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1 The Ito integral with respect to Brownian mo-
tion

1.1. Introduction: Stochastic calculus is about systems driven by noise. The
Ito calculus is about systems driven by white noise, which is the derivative of
Brownian motion. To find the response of the system, we integrate the forcing,
which leads to the Ito integral, of a function against the derivative of Brownian
motion.

The Ito integral, like the Riemann integral, has a definition as a certain limit.
The fundamental theorem of calculus allows us to evaluate Riemann integrals
without returning to its original definition. Ito’s lemma plays that role for Ito
integration. Ito’s lemma has an extra term not present in the fundamental
theorem that is due to the non smoothness of Brownian motion paths. We will
explain the formal rule: dW 2 = dt, and its meaning.

In this section, standard one dimensional Brownian motion is W (t) (W (0) =
0, E[∆W 2] = ∆t). The change in Brownian motion in time dt is formally called
dW (t). The independent increments property implies that dW (t) is independent
of dW (t′) when t 6= t′. Therefore, the dW (t) are a model of driving noise
impulses acting on a system that are independent from one time to another.
We want a rule to add up the cumulative effects of these impulses. In the first
instance, this is the integral

Y (T ) =
∫ T

0

F (t)dW (t) . (1)

Our plan is to lay out the principle ideas first then address the mathemat-
ical foundations for them later. There will be many points in the beginning
paragraphs where we appeal to intuition rather than to mathematical analysis
in making a point. To justify this approach, I (mis)quote a snippet of a poem I
memorized in grade school: “So you have built castles in the sky. That is where
they should be. Now put the foundations under them.” (Author unknown by
me).

1.2. The Ito integral: Let Ft be the filtration generated by Brownian motion
up to time t, and let F (t) ∈ Ft be an adapted stochastic process. Correspond-
ing to the Riemann sum approximation to the Riemann integral we define the
following approximations to the Ito integral

Y∆t(t) =
∑
tk<t

F (tk)∆Wk , (2)
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with the usual notions tk = k∆t, and ∆Wk = W (tk+1) − W (tk). If the limit
exists, the Ito integral is

Y (t) = lim
∆t→0

Y∆t(t) . (3)

There is some flexibility in this definition, though far less than with the Riemann
integral. It is absolutely essential that we use the forward difference rather than,
say, the backward difference ((wrong) ∆Wk = W (tk)−W (tk−1)), so that

E
[
F (tk)∆Wk

∣∣ Ftk

]
= 0 . (4)

Each of the terms in the sum (2) is measurable measurable in Ft, therefore
Yn(t) is also. If we evaluate at the discrete times tn, Y∆t is a martingale:

E[Y∆t(tn+1)
∣∣ Ftn = Y ∆t(tn) .

In the limit ∆t → 0 this should make Y (t) also a martingale measurable in Ft.

1.3. Famous example: The simplest interesting integral with an Ft that is
random is

Y (T ) =
∫ T

0

W (t)dW (t) .

If W (t) were differentiable with derivative Ẇ , we could calculate the limit of
(2) using dW (t) = Ẇ (t)dt as

(wrong)
∫ T

0

W (t)Ẇ (t)dt = 1
2

∫ T

0
∂t

(
W (t)2

)
dt = 1

2W (t)2 . (wrong) (5)

But this is not what we get from the definition (2) with actual rough path
Brownian motion. Instead we write

W (tk) = 1
2 (W (tk+1) + W (tk))− 1

2 (W (tk+1)−W (tk)) ,

and get

Y∆t(tn) =
∑
k<n

W (tk) (W (tk+1)−W (tk))

=
∑
k<n

1
2 (W (tk+1) + W (tk)) (W (tk+1)−W (tk))

−
∑
k<n

1
2 (W (tk+1)−W (tk)) (W (tk+1)−W (tk))

=
∑
k<n

1
2

(
W (tk+1)2 −W (tk)2

)
−
∑
k<n

1
2 (W (tk+1)−W (tk))2 .

The first on the bottom right is (since W (0) = 0)

1
2W (tn)2
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The second term is a sum of n independent random variables, each with expected
value ∆t/2 and variance ∆t2/2. As a result, the sum is a random variable with
mean n∆t/2 = tn/2 and variance n∆t2/2 = tn∆t/2. This implies that

1
2

∑
tk<T

(W (tk+1)−W (tk))2 → T/2 as ∆t → 0 . (6)

Together, these results give the correct Ito answer∫ T

0

W (t)dW (t) = 1
2

(
W (t)2 − T

)
. (7)

The difference between the right answer (7) and the wrong answer (5) is the
T/2 coming from (6). This is a quantitative consequence of the roughness of
Brownian motion paths. If W (t) were a differentiable function of t, that term
would have the approximate value

∆t

∫ T

0

(
dW

dt

)2

dt → 0 as ∆t → 0 .

1.4. Backward differencing, etc: If we use the backward difference ∆Wk =
W (tk) − W (tk−1), then the martingale property (4) does not hold. For ex-
ample, if F (t) = W (t) as above, then the right side changes from zero to
(W (tn)−W (tn−1)W (tn) (all quantities measurable in Ftn

), which has expected
value1 ∆t. In fact, if we use the backward difference and follow the argu-
ment used to get (7), we get instead 1

2 (W (T )2 + T ). In addition to the Ito
integral there is a Stratonovich integral, which is used the central difference
∆Wk = 1

2 (W (tk+1)−W (tk−1)). The Stratonovich definition makes the stochas-
tic integral act more like a Riemann integral. In particular, the reader can check
that the Stratonovich integral of WdW is 1

2W (T )2.

1.5. Martingales: The Ito integral is a martingale. It was defined for that
purpose. Often one can compute an Ito integral by starting with the ordinary
calculus guess (such as 1

2W (T )2) and asking what needs to change to make the
answer a martingale. In this case, the balancing term −T/2 does the trick.

