increasing in � and (3.21) has a unique solution, �	. (Note that the monotonicity property also

makes it very easy to find �	 numerically.) Note also that

E t�A1 jY � �� � K if and only if � � �	�

From this observation, we can deduce that our bound is exactly the same as that of Rogers &

Shi (1992), since

E t�E t�A1 �K jY ��� � E t�E t�A1 �K jY � I�Y � �	��

� E t��A1 �K� I�Y � �	���

We now have a simpler version of (3.13)

D�t� 1�
Z 1

0
E t

h�
St exp

�
B��u� � ��u�

��K


I�Y � �	�
i
du�

and it just remains to calculate the expectation. Recall the standard calculation:

E ��exp�N1��K� I�N2 � 0�� � exp
�
1 �

1
2


2
1
�



�
2 � c


2

�
�K


�
2


2

�
(3.22)

for normal random variables N1� N2 with respective means 1, 2, variances 
2
1, 
2

2 and covari-

ance c. Substituting N1 � logSt � B��u� � ��u� and N2 � Y � �	 gives

D�t� 1�
�Z 1

0
St exp

�
��u� � 1

2��u�
�



���	 � cup
v

�
du�K


���	p
v

�	
(3.23)

where �	 is the unique solution to (3.21), cu � covt
�
B��u�� Y

�
and v � vart�Y �. Expressions

for cu and v in the usual Black-Scholes model are given in Remark 3.4.
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Floating-strike options

We now derive a simpler version of (3.18), by choosing � to maximise the lower bound

E t�A1 � S1�
� �

Z 1

0
E t��Su � S1� I�Y � ��� du (3.24)

where now we take Y �
R 1

0 B��u� du�B��1�. Differentiating the right-hand side of (3.24) with

respect to �, we obtain the condition for stationarity

Z 1

0
E t�Su � S1 jY � �� du � 0�

which gives

Z 1

0
St exp

�
��u� � �cu�v�� �

1
2 ���u�� c2

u�v�
�
du

� St exp
�
��1� � �c1�v�� �

1
2 ���1� � c2

1�v�
�
� 0

(3.25)

where cu � covt
�
B��u�� Y

�
and v � vart�Y � as usual. We now show that (3.25) has a unique

solution. For 0 � u � 1, we have

cu � cov
�
B��u��

Z 1

0
B��s� ds�B��1�

�

�

Z u

0
��s� ds � �1� u���u�� ��u�

�

Z u

0
��s� ds � u��u��

Differentiating with respect to u gives

c��u� � �u
�u�2 I�u � t��

As c�0� � 0 (by the independent increments property of Brownian motion), we have c�u� � 0

for max�t� 0� � u � 1. Thus as � � ��, the left-hand side of (3.25) converges to a strictly

positive quantity if t � 0 and to 0� if t � 0. As � � ��, it converges to �� in both cases.

Thus (3.25) has at least one solution. Now consider the gradient of the left-hand side of (3.25)

a solution �	. Differentiating the left-hand side of (3.25) with respect to �, and using the fact

that �	 satisfies (3.25), gives

Z 1

0
St��cu�v�� �c1�v�� exp

�
��u� � �cu�v��

	 � 1
2 ���u� � c2

u�v�
�
du� (3.26)

As cu is decreasing, and strictly decreasing on �max�t� 0�� 1�, it follows that (3.26) is strictly

positive. Thus �	 is unique. We also deduce that

E t�A1 � S1
��Y � �� � 0 if and only if � � �	�
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A very similar argument to that used in the fixed-strike case now shows that the bound of this

section is exactly the same as that of Rogers & Shi (1992). Since �	 is unique, solving (3.25)

numerically is straightforward. Using (3.22) again gives an alternative form for (3.18)

D�t� 1�
�Z 1

0
Ste

��u�� 1
2 ��u�


���	 � cup
v

�
du� Ste

��1�� 1
2 ��1�


���	 � c1p
v

�	
� (3.27)

Remark 3.6 Recall from Section 3.2 that the price of a floating-strike option at time t � 0 is

just the time-0 price, assuming the time-0 stock price equals the current stock price. Since cu
and v are independent of t for t � 0 (see Remark 3.5 for explicit formulas in the Black-Scholes

model), the solution to (3.25) is also the same all t � 0. From the definitions of �, � and r

(page 31), for u � t we have

��u� � 1
2��u� �

Z u

t

r�s� ds�

Thus for fixed St, the bound (3.27) also takes the same value for all t � 0.

3.2.4 Curran’s approximation and an extension

Curran (1992) presents a formula for the approximate price of a fixed-strike option with discrete

averaging. He starts from (3.12) but gives no details of his method. His formula is, in fact, the

discrete-averaging version of (3.23), with a particular choice for �	; thus his formula is always a

lower bound and can be viewed as providing an approximate solution to (3.21). It may be useful

to have such an approximation available if we require answers very rapidly, and cannot afford to

solve (3.21) numerically.

In this section we will give some justification of his approximate solution to (3.21), and

show how the same method can be used to produce an approximate solution to (3.25), making

available a fast lower bound for floating-strike options.

It is worth emphasising that these bounds are extremely close to those of Rogers & Shi (1992)

(which arise from using the exact solution to (3.21)).

Fixed-strike options

We give a derivation of Curran’s approximate solution to (3.21) in the limit of continuous aver-

aging. Let

f��� � E t

�Z 1

0
St exp

�
B��u� � ��u�

�
du

���� Y � �

�
� (3.28)
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where Y �
R 1

0 B��u� du and recall that we seek �	 � f�1�K�. We construct an approximation

to f�1 by observing that an approximation to f��� is given by

	f��� � E t

�
St exp

�Z 1

0

�
B��u� � ��u�

�
du

� ���� Y � �

	

� St exp
�
� �

Z 1

0
��u� du

�
(3.29)

obtained by interchanging the orders of integration and exponentiation in (3.28). We can now

invert (3.29) easily, giving

	f�1�x� � log�x�St��
Z 1

0
��u� du� (3.30)

We now appeal to the fact that if f � 	f , then

f�1�x� � 	f�1�2x� f � 	f�1�x�
�
� (3.31)

the approximation being exact when f � 	f is constant. Applying (3.31) to (3.30), we deduce

than an approximate solution to (3.21) is

�	 � log
�

2K
St

�
Z 1

0
exp

�
��u� � �cu�v�

�
log�K�St��

R 1
0��s� ds

�

� 1
2 ���u� � c2

u�v�
�
du

�
�
Z 1

0
��u� du

where cu � covt
�
B��u�� Y

�
and v � vart�Y �. In the Black-Scholes model at time 0, this becomes

�	 � log
�

2K
S0

�
Z 1

0
exp

�
�r � 1

2

2�u� 3u�1� u�2��log�K�S0�� 1

2 �r � 1
2


2��

� 1
2


2�u� 3u2�1� u�2�2�
�
du

�
� 1

2�r � 1
2


2� (3.32)

which is the continuous-averaging limit of Curran’s formula.

Floating-strike options

We now try to derive an approximate solution to (3.25). Defining

f��� � E t

�Z 1

0
exp

�
B��u� � ��u�

�
du

���� Y � �

��
E t�S1 jY � ��

where Y �
R 1

0 B��u� du�B��1�, we try to solve f��	� � 1. As before, we will approximate f by

interchanging the orders of integration and exponentiation, giving

	f��� � E t

�
St exp

�Z 1

0

�
B��u� � ��u�

�
du

� ���� Y � �

	�
E t�S1 jY � ���
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Since
R 1

0 B��u� du � Y �B��1� this simplifies to

	f��� � exp
�
� �

Z 1

0
��u� du� ��1�

�

which can be inverted easily. Thus an approximate solution to (3.25) is

�	 � log
�

2� exp
����1�� �c1�v�

�
��1� � R 1

0��u� du
�� 1

2 ���1� � c2
1�v�

�



Z 1

0
exp

�
��u� � �cu�v�

�
��1� � R 1

0��s� ds
�
� 1

2 ���u�� c2
u�v�

�
du

�

� ��1� �
Z 1

0
��u� du�

(3.33)

3.2.5 Upper bounds

Rogers & Shi also derive an upper bound on the price of fixed-strike and floating-strike Asian

options, by bounding the error made by their lower bound. Recall from Section 3.2.2 the in-

equality used by Rogers & Shi to obtain a lower bound: EX� � �EX�� . To get an upper

bound, they use the inequalities

EX� � �EX�� � 1
2 �E jX j � jEX j�

� 1
2E jX � EX j

� 1
2 �var�X��1�2

which hold for any random variable X . By subsequently bounding var�X�, they obtain an upper

bound.

In this section we will derive new upper bounds, which, judging by the numerical results

on page 53, appear to be very accurate. For example, in a Black-Scholes model with parame-

ters 
 � 0�3, r � 0�09 and S � 100, the lower bound of Section 3.2.2 on the time-0 price of

a fixed-strike option with strike 100 is 8�8276, while the upper bound of this section is 8�8333

(the upper bound of Rogers & Shi for this problem is 9�039).