1.6. The Ito differential: Ito’s lemma is a formula for the Ito differential,
which, in turn, is defined in using the Ito integral. Let F (t) be a stochastic
process. We say dF = a(t)dW (t) + b(t)dt (the Ito differential) if

F (T )− F (0) =
∫ T

0

a(t)dW (t) +
∫ T

0

b(t)dt . (8)

The first integral on the right is an Ito integral and the second is a Riemann
integral. Both a(t) and b(t) may be stochastic processes (random functions of

1E[(W (tn) − W (tn−1))W (tn−1)] = 0, so E[(W (tn) − W (tn−1))W (tn)] = E[(W (tn) −
W (tn−1))(W (tn)−W (tn−1))] = ∆t
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time). For example, the Ito differential of W (t)2 is

dW (t)2 = 2W (t)dW (t) + dt ,

which we verify by checking that

W (T )2 = 2
∫ T

0

W (t)dW (t) +
∫ T

0

dt .

This is a restatement of (7).

1.7. Ito’s lemma: The simplest version of Ito’s lemma involves a function
f(w, t). The “lemma” is the formula (which must have been stated as a lemma
in one of his papers):

df(W (t), t) = ∂wf(W (t), t)dW (t) + 1
2∂2

wf(W (t), t)dt + ∂tf(W (t), t)dt . (9)

According to the definition of the Ito differential, this means that

f(W (T ), T )− f(W (0), 0) (10)

=
∫ T

0

∂wf(W (t), t)dW (t) +
∫ T

0

(
∂2

wf(W (t), t) + ∂tf(W (t), t)
)
dt (11)

1.8. Using Ito’s lemma to evaluate an Ito integral: Like the fundamental
theorem of calculus, Ito’s lemma can be used to evaluate integrals. For example,
consider

Y (T ) =
∫ T

0

W (t)2dW (t) .

A naive guess might be 1
3W (T )3, which would be the answer for a differentiable

function. To check this, we calculate (using (9), ∂w
1
3w3 = w2, and 1

2∂2
w

1
3w3 = w)

d 1
3W (t)3 = W 2(t)dW (t) + W (t)dt .

This implies that

1
3W (t)3 =

∫ T

0

d 1
3W (t)3 =

∫ T

0

W (t)2dW (t) +
∫ T

0

W (t)dt ,

which in turn gives∫ T

0

W (t)2dW (t) = 1
3W (t)3 −

∫ T

0

W (t)dt .

This seems to be the end. There is no way to “integrate” Z(T ) =
∫ T

0
W (t)dt

to get a function of W (T ) alone. This is to say that Z(T ) is not measurable in
GT , the algebra generated by W (T ) alone. In fact, Z(T ) depends equally on all
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W (t) values for 0 ≤ t ≤ T . A more technical version of this remark is coming
after the discussion of the Brownian bridge.

1.9. To tell a martingale: Suppose F (t) is an adapted stochastic process
with dF (t) = a(t)dW (t)+ b(t)dt. Then F is a martingale if and only if b(t) = 0.
We call a(t)dW (t) the martingale part and b(t)dt drift term. If b(t) is at all
continuous, then it can be identified through (because E[

∫
a(s)dW (s)

∣∣ Ft] = 0)

E
[
F (t + ∆t)− F (t)

∣∣ Ft

]
= E

[∫ t+∆t

t

b(s)ds
∣∣ Ft

]
= b(t)∆t + o(∆t) . (12)

We give one and a half of the two parts of the proof of this theorem. If
b = 0 for all t (and all, or almost all ω ∈ Ω), then F (T ) is an Ito integral and
hence a martingale. If b(t) is a continuous function of t, then we may find a
t∗ and ε > 0 and δ > 0 so that, say, b(t) > δ > 0 when |t− t∗| < ε. Then
E[F (t∗ + ε)− F (t∗ − ε)] > 2δε > 0, so F is not a martingale2.

1.10. Deriving a backward equation: Ito’s lemma gives a quick derivations
of backward equations. For example, take

f(W (t), t) = E
[
V (W (T ))

∣∣ Ft

]
.

The tower property tells us that F (t) = F (W (t), t) is a martingale. But Ito’s
lemma, together with the previous paragraph, implies that F (W (t), t) is a mar-
tingale of and only if ∂tF + 1

2 = 0, which is the backward equation for this case.
In fact, the proof of Ito’s lemma (below) is much like the proof of this backward
equation.

1.11. A backward equation with drift: The derivation of the backward
equation for

f(w, t) = Ew,t

[∫ T

t

V (W (s), s)ds

]
uses the above, plus (12). Again using

F (t) = E

[∫ T

t

V (W (s), s)ds
∣∣ Ft

]
,

with F (t) = f(W (t), t), we calculate

E
[
F (t + ∆t)− F (t)

∣∣ Ft

]
= −E

[∫ t+∆t

t

V (W (s), s)ds
∣∣ Ft

]
= −V (W (t), t)∆t + o(∆t) .

2This is a somewhat incorrect version of the proof because ε, δ, and t∗ probably are random.
There is a real proof something like this.
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This says that dF (t) = a(t)dW (t) + b(t)dt where

b(t) = −V (W (t), t) .

But also, b(t) = ∂tf + 1
2∂2

wf . Equating these gives the backward equation from
Lecture 6:

∂tf + 1
2∂2

wf + V (w, t) = 0 .