The new bounds exploit the following simple inequality: let X be a random variable and

let fu���, u � �0� 1� be a random function with
R 1

0 fu��� du � 0, for all � � �, and u be a

deterministic function with
R 1

0 u du � 1. Then

E t

�Z 1

0
Su du�X

��
� E t

�Z 1

0
�Su �X�u � fu�� du

��

� E t

Z 1

0
�Su �X�u � fu��

� du (3.34)

�

Z 1

0
E t�Su �X�u � fu��

� du�
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Since this bound holds for all such ffu� ug, we can try to optimise ffu� ug over some conve-

nient set. With this idea in mind, we will try to minimise the Lagrangian

L
�
�� ffug� fug

�
�

Z 1

0
E t�Su �X�u � fu��

� du� �

�
1�

Z 1

0
u du

�
�

Considering the stationarity of L at ��� ffug� fug� with respect to a small deterministic pertur-

bation f	ug in fug, gives the condition
Z 1

0

�
E t

��X Su �X�u � fu� � 0
�
� �

�
	u du � 0�

Since f	ug is arbitrary, we deduce that a necessary condition for fug to be optimal is

E t�X Su � X�u � fu�� is independent of u. (3.35)

Our approach will be to pick ffug based on our intuition, and rely on (3.35) to give an excellent

choice for fug.

Fixed-strike options

To bound the time-t price of a fixed-strike option with strike K, we will assume, without loss

of generality, that t � 0 (see Remark 3.2) and put X � K in (3.34). Using (3.35) to deter-

mine fug leaves us to to choose the random function ffug. The bound (3.34) is only likely

to be good when the random variables fSu �K�u � fu�g take the same sign with high prob-

ability, which suggests that we need fu large when Su is large, and fu small when Su is small.

Since fu must integrate to zero, a simple choice is fu � B��u� �
R 1

0 B��s� ds (where B is the

Brownian motion of (3.6)). Writing

Yu � B��u� �
Z 1

0
B��s� ds�

a more general choice would be fu � �Yu, for some constant �, but a brief numerical investi-

gation suggests that the choice � � 1 is almost as good as any, at least for the parameter values

considered here. [In Section 3.4 we suggest a more complex choice for fu for a similar type of

problem. Since the numerical results based on the simpler choice appear to be quite acceptable,

we will not try the more complex alternative here.]

We now use (3.35) to determine fug. Since X � K is deterministic, we have the condi-

tion: P�Su � K�u � �Yu�� is independent of u. A similar but more manageable condition is:

P�Nu � u�is independent of u, where N is normal, since it can be re-arranged to give

E �Nu �� u � �
p

var�Nu�

for some constant �. In view of this we will use the approximation

Su � St exp���u���1 �B��u��
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to give

St exp���u���Ku � �
p
�u

where

� �

�
St

Z 1

0
exp���u�� du�K

��Z 1

0

p
�u du�

�u � vart

��
St exp���u���K�

�
B��u� �K�

Z 1

0
B��s� ds

�

We perform the integral
R 1

0

p
�u du numerically. We now have the function fug for our upper

bound on the time-t option price:

D�t� 1�
Z 1

0
E t�Su �K�u � �Yu��

� du�

A simple way of dealing with the remaining expectation is to condition on Yu � y and use

(3.22), but an alternative method, which was found to be more numerically efficient, is to con-

dition on B��u� � x, giving

Z 1

0

Z �

��

1p
��u�

�

�
xp
��u�

�


 E t

��
St exp

�
��u� � x

��K�u � ��x� Z��
�� ��B��u� � x

�
dx du

(3.36)

where Z �
R 1

0 B��s� ds. Using the fact that forN � N�0� 1� and b � 0, E �a�bN�� � a
�a�b��

b��a�b�, (3.36) equals

Z 1

0

Z �

��

1p
��u�

�

�
xp
��u�

��
a�u� x�


�
a�u� x�

b�u� x�

�
� b�u� x��

�
a�u� x�

b�u� x�

�	
dx du

where

a�u� x� � St exp
�
��u� � x

��K�u � �x� �K��cu���u��x

b�u� x� � K��v � c2
u���u��

1�2

and where cu � covt
�
B��u�� Z

�
and v � vart�Z�. In this form the integrand may be badly

behaved near u � t; if t � 0, then ��u�� 0 as u� t, so we make the change of variables

	u �
p
��u�, w � x�

p
��u� giving

Z p��1�

p
��0�

Z �

��

2	u

�u�2��w�

�
a�u� x�


�
a�u� x�

b�u� x�

�
� b�u� x��

�
a�u� x�

b�u� x�

�	
dw d	u� (3.37)

For the normal Black-Scholes model, expressions for �, � , cu and v are given by (3.14)–(3.17).
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Floating-strike options

To bound the time-t price of a floating-strike option, we will assume that t � 0 (see Remark 3.3)

and note that by writing A � At��1� t� and X � 1��1� t�, we have

At � S1 � �1� t�

�
A�

1
1� t

Z 1

t

Su du�XS1

�

so we will bound the time-0 price of an option with payout A�
R 1

0 Su du�XS1 at time 1, for

constants A � 0 and X � 1. If x1 and x2 satisfy x1 � x2 � X , a simple bound on the price of

such an option is given by

E t

�
A�

Z 1

0
Su du�XS1

��
� E t

�
A� x1S1 �

Z 1

0
�Su � x2S1� du

��

� E t�A� x1S1�
� �

Z 1

0
E t�Su � x2S1�

� du� (3.38)

This bound will not be particularly good unlessA� x1S1 and the random variables fSu � x2S1g
take the same sign with high probability. By considering the very crude approximation Su � S0,

we see that this bound is likely to be successful when (approximately) x1 � A and x2 � S0

i.e., x1 � AX��A� S0� and x2 � S0X��A� S0�. The bound is still quite poor however; we do

much better by replacing the constants x1 and x2 with random variables, giving a bound similar

to (3.34)

E t

�
A�

Z 1

0
Su du�XS1

��
� E t�A� �� f�S1�

�

�

Z 1

0
E t�Su � �u � fu�S1�

� du

(3.39)

where  and fug are deterministic with

�

Z 1

0
u du � X (3.40)

and f and fu have mean zero and satisfy

f��� �

Z 1

0
fu��� du � 0 for all � � �. (3.41)

We will determine  and fug from a condition analagous to (3.35), to be derived using La-

grangian methods, but first we choose f and fu. Thinking about when (3.39) is tight, we want f

to be large when S1 � A and fu to be large when S1 � Su. This suggests using f � ��B��1�

and fu � B��u� �B��1� for some constant � � 0. However we also need to satisfy (3.41) so we

use

f � y1I � �B��1�

fu � y2I �B��u� �B��1�
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where y1 � A��A � S0�, y2 � S0��A� S0� (choices suggested by our comments after (3.38)),

and I satisfies

I �

Z 1

0
B��s� ds� �1 � ��B��1� � 0�

(Taking � � A�S0 was found to work well in practice.) We now have the bound

E t

�
A�

Z 1

0
Su du�XS1

��
� E t

�
A� S1

�
� y1I � �B��1�

���

�

Z 1

0
E t

�
Su � S1

�
u � y2I �B��u� �B��1�

���
du� (3.42)

We determine the constant  and the function u by trying to minimise the Lagrangian

L��� � fug� � E t

�
A� S1

�
� y1I � �B��1�

���

�

Z 1

0
E t

�
Su � S1

�
u � y2I �B��u� �B��1�

���
du

� �

�
X � �

Z 1

0
u du

�
�

Imposing stationarity with respect to  gives the condition

E t

��S1A � S1
�
� y1I � �B��1�

��
� � � 0� (3.43)

and if, in addition, we have stationarity with respect to fug, then

E t

��S1Su � S1
�
u � y2I �B��u� �B��1�

��
� � � 0 for all u. (3.44)

Since it is easier to handle a condition of the form ‘P�Nu � u� is independent of u’, we will

replace (3.43) and (3.44) with the condition

Pt
�
Su � S1

�
u � y2I �B��u� �B��1�

��
� �� for all u,

where

Pt
�
A � S1

�
� y1I � �B��1�

��
� ��

and use the approximations exp��B��1�� � 1�B��1�, exp�B��u��B��1�� � 1�B��u��B��1�,

to give

P

�
exp���u��

�
1 �B��u� �B��1�

�

� exp���1��
�
u � y2

Z 1

0
B��s� ds� �y2� � y1�B��1� �B��u�

�	
� ���

(3.45)
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for all u, where ��� also satisfies

P
h
A
�
1�B��1�

�� S0 exp���1��
�
� y1I � �B��1�

� � 0
i
� ���� (3.46)

We now use the familiar fact that a condition of the form ‘P�Nu � u� is independent of u’

implies E �Nu � � u � �
p

var�Nu� for some �. Applying this to equations (3.45), (3.46), and

using (3.40) to determine �, gives

A� S0 exp���1�� � �
p
�

exp���u�� � exp���1��u � �
p
�u

where

� � vart

�
�AB��1� � S0 exp���1��

�
�y1

Z 1

0
B��s� ds� �y1 � �y2�B��1�

�	

�u � vart

�
exp���u��

�
B��u� �B��1�

�

� exp���1��
�
�y2

Z 1

0
B��s� ds� �y2� � y1�B��1� �B��u�

�	

� �

�
A
��
S0e

��1��� exp����1��
Z 1

0
exp���u�� du�X

�



�p

�
��
S0e

��1��� exp����1��
Z 1

0

p
�u du

��1

�

[It is possible to use (3.43) and (3.44) more directly, rather than (3.45) and (3.46) to deter-

mine fug, but the corresponding expression for � requires us to solve an equation involving an

integral of 
�1. Though this can all be done numerically, and this approach will probably lead

to a better bound, we will not pursue it here since the numerical results seem quite satisfactory

anyway.]