1.12. Proof of Ito’s lemma: We want to show that

f(W (T ), T )− f(W (0), 0) =
∫ T

0

fw(W (t), t)dW (t) +
∫ T

0

ft(W (t), t)dt

+ 1
2

∫ T

0

fww(W (t), t)dt . (13)

Define ∆t = T/n, tk = k∆t, Wk = W (tk), ∆Wk = W (tk+1) − W (tk), and
fk = f(Wk, tk), and write

fn − f0 =
n−1∑
k=0

(
fk+1 − fk

)
. (14)

Taylor series expansion of the terms on the right of (14) will produce terms
that converge to the three integrals on the right of (13) plus error terms that
converge to zero. In our pre-Ito derivations of backward equations, we used the
relation E[(∆W )2] = ∆t. Here we argue that with many independent ∆Wk, we
may replace (∆Wk)2 with ∆t (its mean value).

The Taylor series expansion is

fk+1 − fk = ∂wfk∆Wk + 1
2∂2

wfk (∆W )2 + ∂tfk∆t + Rk , (15)

where ∂wfk means ∂wf(W (tk), tk), etc. The remainder has the bound3

|Rk| ≤ C
(
∆t2 + ∆t |∆Wk|+

∣∣∆W 3
k

∣∣) .

Finally, we separate the mean value of ∆W 2
k from the deviation from the mean:

1
2
∂2

wfk∆W 2
k =

1
2
∂2

wfk∆t +
1
2
∂2

wfk(∆W 2
k −∆t) .

The individual summands on the right side all have order of magnitude ∆t.
However, the mean zero terms (the second sum) add up to much less than the
first sum, as we will see. With this, (14) takes the form

fn − f0 =
n−1∑
k=0

∂wfk∆Wk +
n−1∑
k=0

∂tfk∆t + 1
2

n−1∑
k=0

∂2
wfk∆t

+ 1
2

n−1∑
k=0

∂2
wfk

(
∆W 2 −∆t

)
+

n−1∑
k=0

Rk . (16)

3We assume that f(w, t) is thrice differentiable with bounded third derivatives. The error
in a finite Taylor approximation is bounded by the sized of the largest terms not used. Here,
that is ∆t2 (for omitted term ∂2

t f), ∆t(∆W )2 (for ∂t∂w), and ∆W 3 (for ∂3
w).
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The first three sums on the right converge respectively to the corresponding
integrals on the right side of (13). A technical digression will show that the last
two converge to zero as n →∞ in a suitable way.

1.13. Like Borel Cantelli: As much as the formulas, the proofs in stochastic
calculus rely on calculating expected values of things. Here, Sm is a sequence
of random numbers and we want to show that Sm → 0 as m → ∞ (almost
surely). We use two observations. First, if sm is a sequence of numbers with∑∞

m=1 |sm| < ∞, then sm → 0 as m → ∞. Second, if B > 0 is a random
variable with E[B] < ∞, then B < ∞ almost surely (if the event {B = ∞} has
positive probability, then E[B] = ∞). We take B =

∑∞
m=1 |Sm|. If B < ∞

then
∑∞

m=1 |Sm| < ∞ so Sm → 0 as m →∞. What this shows is:

( ∞∑
m=1

E [|Sm|] < ∞
)

=⇒
(

Sm → 0 as m →∞ (a.s.)
)

(17)

This observarion is a variant of the Borel Cantelli lemma, which often is used
in such arguments.

1.14. One of the error terms: To apply the Borel Cantelli lemma we must
find bounds for the error terms, bounds whose sum is finite. We start with the
last error term in (16). Choose n = 2m and define Sm =

∑n−1
k=0 Rk, with

|Rk| ≤ C
(
∆t2 + ∆t |∆Wk|+ |∆Wk|3

)
.

Since E[|∆Wk|] ≤ C
√

∆t and E[|∆Wk|3] ≤ C∆t3/2 (you do the math – the
integrals), this gives (with n∆t = T )

E [|Sm|] ≤ Cn
(
∆t2 + ∆t3/2

)
≤ CT

√
∆t .

Expressed in terms of m, we have ∆t = T/2m and
√

∆t =
√

T2−m/2 =√
T
(√

2
)−m

. Therefore E [|Sm|] ≤ C(T )
(√

2
)−m

. Now, if z is any number
greater than one, then

∑∞
m=1 z−m = 1/(1 + 1/z)) < ∞. This implies that∑∞

m=1 E [|Sm|] < ∞ and (using Borel Cantelli) that Sm → 0 as m →∞ (almost
surely).

This argument would not have worked this way had we taken n = m instead
of n = 2m. The error bounds of order 1/

√
n would not have had a finite

sum. If both error terms in the bottom line of (16) go to zero as m → ∞
with n = 2m, this will prove Ito’s lemma. We will return to this point when
we discuss the difference between almost sure convergence, which we are using
here, and convergence in probability, which we are not.

1.15. The other sum: The other error sum in (16) is small not because of the
smallness of its terms, but because of cancellation. The positive and negative
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terms roughly balance, leaving a sum smaller than the sizes of the terms would
suggest. This cancellation is of the same sort appearing in the central limit
theorem, where

∑n−1
k=0 Xk = Un is of order

√
n rather than n when the Xk are

i.i.d. with finite variance. In fact, using a trick we used before we show that U2
n

is of order n rather than n2:

E
[
U2

n

]
=
∑
jk

E [XjXk] = nE
[
X2

k

]
= cn .

Our sum is
Un =

∑
1
2∂2

wf(Wk, tk)
(
∆W 2

k −∆tk
)

.

The above argument applies, though the terms are not independent. Suppose
j 6= k and, say, k > j. The cross term involving ∆Wj and ∆Wk still vanishes
because

E
[
∆Wk −∆t

∣∣ Ftk

]
= 0 ,

and the rest is in Ftk
. Also (as we have used before)

E
[
(∆Wk −∆t)2

∣∣ Ftk

]
= 2∆t2 .