The first term in (3.42) is

E t

�
A� S0e

��1��B��1�

�
� y1

Z 1

0
B��s� ds� �y1 � y2��B��1�

�	�
�

To evaluate this, we condition on B��1� � x, giving
Z �

��

1p
��1�

�

�
xp
��1�

��
a�x�


�
a�x�

b�x�

�
� b�x��

�
a�x�

b�x�

�	
dx

where

a�x� � A� S0e
��1��x�� x�y1 � y2��� xy1 covt

�
B��1�� Y

��
��1�

�
b�x� � S0e

��1��xy1
�
vart�Y �� covt

�
B��1�� Y

�2�
��1�

�1�2

where Y �
R 1

0 B��s� ds. Expressions for vart�Y � and covt
�
B��u�� Y

�
in the normal Black-Scholes

model are given in Remark 3.4.
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For the second term in (3.42) we have
Z 1

0
E t

�
Su � S1

�
u � y2

Z 1

0
B��s� ds� �y2� � y1�B��1� �B��u�

�	�
du� (3.47)

By writing the expectation above as S0E �exp�N1�u�� � exp�N3�N2�u��
� and conditioning on

the event N2�u� � x we can perform the resulting expectation analytically using versions of

(3.22). Let

mi�u� � ENi �u�


ij�u� � cov�Ni�u�� Nj�u��

and denote the conditional distribution given N2�u� � x by tildes:

	mi�u� x� � mi � �x�m2�
i2�
22

	
ij�u� � 
ij�u�� 
i2�u�
j2�u��
22�u��

With this notation, (3.47) becomes

Z 1

0

Z �

��

1p

22

�

�
x�m2p


22

��
exp

�
	m1 �

1
2 	
11

�



�
	m1 � 	m3 � log�x� � 	
11 � 	
13

�	
11 � 2	
13 � 	
33�1�2

�

� x exp
�
	m3 �

1
2 	
33

�



�
	m1 � 	m3 � log�x� � 	
31 � 	
33

�	
11 � 2	
13 � 	
33�1�2

�	
dx du�

where we take log�x� � �� for x � 0. The various variances and covariances required here boil

down to vart�Y � and covt
�
B��u�� Y

�
again.

3.2.6 Numerical Results

We now see how the bounds presented here perform in practice. For simplicity, we will consider

a Black-Scholes model with constant parameters 
�s� � 
 and r�s� � r. Thus, to calculate a

time-t price, for s � t the functions ��s� and ��s� are given by (3.14) and (3.15).

Fixed-strike options

In Table 3.1 we price a variety of fixed-strike options at the start of the averaging period. We

give the lower bound of Curran (1992), the upper and lower bounds of Rogers & Shi (1992),

the Monte-Carlo results of Levy & Turnbull (1992) and the upper bound (3.37). The details

for the upper bound of Rogers & Shi are simply those reported in Rogers & Shi (1992). All

calculations assume that r � 0�09� and S0 � 100. For the Monte-Carlo results, the estimated

standard error is shown in parentheses. In Table 3.2 we consider t � �0�5, corresponding to a

time 6 months before the start of the averaging period; we assume that S�0�5 � 100 and give the
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lower and upper bounds (3.23) and (3.37). None of the bounds described in this section take

long to compute; the formula of Curran takes about 0.0002 seconds, while the lower and up-

per bounds of Section (3.2.3) and Section (3.2.5), take approximately 0�002 and 0�03 seconds

respectively.

Volatility Strike Curran R-S lower M-C result New Upper R-S Upper

95 8.8088 8.8088 8.81 (0.00) 8.8089 8.821

0.05 100 4.3082 4.3082 4.31 (0.00) 4.3084 4.318

105 0.9583 0.9583 0.95 (0.00) 0.9585 0.968

95 8.9118 8.9118 8.91 (0.00) 8.9130 8.95

0.10 100 4.9151 4.9151 4.91 (0.00) 4.9154 5.10

105 2.0699 2.0699 2.06 (0.00) 2.0704 2.34

90 14.9828 14.9828 14.96 (0.01) 14.9928 15.194

0.30 100 8.8276 8.8276 8.81 (0.01) 8.8333 9.039

110 4.6949 4.6949 4.68 (0.01) 4.7027 4.906

90 18.1829 18.1829 18.14 (0.03) 18.2208 18.57

0.50 100 13.0225 13.0225 12.98 (0.03) 13.0568 13.69

110 9.1179 9.1180 9.10 (0.03) 9.1560 9.97

Table 3.1 Comparison of various bounds on fixed-strike Asian option prices at the start of

the averaging period. The initial stock price is 100, and the interest-rate 0.09%. Estimates

of standard errors are in parentheses (from Curran (1992)).

Floating-strike options

In Table 3.3 we consider floating-strike options at the start of the averaging period, with S0 �

100, and show how the upper and lower bounds of Rogers & Shi (1992) compare to the upper

bound (3.42) and the generalisation to floating-strike options of Curran’s lower bound using

(3.33). In Table 3.4 we give examples of the lower and upper bounds (3.27) and (3.42) on the

price of floating strike options 6 months into the averaging period. We assume that S0�5 � 100

and that the average stock price over the first 6 months is also 100. The approximate timings are

0�0002 seconds for the generalisation of Curran’s formula, 0�004 seconds for the lower bound

and 0�03 seconds for the upper bound.
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Volatility 
 Strike K R-S lower New Upper

95 12.6299 12.6303

0.05 100 8.2985 8.2988

105 4.3173 4.3179

95 12.8425 12.8436

0.10 100 8.9750 8.9757

105 5.7151 5.7156

90 20.2959 20.3023

0.30 100 14.6530 14.6595

110 10.2466 10.2542

90 25.6198 25.6511

0.50 100 20.9894 21.0233

110 17.1213 17.1579

Table 3.2 Bounds on fixed-strike Asian option prices 6 months before the start of the

averaging period. The initial stock price is 100, and the interest-rate 0.09%.

Volatility 
 Interest-rate r Generalised R-S lower Upper bound R-S upper

0.05 1.2454 1.2454 1.2457 1.355

0.1 0.09 0.6992 0.6992 0.6997 0.825

0.15 0.2516 0.2516 0.2525 0.415

0.05 3.4044 3.4044 3.4067 3.831

0.2 0.09 2.6216 2.6216 2.6240 3.062

0.15 1.7098 1.7098 1.7126 2.187

0.05 5.6246 5.6246 5.6324 6.584

0.3 0.09 4.7382 4.7382 4.7461 5.706

0.15 3.6085 3.6085 3.6170 4.604

Table 3.3 Comparison of bounds on floating-strike Asian option prices at the start of the

averaging period. The parameter values are taken from Rogers & Shi (1992).
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Volatility 
 Interest-rate r R-S Lower bound Upper bound

0.05 1.3291 1.3307

0.05 0.09 0.8562 0.8573

0.15 0.4014 0.4021

0.05 3.3919 3.3961

0.10 0.09 2.7687 2.7722

0.15 1.9962 1.9988

0.05 5.4916 5.4990

0.30 0.09 4.8037 4.8103

0.15 3.8917 3.8973

Table 3.4 Bounds on floating-strike Asian option prices 6 months into the averaging

period.

3.3 Barrier options

The standard example of the barrier option is the knock-out call option—a European call op-

tion with an extra clause, cancelling the contract if the stock price hits a specified boundary.

More complex is the ‘double barrier’ option, with two knock-out boundaries, and yet another

possibility is the ‘knock-in’ version, which only pays out if the stock price hits the barrier. In

this section we will consider single and double barrier knock-out options; the value of the cor-

responding knock-in can be found by subtracting the value of the knock-out from the normal

value of the option. Other types of barrier option which we will not consider include ‘protected’

barrier options, where the barrier clause is only effective for part of the time, and ‘rainbow’ op-

tions, where the barrier clause refers to the price of a second stock. Carr (1995) describes the

pricing of these types of options in the normal Black-Scholes model with constant volatility and

interest-rate, and reviews much of the literature on other types of barrier options.

Unlike Asian options, for which pricing is difficult in the normal Black-Scholes model, one-

sided barrier options with a constant barrier, or more generally, with a barrier of the form

c1 exp�c2t�, do have fairly simple pricing formulae (see Goldman, Sosin & Gatto (1979) or

Musiela & Rutkowski (1997) for example), but with two knock-out barriers, or in a model with

time-varying volatility, no simple formula exists.

For these cases, numerical methods based on trees and two-dimensional lattices are very pop-

ular (see Section 3.1), but the discontinuity of the payoff function can lead to slow convergence

(see Boyle & Lau (1994) for a discussion), unless some modification of the basic method is em-
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ployed (see Rogers & Zane (1997) and Rogers & Stapleton (1998) for very successful methods).

Less numerical methods, leaving the answer as an infinite series or as a single or double in-

tegral can also be effective solutions. In Kunitomo & Ikeda (1992), a formula in the form of a

rapidly convergent infinite series is derived for the case of two barriers of the form c1 exp�c2t�, in

the normal Black-Scholes model. Another approach, via Laplace transforms, is pursued by Ge-

man & Yor (1996) and Jamshidian (1997), also for the case of two constant barriers. Methods

applicable to problems with more general barriers include those of Roberts & Shortland (1997),

using bounds on the hazard rate of the first hitting time, and Lo (1997), who uses a clever mod-

ification of the method of images to obtain a simple formula for the approximate price, together

with a bound on the error; we will review the work of Lo (1997) in Section 3.3.1. In principle,

the method of Lo (1997) can be used to produce formulae with arbitrary accuracy; it also has

the advantage of giving a simple pricing formulae, rather than leaving the answer as an integral,

though her method requires judicious parameter choices to give very narrow bounds.

Our original contribution in this section is a pair of bounds on the price of single and dou-

ble barrier options with twice-differentiable barriers. These can be evaluated rapidly and are

accurate for typical numerical examples.

Notational Note 3.7 We will assume, without loss of generality, that the option is to be priced

at time 0, that it has not already been knocked-out (otherwise the problem is trivial) and that it

expires at time 1.

Amongst the various one-sided barrier options, we will concentrate on the ‘up-and-out’

call option. This has a single knock-out barrier fFt : t � �0� 1�g, with F0 � S0: the contract

is cancelled if St � Ft for some 0 � t � 1, and is otherwise worth �S1 �K�� at time 1. It is

more convenient to have the barrier expressed in terms of the Brownian motion B, of (3.6), so

we define ft � log
�
F��1�t�

�
S0
�� �

�
��1�t�

�
and T � ��1�. With these definitions, the up-and-

out option is cancelled if Bt � ft for some 0 � t � T . (The ‘down-and-out’ option, where the

knock-out barrier is initially below the stock price can be handled by a similar method.)

Turning to the two-sided case, we now have two barriers, Gt and Ft, with G0 � S0 � F0

and Gt � Ft for all t � �0� 1�, and cancel the contract if St �� �Gt� Ft� for some t � �0� 1�.

Defining ft as above, and gt by gt � log
�
G��1�t�

�
S0
� � �

�
��1�t�

�
, the contract is cancelled

if Bt �� �gt� ft� for some 0 � t � T .

As a shorthand, we will let X �
�
S0 exp

�
BT � ��1�

� � K
��, the payout of the standard

European call option at time 1.

3.3.1 Lo’s method of images

In her PhD thesis, Lo (1997) considers the problem of calculating approximations to the taboo

density, P�BT � dx�Hf � T � where Hf � inf ft : Bt � ftg, for an arbitrary continuous bound-
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ary ft, with f0 � 0. She suggests an approximation of the form P�BT � dx�Hf � T � � h�T� x�

where

h�t� x� �
1p
t
�

�
xp
t

�
�

mX
i�1

I�t � ti�

Z �

0

1p
t� ti

�

�
x� �p
t� ti

�
dFi��� (3.48)

for 0 � t1 � t2 � � � � � tm � T , an increasing sequence of fixed times and fFig a collection of

signed 
-finite measures on R�.

To determine the times ftig and measures fFig, we use the fact that the right-hand side of

(3.48) is the exact taboo density for the boundary 	ft, defined by 	ft � inf fx : h�t� x� � 0g. This

follows from the fact that h satisfies the heat equation, �h��t � 1
2�

2h��x2, on
�
�t� x� : x � 	ft

�
with boundary conditions h

�
t� 	ft

�
� 0 and h�0� x� � �0�x�, where �y�x� denotes the Dirac

measure at y. To ensure that h�T� x� gives a good approximation to the required taboo density,

we aim to make 	ft � ft. For example, if a and b are positive constants, and ft is the linear

boundary

ft � b�

�
log a
2b

�
t�

which has the has taboo density

P�BT � dx�Hf � T � �
1p
t
�

�
xp
t

�
� a�1 1p

t
�

�
x� 2bp

t

�
�

we can take m � 1 and F1 � a�1�2b; in this case the approximation is exact.

To choose the measures fFig, it is convenient to restrict attention to those of the form Fi �Pni
j�1 aij�ij with �ij increasing in j, but even with this restriction, choosing f�ijg sensibly is

a tricky problem. Lerche (1986) proves that limt�0 	ft �
1
2�11, which suggests the choice �11 �

2f0; beyond this we must use a heuristic approach. Once f�ijg and ftig have been determined,

since h�t� x� is a linear function of faijg, it is relatively easy to determine faijg by interpolat-

ing f , or some of its derivatives, at a number of points in �0� T �. For example, interpolating f

at t implies h�ft� t� � 0, which is a linear equation in faijg. Alternatively, we could interpo-

late f � instead: since h
�
t� 	ft

�
� 0, we have �h��t � ��h��x� 	f �t � 0. Imposing 	f �t � f �t , this

becomes �h��t���h��x�f �t � 0, which again is linear in faijg. With several conditions of this

form, we can solve the set of linear equations to determine faijg. An advantage of using (3.48)

with m � 1 is that for i � j, the choice of Fi does not effect h�t� x� for t � tj ; thus we can

select Fi with the knowledge of h�t� x�—and hence 	ft—for 0 � t � ti.

Once we have determined the approximation h�T� x� we can proceed to price knock-out

options. The time-0 value of an up-and-out call option is proportional to E 0�X I�Bs � fs� 0 �
s � T ��, where X �

�
S0 exp

�
BT ���1�

��K
�� as usual; thus we can calculate the approximate

value of the option by integrating
�
S0 exp

�
x � ��1�

� � K
�� against h�T� x�. As h�T� x� is a

linear combination of normal densities, the expression for the option price will just be a linear

combination of Black-Scholes formulae.
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Lo’s method can also be extended to handle problems involving two-sided boundaries; we

refer the reader to Lo (1997) for further details.

3.3.2 One-sided barrier options

In this section, we try to calculate the time-0 value of an up-and-out call option with an arbitrary

twice-differentiable barrier. We will derive upper and lower bounds, discuss how to handle the

up-and-out put option and options with more general terminal payout functions, and suggest

ways of improving on these bounds if necessary. Finally, we will look at a numerical example, and

compare our bounds to those of Roberts & Shortland (1997) and Lo (1997) for this problem.

Recall the definition X �
�
S0 exp

�
BT ���1�

��K
��, the payout of the standard European

call option, and that the time-0 value of the up-and-out call option is given by

D�0� 1�E 0�X I�Bs � fs� 0 � s � T ��

(see Section 3.1). Setting E1 � E 0�X I�Bs � fs� 0 � s � T ��, we will try to bound E1.

Let 	Bt � Bt � ft � f0 and define the probability measure 	P by

d	P

dP
� exp

�Z T

0
f �t dBt � 1

2

Z T

0
�f �t�

2 dt

�
�

By the Cameron-Martin-Girsanov Theorem we have

E1 � 	E 0

h
e�

R
T

0 f �t d
�Bt� 1

2

R
T

0 �f �t�
2 dtX I

�
	Bs � f0� 0 � s � T

�i

where 	B is a 	P-Brownian motion. Integrating f �t d 	Bt by parts, gives

E1 � e�
1
2

R
T

0 �f �t�
2 dt 	E 0

h
e
R
T

0 f ��t
�Bt dt�f �T �BTX I

�
	Bs � f0� 0 � s � T

�i
� (3.49)

Now recall Jensen’s inequality for the function y �� exp�y�: for any random variable Y , we

have E exp�Y � � exp�EY �, and for any function a,
R 1

0 exp
�
a�t�

�
dt � exp

�R 1
0 a�t� dt

�
with

equality if and only if Y (respectively a) is almost surely constant. Notice that if � is a non-

negative random variable with E� � 0 we have

E �exp�Y �� � � �E�� exp
�
E �Y���E �

�

and for T � R, we have T�1
R T

0 exp
�
Ta�t�

�
dt � exp

�R T
0 a�t� dt

�
. Using these forms of Jensen’s

inequality, we can bound the expectation on the right-hand-side of (3.49) as follows:

�
	E 0�

�
e �

R
T

0
�E 0��t�� dt�� �E 0� � 	E 0

�
e
R
T

0 �t dt�

� 1

T

Z T

0

	E 0
�
eT�t�

�
dt� (3.50)

where �t � f ��t 	Bt and � � exp
��f �T 	BT

�
X I

�
	Bs � f0� 0 � s � T

�
. Note that both of these

bounds will be exact if and only if f ��t � 0 for almost all t � �0� T �, i.e., when f is linear.
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Defining