Therefore

E
[
U2

n

]
= 1

4

n−1∑
k=0

(
∂2

wf(Wk, tk)
)2

∆t2 ≤ C(T )∆t .

As before, we take n = 2m and sum to find that U2
2m → 0 as m →∞, which of

course implies that U2m → 0 as m →∞ (almost surely).

1.16. Convergence of Ito sums: Choose ∆t and define tk = k∆t and Wk =
W (tk). To approximate the Ito integral

Y (T ) =
∫ T

0

F (t)dW (t) ,

we have the the Ito sums

Ym(T ) =
∑

tk<T

F (tk) (Wk+1 −Wk) , (18)

where ∆t = 2−m. In proving convergence of Riemann sums to the Riemann
integral, we assume that the integrand is continuous. Here, we will prove that
limm→∞ Ym(T ) exists under the hypothesis

E
[
(F (t + ∆t)− F (t))2

]
≤ C∆t . (19)

This is natural in that it represents the smoothness of Brownian motion paths.
We will discuss what can be done for integrands more rough than (19).

The trick is to compare Ym with Ym+1, which is to compare the ∆t approxi-
mation to the ∆t/2 approximation. For that purpose, define tk+1/2 = (k+ 1

2 )∆t,
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Wk+1/2 = W (tk+1/2), etc. The tk term in the Ym sum corresponds to the time
interval (tk, tk+1). The Ym+1 sum divides this interval into two subintervals of
length ∆t/2. Therefore, for each term in the Ym sum there are two correspond-
ing terms in the Ym+1 sum (assuming T is a multiple of ∆t), and:

Ym+1(T )− Ym(T ) =
∑

tk<T

[
F (tk)(Wk+1/2 −Wk) + F (tk+1/2)(Wk+1 −Wk+1/2)

− F (tk)(Wk+1 −Wk)
]

=
∑

tk<T

(Wk+1 −Wk+1/2)(F (tk+1/2)− F (tk))

=
∑

tk<T

Rk ,

where
Rk = (Wk+1 −Wk+1/2)(F (tk+1/2)− F (tk)) .

We compute E[(Ym+1(T )−Ym(T ))2] =
∑

jk E[RjRk]. As before,4 E[RjRk] =
0 unless j = k. Also, the independent increments property and (19) imply that5

E[R2
k] = E

[(
Wk+1 −Wk+1/2

)2] · E [(F (tk+1/1)− F (tk)
)2]

≤ ∆t

2
· C ∆t

2
= C∆t2 .

This gives
E
[
(Ym+1(T )− Ym(T ))2

]
≤ C2−m . (20)

The convergence of the Ito sums follows from (??) using our Borel Cantelli
type lemma. Let Sm = Ym+1 − Ym. From (20), we have6 E |Sm|] ≤ C

√
2
−m

.
Thus

lim
m→∞

Ym(T ) = Y1(T ) +
∑
m≥1

Ym+1(T )− Ym(T )

exists and is finite. This shows that the limit defining the Ito integral exists, at
least in the case of an integrand that satisfies (19), which includes most of the
cases we use.

1.17. Ito isometry formula: This is the formula

E

(∫ T2

T1

a(t)dW (t)

)2
 =

∫ T2

T1

E[a(t)2]dt . (21)

4If j > k then E[Wj+1−Wj+1/2 | Ftj+1/2 ] = 0, so E[RjRk | Ftj+1/2 ] = 0, and E[RjRk] =
0

5Mathematicians often use the same letter C to represent different constants in the same
formula. For example, C∆t + C2∆t ≤ C∆t really means: “Let C = C1 + C2

2 , if u ≤ C1∆t

and v ≤ C2

√
∆t, then u + v2 ≤ C∆t. Instead, we don’t bother to distinguish between the

various constants.
6The Cauchy Schwartz inequality gives E[|Sm|] = E[|Sm| · 1] ≤ (E[S2

m]E[12])1/2 =
E[S2

m]1/2.
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The derivation uses what we just have done. We approximate the Ito integral
by the sum ∑

T1≤tk<T2

a(tk)∆Wk .

Because the different ∆Wk are independent, and because of the independent
increments property, the expected square of this is∑

T1≤tk<T2

a(tk)2∆t .

The formula (21) follows from this.
An application of this is to understand the roughness of Y (T ) =

∫ T

0
a(t)dW (t).

If E[a(t)2] < C for all t ≤ T , then E[(Y (T2) − Y (T1))2] ≤ C∆t. This is the
same roughness as Brownian motion itself.

1.18. White noise: White noise is a generalized function,7 ξ(t), which is
thought of as homogeneous and Gaussian with ξ(t1) independent of ξ(t2) for
t1 6= t2. More precisely, if t0 < t1 < · · · < tn and Yk =

∫ tk+1

tk
ξ(t)dt, then the Yk

are independent and normal with zero mean and var(Yk) = tk+1 − tk. You can
convince yourself that ξ(t) is not a true function by showing that it would have
to have

∫ b

a
ξ(t)2dt = ∞ for any a < b. Brownian motion can be thought of as

the motion of a particle pushed by white noise, i.e. W (t) =
∫ t

0
ξ(s)ds. The Yk

defined above then are the increments of Brownian and have the appropriate
statistical properties (independent, mean zero, normal, variance tk+1 − tk).

These properties may be summarized by saying that ξ(t) has mean zero and

cov(ξ(t), ξ(t′) = E[ξ(t)ξ(t′) = δ(t− t′) . (22)

For example, if f(t) and g(t) are deterministic functions and Yf =
∫

f(t)dξ(t)
and Yg =

∫
g(t)dξ(t), then, (22) implies that

E[YfYg] =
∫

t

∫
t′

f(t)g(t′)E[ξ(t)ξ(t′)]dtdt′

=
∫

t

∫
t′

f(t)g(t′)δ(t− t′)dtdt′

=
∫

t

f(t)g(t)dt

It is tempting to take dW (t) = ξ(t)dt in the Ito integral and use (22) to derive
the Ito isometry formula. However, this must by done carefully because the
existence of the Ito integral, and the isometry formula, depend on the causality
structure that makes dW (t) independent of a(t).

7A generalized function is not an actual function, but has properties defined as though it
were an actual function through integration. The δ function for example, is defined by the
formula

∫
f(t)δ(t)dt = f(0). No actual function can do this. Generalized functions also are

called distributions.
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2 Stochastic Differential Equations

2.1. Introduction: The theory of stochastic differential equations (SDE) is a
framework for expressing dynamical models that include both random and non
random forces. The theory is based on the Ito integral. Like the Ito integral,
approximations based on finite differences that do not respect the martingale
structure of the equation can converge to different answers. Solutions to Ito
SDEs are Markov processes in that the future depends on the past only through
the present. For this reason, the solutions can be studied using backward and
forward equations, which turn out to be linear parabolic partial differential equa-
tions of diffusion type.

2.2. A Stochastic Differential Equation: An Ito stochastic differential equa-
tion takes the form

dX(t) = a(X(t), t)dt + σ(X(t), t)dW (t) . (23)

A solution is an adapted process that satisfies (23) in the sense that

X(T )−X(0) =
∫ T

0

a(X(t), t)dt +
∫ T

0

σ(X(t), t)dW (t) , (24)

where the first integral on the right is a Riemann integral and the second is an
Ito integral. We often specify initial conditions X(0) ∼ u0(x), where u0(x) is
the given probability density for X(0). Specifying X(0) = x0 is the same as
saying u0(x) = δ(x − x0). As in the general Ito differential, a(X(t), t)dt is the
drift term, and σ(X(t), t)dW (t) is the martingale term. We often call σ(x, t)
the volatility. However, this is a different use of the letter σ from Black Scholes,
where the martingale term is xσ for a constant σ (also called volatility).

2.3. Geometric Brownian motion: The SDE

dX(t) = µX(t)dt + σX(t)dW (t) , (25)

with initial data X(0) = 1, defines geometric Brownian motion. In the general
formulation above, (25) has drift coefficient a(x, t) = µx, and volatility σ(x, t) =
σx (with the conflict of terminology noted above). If W (t) were a differentiable
function of t, the solution would be

(wrong) X(t) = eµt+σW (t) . (26)

To check this, define the function x(w, t) = eµt|σw with ∂wx = xw = σx, xt = µx
and xww = σ2x. so that the Ito differential of the trial function (26) is

dX(W (t), t) = µXdt + σXdW (t) +
σ2

2
Xdt .

11



We can remove the unwanted final term by multiplying by e−σ2t/2, which sug-
gests that the formula

X(t) = eµt−σ2t/2+σW (t) (27)

satisfies (25). A quick Ito differentiation verifies that it does.

2.4. Properties of geometric Brownian motion: Let us focus on the simple
case µ = 0 σ = 1, so that

dX(t) = X(t)dW (t) . (28)

The solution, with initial data X(0) = 1, is the simple geometric Brownian
motion

X(t) = exp(W (t)− t/2) . (29)

We discuss (29) in relation to the martingale property (X(t) is a martingale
because the drift term in (23) is zero in (28)). A simple calculation based on

X(t + t′) = exp
(
W (t)− t/2 + (W (t′)−W (t)− (t′ − t)/2)

)
and integrals of Gaussians shows that E[X(t + t′ | Ft] = X(t).

However, W (t) has the order of magnitude
√

t. For large t, this means that
the exponent in (29) is roughly equal to −t/2, which suggests that

X(t) = exp(W (t)− t/2) ≈ e−t/2 → 0 as t →∞ (a.s.)

Therefore, the expected value E[X(t)] = 1, for large t, is not produced by
typical paths, but by very exceptional ones. To be quantitative, there is an
exponentially small probability that X(t) is as large as its expected value:

P (X(t) ≥ 1) < e−t/4 for large t.

2.5. Dominated convergence theorem: The dominated convergence theorem
is about expected values of limits of random variables. Suppose X(t, ω) is a
family of random variables and that limt→∞X(t, ω) = Y (ω) for almost every
ω. The random variable U(ω) dominates the X(t, ω) if |X(t, ω)| ≤ U(ω) for
almost every ω and for every t > 0. We often write this simply as X(t) → Y
as t → ∞ a.s., and |X(t)| ≤ U a.s. The theorem states that if E[U ] < ∞ then
E[X(t)] → E[Y ] as t → ∞. It is fairly easy to prove the theorem from the
definition of abstract integration. The simplicity of the theorem is one of the
ways abstract integration is simpler than Riemann integration.

The reason for mentioning this theorem here is that geometric Brownian
motion (29) is an example showing what can go wrong without a dominating
function. Although X(t) → 0 as t → ∞ a.s., the expected value of X(t) does
not go to zero, as it would do if the conditions of the dominated convergence
theorem were met. The reader is invited to study the maximal function, which
is the random variable M = maxt>0(W (t)− t/2), in enough detail to show that
E[eM ] = ∞.

12



2.6. Strong and weak solutions: A strong solution is an adapted function
X(W, t), where the Brownian motion path W again plays the role of the abstract
random variable, ω. As in the discrete case, X(t) (i.e. X(W, t)) being measurable
in Ft means that X(t) is a function of the values of W (s) for 0 ≤ s ≤ t. The two
examples we have, geometric Brownian motion (27), and the Ornstein Uhlenbeck
process8

X(t) = σ

∫ t

0

e−γ(t−s)dW (s) , (30)

both have this property. Note that (27) depends only on W (t), while (30)
depends on the whole pate up to time t.