G�a� S0�K� u� t� � E
�
eaWt

�
S0e

Wt �K
�� I�Ws � u� 0 � s � t�

�
(3.51)

for a P-Brownian motion W, and writing X as
�
S0 exp

�
	BT � fT � f0 � ��1�

� �K
��

, we see

that 	E 0� � G
��f �T � S0 exp

�
fT � f0 � ��1�

�
�K� f0� T

�
. The function G can be expressed in

terms of the normal distribution function 
, as

G�a� S0�K� u� t�

� S0e
1
2 �a�1�2t


�



�
u� �a� 1�tp

t

�
� 


�
l � �a� 1�tp

t

�	

� e2�a�1�u
�



�
u� �a� 1�tp

t

�
�


�
2u� l � �a� 1�tp

t

�	�

�Ke
1
2a

2t


�



�
u� atp

t

�
�


�
l� atp

t

�	

� e2au
�



�
u� atp

t

�
�


�
2u� l � atp

t

�	�

for l � u, u � 0 and 0 otherwise, where l � log�K�S0�. Now consider the expressions 	E 0��t��

and 	E 0�exp�T�t�� �. Conditioning on 	Bt � x we have

	E 0��t�� � 	E 0
�
f ��t 	Bte

�f �T �BTX I
�
	Bs � f0� 0 � s � T

��

� f ��t

Z f0

��
x	P0

�
	Bs � f0� 0 � s � t� and 	Bt � dx

�


 	E 0
�
e�f

�

T
�BTX I� 	Bs � f0� t � s � T �

�� 	Bt � x
�
� (3.52)

and for 	E 0�exp�T�t�� �, we have

	E 0
�
eT�t�

�
� 	E 0

�
eTf

��

t
�Bte�f

�

T
�BTX I� 	Bs � f0� 0 � s � T �

�

�

Z f0

��
eTxf

��

t 	P0
�
	Bs � f0� 0 � s � t� and 	Bt � dx

�


 	E 0
�
e�f

�

T
�BTX I

�
	Bs � f0� t � s � T

� �� 	Bt � x
�
� (3.53)

To evaluate the integrands, recall the expression for the taboo density of Brownian motion with

a linear boundary:

	P
�
	Bs � f0� 0 � s � t� and 	Bt � dx

�
� I�x � f0�

1p
t

�
�

�
xp
t

�
� �

�
2f0 � xp

t

�	
dx� (3.54)

and observe that we can write the expectation on the right-hand side of (3.52) and (3.53) as

	E 0
�
e�f

�

T �x�
�WT�t�

�
S0e

x� �WT�t�fT�f0���1� �K
�� I

�
	Ws � f0 � x� 0 � s � T � t

��
� e�xf

�

TG
��f �T � S0e

��1��x�fT�f0 �K� f0 � x� T � t
�

(3.55)

where 	Ws � 	Bs�t � 	Bt� 0 � s � T � t is a 	P-Brownian motion.
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Other terminal payoff functions

To bound the value of an up-and-out put option or an option with a more general terminal

payoff function, note that the form of the terminal payout only enters through the function G.

Thus for an up-and-out put, where the terminal payout is
�
K � S0 exp

�
BT � ��1�

��� I�Bs �

fs� 0 � s � T �, we just replace (3.51) with

Gput�a� S0�K� u� t� � E
�
eaWt

�
K � S0e

Wt
�� I�Ws � u� 0 � s � t�

�

and hence

Gput�a� S0�K� u� t� � Ke
1
2a

2t






�
l � atp

t

�
� e2au

�



�
2u� l � atp

t

�
� 1

	�

� S0e
1
2 �a�1�2t






�
l � �a� 1�tp

t

�

� e2�a�1�u
�



�
2u� l � �a� 1�tp

t

�
� 1

	�

for u � 0 and 0 otherwise, where l � min
�
log�K�S0�� u

�
.

For a claim with more general terminal payoff function, we could condition on both 	BT

and 	Bt in (3.52), leading to a three-dimensional integral for the price of the option, but it is

probably better to approximate or bound the payoff with a polynomial of high degree
�
noting

that for a call option, this approximation need only be accurate over �K�F1�
�
, when (3.52)

becomes a sum of one-dimensional integrals.

Improved bounds

A simple improvement on the upper bound may be obtained by letting t be a deterministic

function satisfying
R T

0 t dt � 0 and replacing the upper bound in (3.50) by

	E 0

�
e
R
T

0 �t dt�

� 1

T

Z T

0

	E 0

�
eT ��t�	t��


dt� (3.56)

Minimising the right-hand side of (3.56) over ftg, and recalling the definition �t � f ��t 	Bt,

gives t � C � log 	E 0
�
exp

�
Tf ��t 	Bt

�
�
�

where C is chosen so that
R T

0 t dt � 0. To implement

this, we evaluate log 	E 0
�
exp

�
Tf ��t 	Bt

�
�
�

at a fixed number of points in �0� T �, and use cubic in-

terpolation to determine t�C for the remaining t � �0� T �. The interpolating function is then

easy to integrate, allowing us to calculate C. For our numerical example however, this did not

lead to a substantial improvement.
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3.3.3 A numerical example of a one-sided barrier problem

Roberts & Shortland (1997) consider an up-and-in call option with a constant knock-in bar-

rier F , on a stock with constant volatility but a non-constant interest-rate. Specifically, they

assume that r�t� has been perturbed from some equilibrium level r�, to which it returns via

an exponential decay: r�t� � r� � �r0 � r�� exp��ct�, for some constant c. For a time-0

calculation, the functions � and �, defined by (3.5), are given by ��t� � 
2t and ��t� �

r�t � �r0 � r���1 � exp��ct���c � 1
2


2t for t � 0. In terms of the underlying Brownian

motion, the barrier is

ft � log�F�S0�� ��t�
2�

� log�F�S0�� r�t�
2 � �r0 � r���1� exp��ct�
2���c� 1
2 t�

The specific problem which Roberts & Shortland (1997) examine has the parameters S0 �

10� 
 � 0�1�K � 11� r0 � 0�15� r� � 0�1� c � 1� F � 12. As remarked earlier, the price of an

up-and-in option is just the difference between the price of a standard European option and an

up-and-out option with the same barrier. A comparison of the method described here, together

with the methods of Roberts & Shortland (1997) and Lo (1997) is shown in Table 3.5.

Method Lower bound Upper bound Width

Roberts & Shortland 0.516758 0.517968 0.23%

Lo 0.516243 0.5175570 0.25%

New 0.516369 0.517159 0.15%

Table 3.5 Bounds on the value of a one-sided barrier option.

3.3.4 Two-sided barrier options

Recall that the time-0 value of a two-sided knock-out call option is given by

D�0� 1�E 0�X I�gs � Bs � fs� 0 � s � T ���

To generalise the method of the previous section, we let E2 � E 0�X I�gs � Bs � fs� 0 �
s � T �� and try to bound E2. First, we will transform the process Bs to make both knock-out

barriers constant. Define the process Ys � �Bs � gs���fs � gs�, 0 � s � T so that

dYs �
dBs

fs � gs
� ds

fs � gs
�g�s � Ys�f

�
s � g�s���
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and the time change �t, by ��t � t where �0 � 0, ��s � �fs � gs�
�2. Finally, set Zt � Y�t and

	T � �T . The process Zt is then a diffusion on
�
0� 	T

�
with SDE

dZt � dWt � ��t � �tZt� dt�

with Z0 � �g0��f0 � g0�, for some Brownian motion Wt, where, with s � �t, we have

�t � ��fs � gs�g
�
s

�t � ��fs � gs��f
�
s � g�s��

We now follow the same path as Section 3.3.2. Define the probability measure 	P by d	P�dP �

exp
�� R �T

0 ��t � �tZt� dWt � 1
2

R �T

0 ��t � �tZt�
2 dt

�
and use the Cameron-Martin-Girsanov The-

orem to give

E2 � 	E 0

h
e
R �T

0 ��t��tZt� dZt� 1
2

R �T
0 ��t��tZt�

2 dtX I
�
0 � Zs � 1� 0 � s � 	T

�i

where Zt � Z0 is now a Brownian motion under 	P. From Itô’s Lemma, we have d��tZt� �

� �tZt dt� �t dZt and d��tZ
2
t � � ��tZ

2
t dt� 2�tZt dZt � �t dt, so

E2 � e��0Z0� 1
2 �0Z

2
0� 1

2

R �T
0 ��

2
t��t� dt 	E 0

�
e
R �T

0 �t dt�


(3.57)

where, setting s � �t, we have

�t � ��� �t � �t�t�Zt � 1
2

�
��t � �2

t

�
Z2
t

� �fs � gs�
3�g��sZt � 1

2 �f
��
s � g��s �Z

2
t

�
(3.58)

and

� � e� �TZ �T�
1
2 � �TZ

2
�TX I

�
0 � Zs � 1� 0 � s � 	T

�
�

We now use inequalities (3.50), replacing T with 	T , to bound the expectation on the right-hand

side of (3.57). From (3.58) we can see that these bounds will be exact if and only if both f and

g are linear.