A weak solution is a stochastic process, X(t), defined perhaps on a different
probability space and filtration (Ω, Ft) that has the statistical properties called
for by (23). These are (using ∆X = X(t + ∆t)−X(t)) roughly9

E[∆X | Ft] = a(X(t), t)∆t + o(∆t) , (31)

and
E[∆X2 | Ft] = σ2(X(t), t)∆t + o(∆t) . (32)

We will see that a strong solution satisfies (31) and (32), so a strong solution
is a weak solution. It makes no sense to ask whether a weak solution is a
strong solution since we have no information on how, or even whether, the weak
solution depends on W .

The formulas (31) and (32) are helpful in deriving SDE descriptions of phys-
ical or financial systems. We calculate the left sides to identify the a(x, t) and
σ(x, t) in (23). Brownian motion paths and Ito integration are merely a tool
for constructing the desired process X(t). We saw in the example of geomertic
Brownian motion that expressing the solution in terms of W (t) can be very
convenient for understanding its properties. For example, it is not particularly
easy to show that X(t) → 0 as t → ∞ from (31) and (32) with a = µX and10

σ(x, t) = σx.

2.7. Strong is weak: We just verify that the strong solution to (23) that
satisfies (24) also satisfies the weak form requirements (31) and (32). This is an
important motivation for using the Ito definition of dW rather than, say, the
Stratonovich definition.

A slightly more general fact is simpler to explain. Define R and I by

R =
∫ t+∆t

t

a(t)dt , I =
∫ t+∆t

t

σ(t)dW (t) ,

8This process satisfies the SDE dX = −γXdt + σdW , with X(0) = 0.
9The little o notation f(t) = g(t) + o(t) informally means that the difference between f

and g is a mathematicians’ order of magnitude smaller than t for small t. Formally, it means
that (f(t)− g(t))/t → 0 as t → 0.

10This conflict of notation is common in discussing geometric Brownian motion. On the left
is the coefficient of dW (t). On the right is the financial volatility coefficient.
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where a(t) and σ(t) are continuous adapted stochastic processes. We want to
see that

E
[
R + I

∣∣ Ft

]
= a(t) + o(∆t) , (33)

and
E
[
(R + I)2

∣∣ Ft

]
= σ2(t) + o(∆t) . (34)

We may leave I out of (33) because E[I] = 0 always. We may leave R out of (34)
because |I| >> |R|. (If a is bounded then R = O(∆t) so E[R2 | Ft] = O(∆t2).
The Ito isometry formula suggests that E[I2 | Ft] = O(∆t). Cauchy Schwartz
then gives E[RI | Ft] = O(∆t3/2). Altogether, E[(R + I)2 | Ft] = E[I2 |
Ft] + O(∆t3/2).)

To verify (33) without I, we assume that a(t) is a continuous function of t
in the sense that for s > t,

E
[
a(s)− a(t)

∣∣ Ft

]
→ 0 as s → t .

This implies that

1
∆t

∫ t+∆t

t

E [a(s)− a(t) | Ft] → 0 as ∆t → 0,

so that

E
[
R
∣∣ Ft

]
=

∫ t+∆t

t

E [a(s) | Ft]

=
∫ t+∆t

t

E [a(t) | Ft] +
∫ t+∆t

t

E [a(s)− a(t) | Ft]

= ∆ta(t) + o(∆t) .

This verifies (33). The Ito isometry formula gives

E
[
I2
∣∣ Ft

]
=
∫ t+∆t

t

σ(s)2ds ,

so (34) follows in the same way.

2.8. Markov diffusions: Roughly speaking, 11 a diffusion process is a contin-
uous stochastic process that satisfies (31) and (32). If the process is Markov,
the a of (31) and the σ2 of (32) must be functions of X(t) and t. If a(x, t) and
σ(x, t) are Lipschitz (|a(x, t) − a(y, t)| ≤ C|x − y|, etc.) functions of x and t,
then it is possible to find it is possible to express X(t) as a strong solution of
an Ito SDE (23).

This is the way equations (23) are often derived in practice. We start off
wanting to model a process with an SDE. It could be a random walk on a lattice
with the lattice size converging to zero or some other process that we hope will

11More detailed treatment are the books by Steele, Chung and Williams, Karatsas and
Shreve, and Oksendal.
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have a limit as a diffusion. The main step in proving the limit exists is tightness,
which we hint at a lecture to follow. We identify a and σ by calculations. Then
we use the representation theorem to say that the process may be represented
as the strong solution to (23).

2.9. Backward equation: The simplest backward equation is the PDE sat-
isfied by f(x, t) = Ex,t[V (X(T ))]. We derive it using the weak form conditions
(31) and(32) and the tower property. As with Brownian motion, the tower
property gives

f(x, t) = Ex,t[V (X(T ))] = Ex,t[F (t + ∆t)] ,

where F (s) = E[V (X(T )) | Fs]. The Markov property implies that F (s) is a
function of X(s) alone, so F (s) = f(X(s), s). This gives

f(x, t) = Ex,t [f(X(t + ∆t), t + ∆t)] . (35)

If we assume that f is a smooth function of x and t, we may expand in Taylor
series, keeping only terms that contribute O(∆t) or more.12 We use ∆X =
X(t + ∆t)− x and write f for f(x, t), ft for ft(x, t), etc.

f(X(t + ∆t), t + ∆t) = f + ft∆t + fx∆X + 1
2fxx∆X2 + smaller terms.

Therefore (31) and (32) give:

f(x, t) = Ex,t [f(X(t + ∆t), t + ∆t)]
= f(x, t)ft∆t + fxEx,t[∆X] + 1

2fxxEx,t[∆X2] + o(∆t)

= f(x, t) + ft∆t + fxa(x, t)∆t + 1
2fxxσ2(x, t)∆t + o(∆t) .

We now just cancel the f(x, t) from both sides, let ∆t → 0 and drop the o(∆t)
terms to get the backward equation

∂tf(x, t) + a(x, t)∂xf(x, t) +
σ2(x, t)

2
∂2

xf(x, t) = 0 . (36)

2.10. Forward equation: The forward equation follows from the backward
equation by duality. Let u(x, t) be the probability density for X(t). Since
f(x, t) = Ex,t[V (X(T ))], we may write

E[V (X(T ))] =
∫ ∞

−∞
u(x, t)f(x, t)dx ,

which is independent of t. Differentiating with respect to t and using the back-
ward equation (36) for ft, we get

0 =
∫

u(x, t)ft(x, t)dx +
∫

ut(x, t)f(x, t)dx

= −
∫

u(x, t)a(x, t)∂xf(x, t)− 1
2

∫
u(x, t)σ2(x, t)∂2

xf(x, t) +
∫

ut(x, t)f(x, t) .

12The homework has more on the terms left out.
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We integrate by parts to put the x derivatives on u. We may ignore boundary
terms if u decaus fast enough as |x| → ∞ and if f does not grow too fast. The
result is∫ (

∂x (a(x, t)u(x, t))− 1
2∂2

x

(
σ2(x, t)u(x, t)

)
+ ∂tu(x, t)

)
f(x, t)dx = 0 .

Since this should be true for every function f(x, t), the integrand must vanish
identically, which implies that

∂tu(x, t) = −∂x (a(x, t)u(x, t)) + 1
2∂2

x

(
σ2(x, t)u(x, t)

)
. (37)

This is the forward equation for the Markov process that satisfies (31) and (32).

2.11. Transition probabilities: The transition probability density is the
probability density for X(s) given that X(t) = y and s > t. We write it as
G(y, s, t, s), the probabiltiy density to go from y to x as time goes from t to s.
If the drift and diffusion coefficients do not depend on t, then G is a function
of t− s. Because G is a probability density in the x and s variables, it satisfies
the forward equation

∂sG(y, x, t, s) = −∂x (a(x, s)G(y, x, t, s)) + 1
2∂2

x

(
σ2(x, s)G(y, x, t, s)

)
. (38)

In this equation, t and y are merely parameters, but s may not be smaller than
t. The initial condition that represents the requirement that X(t) = y is

G(y, x, t, t) = δ(x− y) . (39)

The transition density is the Green’s function for the forward equation, which
means that the general solution may be written in terms of G as

u(x, s) =
∫ ∞

−∞
u(y, t)G(y, x, t, s)dy . (40)

This formula is a continuous time version of the law of total probability: the
probability density to be at x at time s is the sum (integral) of the probability
density to be at x at time s conditional on being at y at time t (which is
G(y, x, t, s)) multiplied by the probability density to be at y at time s (which is
u(y, t)).

2.12. Green’s function for the backward equation: We can also express the
solution of the backward equation in terms the transition probabilities G. For
s > t,

f(y, t) = Ey,t [f(X(s), s)] ,

which is an expression of the tower property. The expected value on the right
may be evaluated using the transition probability density for X(s). The result
is

f(y, t) =
∫ ∞

−∞
G(y, x, t, s)f(x, s)dx . (41)
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For this to hold, G must satisfy the backward equation as a function of y and t
(which were parameters in (38). To show this, we apply the backward equation
“operator” (see below for terminology) ∂t +a(y, t)∂y + 1

2σ2(y, t)∂2
y to both sides.

The left side gives zero because f satisfies the backward equation. Therefore we
find that

0 =
∫ (

∂t + a(y, t)∂y + 1
2σ2(y, t)∂2

y

)
G(y, x, t, s)f(x, s)dx

for any f(x, s). Therefore, we conclude that

∂tG(y, x, t, s) + a(y, t)∂yG(y, x, t, s) + 1
2σ2(y, t)∂2

yG(y, x, t, s) = 0 . (42)

Here x and s are parameters. The final condition for (42) is the same as (39).
The equality s = t represents the initial time for s and the final time for t
because G is defined for all t ≤ s.

2.13. The generator: The generator of an Ito process is the operator con-
taining the spatial part of the backward equation13

L(t) = a(x, t)∂x + 1
2σ2(x, t)∂2

x .

The backward equation is ∂tf(x, t) + L(t)f(x, t) = 0. We write just L when a
and σ do not depend on t. For a general continuous time Markov process, the
generator is defined by the requirement that

d

dt
E[g(X(t), t)] = E [(L(t)g)(X(t), t) + gt(X(t), t)] , (43)

for a sufficiently rich (dense) family of functions g. This applies not only to Ito
processes (diffusions), but also to jump diffusions, continuous time birth/death
processes, continuous time Markov chains, etc. Part of the requirement is that
the limit defining the derivative on the left side should exist. Proving (43) for an
Ito process is more or less what we did when we derived the backward equation.
On the other hand, if we know (43) we can derive the backward equation by
requiring that d

dtE[f(X(t), t)] = 0.

2.14. Adjoint: The adjoint of L is another operator that we call L∗. It is
defined in terms of the inner product

〈u, f〉 =
∫ ∞

−∞
u(x)f(x)dx .

We leave out the t variable for the moment. If u and f are complex, we take
the complex conjugate of u above. The adjoint is defined by the requirement
that for general u and f ,

〈u, Lf〉 = 〈L∗u, f〉 .

13Some people include the time derivative in the definition of the generator. Watch for this.