It remains to compute 	E 0�, 	E 0��t�� and 	E 0
�
exp

�
	T�t

�
�
�
. For this, we use the result that if

W is a Brownian motion, then the function P �l� u� t� x�, defined by

P �l� u� t� x� � P�l � Ws � u� 0 � s � t� and Wt � dx�

is given by

P �l� u� t� x� � I�l � 0 � u� I�l � x � u� (3.59)


 1p
t

�X
��

�
�

�
x� 2n�u� l�p

t

�
� �

�
x� 2u� 2n�u� l�p

t

�	
dx (3.60)
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(see Revuz & Yor (1994), page 106 for example). (It is worth remarking that this infinite series

converges very rapidly.)

Since the terminal payout X , can be expressed as

X �
�
S0 exp

�
��1� � gT � �fT � gT �Z �T

��K
��
�

we can write 	E 0� � �G
�
� �T �

1
2� �T � S0 exp���1� � gT �� fT � gT �K� 	T � Z0

�
, where we define

�G�a� �a� S0� 
�K� t� w0�

� E
�
eaWt�	aW

2
t

�
S0e

�Wt �K
�� I�0 � Ws � 1� 0 � s � t�

��W0 � w0
� (3.61)

for a P-Brownian motion W � w0. Using (3.60) we find that

�G�a� �a� S0� 
�K� t� w0� � I�0 � w0 � 1� I�m � 1�
1p
t

�X
��

hn�a� �a� S0� 
�K� t� w0� (3.62)

where m � max
�

�1 log�K�S0�� 0

�
and

hn�a� �a� S0� 
�K� t� w0� � S0
�
H�m� �a� a� 
��2n� w0� 2t�

�H�m� �a� a� 
� 2�1� w0�� 2n� w0� 2t�
�

�K
�
H�m� �a� a��2n� w0� 2t�

�H�m� �a� a� 2�1� w0�� 2n� w0� 2t�
�

and

H�a� �a� b� c� d� �
1p
2�

Z 1

a

ebx�	ax
2��x�c�2�d dx�

The function H is given by

H�a� �a� b� c� d� �
p
D exp

�
2D��b� �ac�c�d� b2�4�

�



�



�p
D

�
2c
d

� b

�
� ap

D

�
� 


�p
D

�
2c
d

� b

�
� 1p

D

�	

where D � 1
2d��1� �ad�, provided D � 0, which is the case for all our numerical examples. (If

D � 0, a similar expression can be given involving Dawson’s integral:
R x

0 exp�u2� du.)

We can calculate E 0��t�� and E 0
�
exp

�
	T�t

�
�
�

by conditioning on Bt � x, as we did in

Section 3.3.2. Thus for E 0��t�� we have

E 0��t�� � 	E 0
�
�fs � gs�

3�g��sZt � 1
2 �f

��
s � g��s �Z

2
t

�

 e� �TZ �T�

1
2 � �TZ

2
�TX I

�
0 � Zs � 1� 0 � s � 	T

��

�

Z 1

0
�fs � gs�

3�g��sx� 1
2�f

��
s � g��s �x

2�


 	P0�0 � Zs � 1� 0 � s � t� and Zt � dx�


 	E 0
�
e� �TZ �T�

1
2 � �TZ

2
�TX I�0 � Zs � 1� t � s � 	T �

��Zt � x
�
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and for E 0
�
exp� 	T�t��

�
we have

E 0
�
exp� 	T�t��

�
� 	E 0

�
exp

�
	T �fs � gs�

3�g��sZt � 1
2 �f

��
s � g��s �Z

2
t

��

 e� �TZ �T�

1
2 � �TZ

2
�TX I

�
0 � Zs � 1� 0 � s � 	T

��

�

Z 1

0
exp

�
	T �fs � gs�

3�g��sx� 1
2 �f

��
s � g��s �x

2��


 	P0�0 � Zs � 1� 0 � s � t� and Zt � dx�


 	E 0
�
e� �TZ �T�

1
2 � �TZ

2
�TX I

�
0 � Zs � 1� t � s � 	T

� ��Zt � x
�
�

In each case, we can write the integrand in terms of �G and P , since

	P0�0 � Zs � 1� 0 � s � t� and Zt � dx� � P
��Z�0�� 1� Z�0�� t� x� Z�0�

�

and

	E 0
�
e� �TZ �T�

1
2 � �TZ

2
�TX I�0 � Zs � 1� t � s � 	T �

��Zt � x
�

� G
�
� �T �

1
2� �T � S0 exp���1� � gT �� fT � gT �K� 	T � t� x

�
�

3.3.5 Numerical examples of two-sided barrier problems

We now consider the numerical examples of Rogers & Zane (1997), Geman & Yor (1996), Ku-

nitomo & Ikeda (1992) and Rogers & Stapleton (1998). Working in the Black-Scholes model

with constant parameters, 
�t� � 
 and r�t� � r, they consider three types of knock-out barri-

ers: (i) constant barriers, L � St � U ; (ii) exponential barriers, L exp��Lt� � St � U exp��U t�,

and (iii) linear barriers, L � �Lt � St � U � �U t. Problems (i) and (ii) have exact formulae

in the form of infinite series (see Kunitomo & Ikeda (1992), or in terms of an inverse Laplace

transform (see Geman & Yor (1996)), and as remarked above, our bounds are also exact in these

cases (though we must also allow for the potential error introduced by the numerical integra-

tion). For these problems, the alternative methods, particularly Kunitomo & Ikeda (1992) are

much quicker. It is the type (iii) problems we are more interested in, where no such formula

exists.

In Table 3.7, the figure quoted by Rogers & Zane (1997) for problem (i-2) using the infinite

series approach of Kunitomo & Ikeda (1992) is 0�017856, which is not consistent with our lower

bound. We note that our own implementation of their method gave the figure 0�01785702,

which is consistent. For this type of problem the computation time of our bounds is approxi-

mately 0�2 seconds.

In Table 3.9 Kunitomo & Ikeda (1992) give a figure of 10�86 for problem (ii-8), also not

consistent with our bounds. Our implementation of their method gives 10�83. Here, the com-

putation time is approximately 0�3 seconds.
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Problem 
 r K L U S T

(i-1) 0.2 0.02 2 1.5 2.5 2 1

(i-2) 0.5 0.05 2 1.5 3 2 1

(i-3) 0.5 0.05 1.75 1 3 2 1

Table 3.6 Parameter values for type (i) double-barrier problems (constant barriers)

Problem RZ RS GY KI Lower Upper

(i-1) 0.041079 N/A 0.0411 0.041089 0.041088 0.041090

(i-2) 0.017837 N/A 0.0178 0.017856 0.0178568 0.0178573

(i-3) 0.076147 N/A 0.07615 0.076172 0.0761714 0.0761732

Table 3.7 Numerical results for type (i) double-barrier problems.

Since the bounds will not be exact for type (iii) problems, in Table 3.11 we report the result

of performing the numerical integration to high accuracy, as well as the results using the quicker,

less accurate code used for the type (i) and type (ii) problems. We also consider some more ex-

treme numerical examples, in order to demonstrate that the bounds are not always accurate. The

computation time is about 0�4 seconds, while the accurate answers take about 3 seconds.

In Table 3.11, the figures reported in Rogers & Zane (1997) for problems (iii-4) and (iii-5)

are significantly different from our bounds. We implemented the algorithm of Rogers & Zane

(1997) as described in their paper as closely as possible (using Mathematica to check intermedi-

ate quantities) and report the results in the final column.

3.4 Basket options and stock-index options

In this section, we try to calculate expectations of the form

E
�X

e	i�Ni �K
�

(3.63)

where i, i � 1� � � � � n, are constants and Ni, i � 1� � � � � n, are joint normal and mean zero.