17



In practice, this boils down to the same integration by parts we used to derive
the forward equation from the backward equation:

〈u, Lf〉 =
∫ ∞

−∞
u(x)

(
a(x)∂xf(x) + 1

2σ2(x)∂2
xf(x)

)
dx

=
∫ ∞

−∞

(
−∂x(a(x)u(x)) + 1

2∂2
x(σ2(x)u(x))

)
f(x)dx .

Putting the t dependence back in, we find the “action” of L∗ on u to be

(L(t)∗u)(x, t) = −∂x(a(x, t)u(x, t)) + 1
2∂2

x(σ2(x, t)u(x, t)) .

The forward equation (37) then may be written

∂tu = L(t)∗u .

All we have done here is define notation (L∗) and show how our previous deriva-
tion of the forward equation is expressed in terms of it.

2.15. Adjoints and the Green’s function: Let us summarize and record what
we have said about the transition probability density G(y, x, t, s). It is defined
for s ≥ t and has G(x, y, t, t) = δ(x − y). It moves probabilities forward by
integrating over y (38) and moves expected values backward by integrating over
x ??). As a function of x and s it satisfies the forward equation

∂sG(y, x, t, s) = (L∗x(t)G)(y, x, t, s) .

We write L∗x to indicate that the derivatives in L∗ are with respect to the x
variable:

(L∗x(t)G)(y, x, t, s) = −∂x(a(x, t)G(y, x, t, s)) + 1
2∂2

x(σ2(x, t)G(y, x, t, s)) .

As a function of y and t it satisfies the backward equation

∂tG(y, x, t, s) + (Ly(t)G)(y, x, t, s) = 0 .

3 Properties of the solutions

3.1. Introduction: The next few paragraphs describe some properties of
solutions of backward and forward equations. For Brownian motion, f and u
have every property because the forward and backward equations are essentially
the same. Here f has some and u has others.

3.2. Backward equation maximum principle: The backward equation has a
maximum principle

max
x

f(x, t) ≤ max
y

f(y, s) for s > t. (44)
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This follows immediately from the representation

f(x, t) = Ex,t[f(X(s), s)] .

The expected value of f(X(s), s) cannot be larger than its maximum value.
Since this holds for every x, it holds in particular for the maximizer.

There is a more complicated proof of the maximum principle that uses the
backward equation. I give a slightly naive explination to avoid taking too long
with it. Let m(t) = maxx f(x, t). We are trying to show that m(t) never
increases. If, on the contrary, m(t) does increase as t decreases, there must be
a t∗ with dm

dt (t∗) = α < 0. Choose x∗ so that f(x∗, t∗) = maxx f(x, t∗). Then
fx(x∗, t∗) = 0 and fxx(x∗, t∗) ≤ 0. The backward equation then implies that
ft(x∗, t∗) ≥ 0 (because σ2 ≥ 0), which contradicts ft(x∗, t∗) ≤ α < 0.

The PDE proof of the maximum principle shows that the coefficients a and
σ2 have to be outside the derivatives in the backward equation. Our argument
that Lf ≤ 0 at a maximum where fx = 0 and fxx ≤ 0 would be wrong if we had,
say, ∂x(a(x)f(x, t)) rather than a(x)∂xf(x, t). We could get a non zero value
because of variation in a(x) even when f was constant. The forward equation
does not have a maximum principle for this reason. Both the Ornstein Uhlen-
beck and geometric Brownian motion problems have cases where maxx u(x, t)
increases in forward time or backward time.

3.3. Conservation of probability: The probability density has
∫∞
−∞ u(x, t)dx =

1. We can see that
d

dt

∫ ∞

−∞
u(x, t)dx = 0

also from the forward equation (37). We simply differentiate under the integral,
substitute from the equation, and integrate the resulting x derivatives. For this
it is crucial that the coefficients a and σ2 be inside the derivatives. Almost any
example with a(x, t) or σ(x, t) not independent of x will show that

d

dt

∫ ∞

−∞
f(x, t)dx 6= 0 .

3.4. Martingale property: If there is no drift, a(x, t) = 0, then X(t) is a
martingale. In particular, E[X(t)] is independent of t. This too follows from
the forward equation (37). There will be no boundary contributions in the
integrations by parts.

d

dt
E[X(t)] =

d

dt

∫ ∞

−∞
xu(x, t)dx

=
∫ ∞

−∞
xut(x, t)

=
∫ ∞

−∞
x1

2∂2
x(σ2(x, t)u(x, t))dx
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= −
∫ ∞

−∞

1
2∂x(σ2(x, t)u(x, t))dx

= 0 .

This would not be true for the backward equation form 1
2σ2(x, t)∂2

xf(x, t) or even
for the mixed form we get from the Stratonovich calculus 1

2∂x(σ2(x, t)∂xf(x, t)).
The mixed Stratonovich form conserves probability but not expected value.

3.5. Drift and advection: If there is no drift then the SDE (23) becomes the
ordinary differential equation (ODE)

dx

dt
= a(x, t) . (45)

If x(t) is a solution, then clearly the expected payout should satisfy f(x(t), t) =
f(x(s), s), if nothing is random then the expected value is the value. It is easy
to check using the backward equation that f(x(t), t) is independent of t if x(t)
satisfies (45) and σ = 0:

d

dt
f(x(t), t) = ft(x(t), t) +

dx

dt
fx(x(t), t) = ft(x(t), t) + a(x(t), t)fx(x(t), t) = 0 .

Advection is the process of being carried by the wind. If there is no diffusion,
then the values of f are simply advected by the drift. The term drift implies
that this advection process is slow and gentle. If σ is small but not zero, then
f may be essentially advected with a little spreading or smearing induced by
diffusion. Computing drift dominated solutions can be more challenging than
computing diffusion dominated ones.

The probability density does not have u(x(t), t) a constant (try it in the
forward equation). There is a conservation of probability correction to this that
you can find if you are interested.
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