More generally, we will try to find an approximation to the density of
P

exp�i�Ni�, enabling

us to estimate E g�X� for an arbitrary function g when X �
P

exp�i �Ni�.
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Problem 
 r T S K �U �L L U

(ii-1) 0.2 0.05 0.5 1000 1000 0.1 �0.1 500 1500

(ii-2) 0.2 0.05 0.5 1000 1000 0.1 �0.1 600 1400

(ii-3) 0.2 0.05 0.5 1000 1000 0.1 �0.1 700 1300

(ii-4) 0.2 0.05 0.5 1000 1000 0.1 �0.1 800 1200

(ii-5) 0.2 0.05 0.5 1000 1000 �0.1 0.1 500 1500

(ii-6) 0.2 0.05 0.5 1000 1000 �0.1 0.1 600 1400

(ii-7) 0.2 0.05 0.5 1000 1000 �0.1 0.1 700 1300

(ii-8) 0.2 0.05 0.5 1000 1000 �0.1 0.1 800 1200

(ii-9) 0.25 0.1 1 95 100 0.1 �0.1 90 160

Table 3.8 Parameter values for type (ii) double-barrier problems (exponential barriers)

Problem RZ RS KI Lower Upper

(ii-1) 67.7834 N/A 67.78 67.70 67.86

(ii-2) 64.6401 N/A 64.63 64.56 64.71

(ii-3) 55.1992 N/A 55.20 55.13 55.26

(ii-4) 34.5713 N/A 34.58 34.54 34.62

(ii-5) 62.7532 N/A 62.75 62.68 62.82

(ii-6) 52.5021 N/A 52.50 52.44 52.56

(ii-7) 33.4429 N/A 33.45 33.41 33.49

(ii-8) 10.8217 N/A 10.86 10.81 10.85

(ii-9) 5.3680 5.3672 5.3679 5.362 5.374

Table 3.9 Numerical results for type (ii) double-barrier problems
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Problem 
 r T S K U L �U �L

(iii-1) 0.25 0.1 1 95 100 160 90 20 �20

(iii-2) 0.25 0.1 1 95 100 160 90 15 �15

(iii-3) 0.25 0.1 1 95 100 160 90 10 �10

(iii-4) 0.25 0.1 1 95 100 160 90 5 �5

(iii-5) 0.25 0.1 1 95 100 160 90 �5 5

(iii-6) 0.25 0.1 1 95 100 160 90 �10 10

(iii-7) 0.25 0.1 1 95 100 160 90 �15 15

(iii-8) 0.25 0.1 1 95 100 160 90 �20 20

Table 3.10 Parameter values for type (iii) double-barrier problems (linear barriers)

Problem RZ Lower Upper Approximate

(iii-1) N/A 6.396 (6.40296) 6.609 (6.60181) 6.40999

(iii-2) N/A 5.746 (5.75179) 5.789 (5.78319) 5.75352

(iii-3) N/A 5.031 (5.03665) 5.045 (5.03948) 5.03683

(iii-4) 4.3438 4.263 (4.26790) 4.273 (4.26798) 4.26779

(iii-5) 2.5438 2.635 (2.63779) 2.641 (2.63782) 2.63747

(iii-6) N/A 1.829 (1.83154) 1.834 (1.83167) 1.83117

(iii-7) N/A 1.089 (1.09035) 1.092 (1.09082) 1.09001

(iii-8) N/A 0.490 (0.49097) 0.493 (0.49199) 0.49069

Table 3.11 Numerical results for type (iii) double-barrier problems (linear barriers).
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Expression (3.63) arises in a variety of option pricing problems. For example, fixed-strike

Asian options, which are discussed at length in Section 3.2; swaptions (see Section 1.4); stock-

index options, and currency basket options, to name a few; if the underlying stochastic processes

(stock prices, bond prices, exchange-rates etc.) are joint lognormal, all these option pricing prob-

lems are essentially just (3.63).

Several previous attempts have been made at this type of problem; Rubinstein (1991) uses

an elementary lattice-based approach, while Gentle (1993) replaces
P

exp�i � Ni� with an

appropriate lognormal random variable (similar to the approach of Kemna & Vorst (1990) for

Asian options, see also Musiela & Rutkowski (1997)), and Huynh (1994) approximates the

density of
P

exp�i �Ni� using a generalised Edgeworth expansion about a lognormal density.

While considering a slightly different problem, Lamberton & Lapeyre (1993) use an Edgeworth

expansion about a normal density to approximate the density of
P

exp�i � Ni�, in the case

where fNig are uncorrelated. (The idea of Edgeworth expansion was first applied to the problem

of option pricing in Jarrow & Rudd (1982).)

Rather than look for another approximate formula, we will derive lower and upper bounds

on (3.63), and demonstrate their accuracy with a few numerical examples. Our lower bound is

the same as in Section 3.2.3 and turns out to be very accurate for all the problems we consider.

For an upper bound, we will first use the bound of Section 3.2.5 for problems where fNig are

reasonably well correlated, or n is small (which applies to Asian options, swaptions and currency

basket options) and derive a new bound to cope with the case when n is large, and fNig are

weakly correlated (as is the case for stock-index options). We will also derive an approximation

to the density of
P

exp�i�Ni�, using ideas from Curran (1992) and Rogers & Shi (1992). This

approximate density can be used to give a lower bound on E g�X� for any convex function g;

judging by our numerical examples, it is also very accurate.

Since the first two of these are described in some detail in Section 3.2.3 and Section 3.2.5,

we will give only partial derivations.

3.4.1 A lower bound

For the lower bound, observe that if wj , j � 1� � � � � n, and � are constants, then

E
�X

e	i�Ni �K
�

�
X
i

E
�
e	i�Ni �K 

P
jwjNj � �

�
� (3.64)

To determine the optimal value of �, differentiate the right-hand side of (3.64) with respect to �,

and set the gradient equal to zero, giving

X
i

E
�
e	i�Ni

��P
jwjNj � �

�
� K� (3.65)
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Setting cij � cov�Ni� Nj�, v � var
�P

j wjNj

�
�
P

j�k wjcjkwk and vi � cov
�
Ni�

P
j wjNj

�
�P

j cijwj , (3.65) reduces to

X
exp

�
i � �vi�v �

1
2 �cii � v2

i �v�
�
� K� (3.66)

For the constants fwjg, the simple choice wj � exp�j� is very plausible and seems to work

well, though wj � exp�j��1 � 1
2cjj� is slightly better for our examples.

For all the numerical examples here, solving (3.66) is straightforward, since the left-hand

side turns out to be strictly increasing in � over a large range. (Alternatively, we could use the

method of Curran (1992), as described in Section 3.2.4, to obtain an approximate solution.)

Writing �	 for the solution to (3.66), we can use (3.22) to perform the expectation calcula-

tion in (3.64), giving the bound

E
�X

e	i�Ni �K
�

�
X

e	i�
1
2 cii


���	 � vip
v

�
�K


���	p
v

�
� (3.67)

3.4.2 Upper bounds

We now look for upper bounds to complement the lower bounds of the previous section.

Currency basket options

When n is small or fNig are positively correlated, we suggest a variant of the bound of Sec-

tion 3.2.5,

E
�X

e	i�Ni �K
�

�
X

E
�
e	i�Ni � �mi � yiI � wiNi�

�� (3.68)

where mi, yi, and wi are deterministic with
P

mi � K,
P

yi � 1 and I � �PwiNi.

We now try to minimise the right-hand side of (3.68) over all fmi� yig such that
P

mi � K

and
P

yi � 1. The usual Lagrangian analysis (see Section 3.2.5) leads to the optimality condi-

tions

P�e	i�Ni � mi � yiI � wiNi� � � for all i�

E �I  e	i�Ni � mi � yiI � wiNi� � 	� for all i�

where � and 	� are the Lagrange multipliers for the constraints
P

mi � K and
P

yi � 1,

respectively. We will set wi � exp�i�, and repeat the method of Section 3.2.5, by using an

approximation of the form exp�i �Ni��wiNi � di for some constant di. Unfortunately, this

approximation reduces both of the above conditions to

di �mi � �yi for some �, (3.69)
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from which we cannot determine both mi and yi. To proceed further, we will make the arbi-

trary choice yi � exp�i�cii. Since wi � exp�i�, the choice di � exp�i� is quite natural,

and we can now use (3.69) to give mi � di � �yi, where � �
P

di � K. With the nota-

tion cij � cov�Ni� Nj�, vi � var�yiI � wiNi�, and ci � cov�Ni� yiI � wiNi�, the upper bound

can be writing as

E
�X

e	i�Ni �K
�

�
XZ �

��

1p
cii

�

�
xp
cii

��
ai


�
ai
bi

�
� bi�

�
ai
bi

�	
dx (3.70)

where ai � ai�x� � exp�i � x� � �mi � xci�cii� and bi � bi�x� �
�
vi � c2

i�cii
�1�2.

Stock-index options

For stock-index options, the bound of Section 3.4.2 is poor, due to the large number of assets

and low correlations between them. For this type of option, we will derive a new upper bound

from scratch, using a method similar to that of Rogers & Shi (1992) (see Section 3.2.5).

First note that for any random variable X we have

EX� � 1
2�EX � E jX j�

� 1
2EX � 1

2

�
EX2�1�2

� (3.71)

Moreover, this bound is the best possible which only depends on EX and EX2 ; if m2 � m2
1,

the random variable with distribution

P�X � �pm2� �
1
2

�
1� m1p

m2

�

P�X � �
p
m2� �

1
2

�
1 �

m1p
m2

�

has EX � m1 and EX2 � m2, and the inequality in (3.71) is tight in this case. We will put

X �
P

exp�i�Ni��K and first condition on Y �
P

i wiNi, where wi � exp�i�, before ap-

plying (3.71) to the conditional distribution of X given Y . Thus, writing S �
P

exp�i �Ni�,

we have

E �S �K�� � 1
2E �S �K� � 1

2E
�
E
�
�S �K�2

��Y ��1�2
� (3.72)

To evaluate the final term, we write E �S2 jY � as a double sum of exponentials.

3.4.3 A density approximation

In this section we will derive an approximation to the density of
P

exp�i�Ni� using the ideas

of Rogers & Shi (1992).
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Let wj , j � 1� � � � � n, be constants and let Y �
P

wjNj . Define the functions

x�y� � E
�X

exp�i �Ni�
��Y � y

�

and y� � � � x�1� � �, the inverse function to x�y�. We will assume that x � �0���� R is 1-1 and

onto, and strictly increasing in y; for our numerical examples, the intuitive choice wj � exp�j�

appears to work. Let fY �y� denote the density of Y at y, and define the function

	f�x� � fY
�
y�x�

�
y��x� (3.73)

Note that 	f � 0 and
R�

0
	f�x� dx �

R�
0 fY �y�x��y

��x� dx �
R�
�� fY �y� dy � 1, so 	f is a prob-

ability density. To evaluate 	f in practice, it is quicker to first evaluate x� and then use y��u� �

1�x�
�
y�u�

�
.

Proposition 3.8 Let X �
P

exp�i�Ni� and let g�x� be an arbitrary convex function on �0���;

then E g�X� � R�
0 g�x� 	f �x� dx.

Proof Using Jensen’s inequality, we have

E g�X� � E
�
E
�
g�X�

��Y ��
� E g

�
E �X jY ��

�

Z �

��
g
�
x�y�

�
fY �y� dy

�

Z �

0
g�x�fY

�
y�x�

�
y��x� dx

�

Z �

0
g�x� 	f�x� dx�

�

Remarks (i) If g�x� � �x�K��, and we use the same fwjg as in Section 3.4.1, the lower bound

on E g�X� given by
R�

0 g�x� 	f�x� dx is just the lower bound of Section 3.4.1: Let C�K� �

E �X � K��, then C ��K� � �P�X � K� and C ���K� is the density of X at K. If we have

an approximation, C�K� � 	C�K�, we could use 	C ���K� as an approximation to the density.

If 	C�K� � E
�
E �X jY ��K��, the lower bound of Section 3.4.1, we have 	C ��K� � �P�x�Y � �

K
�
� P

�
Y � y�K�

�
, and thus 	C ���K� � fY

�
y�K�

�
y��K�, the expression above.

(ii) With bounds of the form

	C�K� � E �X �K�� � �C�K� for all K

we can derive upper and lower bounds on the price of options with more general payoff func-

tions. If g��x� 	C�x�� 0, and g�x� 	C ��x�� 0 as x��, we can use

g�x� �

Z �

0
�x�K��g���K� dK � g�0� � xg��0�
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to give the lower bound

E g�X� �
Z �

0
g�x� 	C ���x� dx � g�0��1 � 	C ��0�� � g��0��EX � 	C�0���

when g is convex (and similarly an upper bound in terms of �C). Since any function whose

first derivative has finite variation is the sum of a convex function and a concave function, we

can bound E g�X� from above and below for a wide range of functions (in particular for any

twice-differentiable function).

3.4.4 Numerical results

We now apply our bounds to a number of numerical examples.

Currency basket option

First, we will apply the bounds (3.67) and (3.70), and the density approximation (3.73) to the

problem of Huynh (1994), Rubinstein (1991) and Gentle (1993)—a call option on a currency

basket involving two currencies. The actual calculation required is

e�rt E
�X

ViXie
t�r�ri� 1

2Cii��Ni �K
�

where r is the domestic interest-rate, C is the covariance matrix of the infinitesimal increments

in the logarithm of the exchange-rates, �N1� N2� is bivariate normal with mean zero and covari-

ance matrix cov�Ni� Nj� � tCij , and for currency i: ri, Vi and Xi denote the interest-rate, the

number of units of the currency in the basket, and the initial exchange-rate, respectively. For

our problem, the parameters are r �0.04, r1 � 0.035, r2 � 0.1, V1X1 � 10,000, V2X2 �

20,000, C11 � 0.12, C22 � 0.1, C12 � C21 � �
p
C11C12 and t � 0.5. We consider a range of

correlations �, and strikes K.

In Table 3.12 we show how the results of Huynh (1994), Rubinstein (1991), Gentle (1993)

and our lower and upper bounds, compare to the exact answer, obtained by numerical integra-

tion; beneath each entry we show the percentage deviation from the exact answer. Computation

times are not available for all the bounds shown; for those derived here, the lower bound takes

approximately 0�005 seconds, and the upper bound 0�01 seconds.

Table 3.13 shows the first nine moments of
P

ViXi exp
�
t�r � ri � 1

2Cii� � Ni

�
for the

case � � �0�5, together with the lower bound obtained by integrating against the approximate

density (see Proposition 3.8).

Figure 3.1 shows how the density of
P

ViXi exp
�
t�r � ri � 1

2Cii� � Ni

�
compares to the

approximate density (the curves are virtually identical).
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� K Exact Rubinstein GKV Huynh Lower Upper

27,000 2,392.33 2,402.19 2,402.19 2,404.11 2,392.14 2,392.67

0.412 0.412 0.492 �0.008 0.014

�0.5 29,400 486.559 492.74 490.68 492.3 485.617 486.855

1.270 0.847 1.180 �0.194 0.061

31,000 60.3734 61.69 59.21 59.81 59.7874 60.8504

2.181 �1.927 �0.933 �0.971 0.013

27,000 2,423.21 2,432.7 2,432.7 2,434.28 2,423.1 2,423.73

0.392 0.392 0.457 �0.005 0.021

0.0 29,400 648.097 654.74 652.97 654.24 647.72 648.222

1.025 0.752 0.973 �0.05 0.019

31,000 150.521 152.83 151.90 152.47 150.261 150.989

1.534 0.916 1.295 �0.173 0.311

27,000 2,467.45 2,476.98 2,476.71 2,478.03 2,467.42 2,467.81

0.386 0.375 0.429 �0.001 0.015

0.5 29,400 775.988 782.63 781.75 782.23 775.906 776.017

0.856 0.743 0.804 �0.011 0.004

31,000 241.041 244.28 243.66 243.82 240.977 241.291

1.344 1.087 1.153 �0.027 0.103

Table 3.12 A comparison of bounds and approximations on values of a currency basket,

with percentage deviations from the exact answer. Here � is the correlation between the

exchange-rates and the K the strike price.
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Moment Exact Lower bound

1 29433.9 29433.9

2 8.6781
 108 8.6779
 108

3 2.5629
 1013 2.5628
 1013

4 7.5814
 1017 7.5811
 1017

5 2.2465
 1022 2.2463
 1022

6 6.6679
 1026 6.6672
 1026

7 1.9825
 1031 1.9822
 1031

8 5.9042
 1035 5.9028
 1035

9 1.7613
 1040 1.7608
 1040

Table 3.13 Moments of the distribution of the final value of the currency basket (under

the martingale measure), with the lower bounds derived from the approximate density.

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

24000 26000 28000 30000 32000 34000 36000

Figure 3.1 Density of the final value of a currency basket (under the martingale measure)

consisting of two currencies with negatively correlated exchange-rates.
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Stock-index option

Finally, we consider a stock-index option involving the constituent assets of the FTSE-100. The

data, kindly supplied by Martin Baxter of Nomura, consists of fCijg, the covariance matrix of

the instantaneous increments in the logarithm of the 103 stocks present in the FTSE-100 on

May 20th 1998.

The precise calculation is

V � e�rt E
�X

et�r�q�
1
2Cii��Ni �K

�

where r � 7�25� is the risk-free interest-rate, q � 2� is the dividend yield (assumed the same

for each i), cov�Ni� Nj� � tCij , K � 108�552 (corresponding to an at-the-money option)

and t � 1 year.

With these parameters, we can evaluate (3.67) and (3.72) giving bounds of

5�6259 � V � 5�6597

in about a second (with almost all the time spent calculating the upper bound). A Monte-Carlo

simulation based on 60�060�000 samples gives a price of 5�6331 and a standard error of 0�00117,

showing that the errors made by the lower and upper bounds are close to �0�13� and 0�47�

respectively.

Table 3.14 shows the moments of the distribution of
P

exp
�
t�r� q� 1

2Cii��Ni

�
, obtained

via a Monte-Carlo method, together with the lower bound obtained using the approximate den-

sity. In Figure 3.2 we show the actual density of
P

exp
�
t�r� q� 1

2Cii��Ni

�
, together with the

analytic approximation.

Moment Lower bound Monte-Carlo result (std. dev.)

1 108.552 108.552 (0.003)

2 12016.9 12017.5 (0.7)

3 1.3568
 106 1.35704
 106 (120)

4 1.5627
 108 1.56326
 108 (2
 104)

5 1.8363
 1010 1.83734
 1010 (3
 106)

6 2.2017
 1012 2.20357
 1012 (5
 108)

7 2.6939
 1014 2.69714
 1014 (7
 1010)

8 3.3642
 1016 3.36963
 1016 (1
 1013)

9 4.2886
 1018 4.29756
 1018 (2
 1015)

Table 3.14 Moments of the payout of a stock-index option.
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Figure 3.2 A Monte-Carlo estimate of the density of the payout of a stock-index option

(confidence intervals of �3 standard deviations), together with an analytic approximation.
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