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1 Integrals involving Brownian motion

1.1. Introduction: There are two kinds of integrals involving Brownian
motion, time integrals and Ito integrals. The time integral, which is discussed
here, is just the ordinary Riemann integral of a continuous but random function
of t with respect to t. Such integrals define stochastic processes that satisfy
interesting backward equations. On the one hand, this allows us to compute
the expected value of the integral by solving a partial differential equation. On
the other hand, we may find the solution of the partial differential equation by
computing the expected value by Monte Carlo, for example. The Feynman Kac
formula is one of the examples in this section.

1.2. The integral of Brownian motion: Consider the random variable, where
X(t) continues to be standard Brownian motion,

Y =
∫ T

0

X(t)dt . (1)

We expect Y to be Gaussian because the integral is a linear functional of the
(Gaussian) Brownian motion path X. Because X(t) is a continuous function
of t, this is a standard Riemann integral. The Riemann sum approximations
converge. As usual, for n > 0 we define ∆t = T/n and tk = k∆t. The Riemann
sum approximation is

Yn = ∆t

n−1∑
k=0

X(tk) , (2)

and Yn → Y as n → ∞ because X(t) is a continuous function of t. The n
summands in (2), X(tk), form an n dimensional multivariate normal, so each of
the Yn is normal. It would be surprising if Y , as the limit of Gaussians, were
not Gaussian.

1.3. The variance of Y : We will start the hard way, computing the variance
from (2) and letting ∆t → 0. The trick is to use two summation variables
Yn = ∆t

∑n−1
k=0 X(tk) and Yn = ∆t

∑n−1
j=0 X(tj). It is immediate from (2) that

E[Yn] = 0 and var(Yn) = E[Y 2
n ]:

E[Y 2
n ] = E[Yn · Yn]

= E

(∆t
n−1∑
k=0

X(tk)

)
·

∆t
n−1∑
j=0

X(tj)


= ∆t2

∑
jk

E[X(tk)X(tj)] .
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If we now let ∆t → 0, the left side converges to E[Y 2] and the right side
converges to a double integral:

E[Y 2] =
∫ T

s=0

∫ T

t=0

E[X(t)X(s)]dsdt . (3)

We can find the needed E[X(t)X(s)] if s > t by writing X(s) = X(t) + ∆X
with ∆X independent of X(t), so

E[X(t)X(s) = E[X(t)(X(t) + ∆X)]
= E[X(t)X(t)]
= t .

A variation of this argument gives E[XtXs] = s if s < t. Altogether

E[XtXs] = min(t, s) ,

which is a famous formula. This now gives

E[Y 2] =
∫ T

s=0

∫ T

t=0

E[XtXs]dsdt =
∫ T

s=0

∫ T

t=0

min(s, t)dsdt =
1
3
T 3 .

There is a simpler and equally rigorous way to get this. Write Y =
∫ T

s=0
X(s)ds

and
∫ T

t=0
X(t)dt so that again

E[Y 2] = E

[∫ T

s=0

X(s)ds ·
∫ T

t=0

X(t)dt

]

= E

[∫ T

s=0

∫ T

t=0

X(s)X(t)dtds

]
(4)

=
∫ T

s=0

∫ T

t=0

E[X(s)X(t)]dtds; . (5)

Going from the (4) to (5) involves changing the order of integration1. After all,
E[·] just represents integration over a probability space. The right side of (4)
has the abstarct form∫

ω∈Ω

(∫
s∈[0,T ]

∫
t∈[0,T ]

F (ω, s, t)dtds

)
dP (ω) .

1The possibility of changing order of abstract integrals was established by the twentieth
century mathematician Fubini. He proved it to be correct if the double (triple in our case)
integral converges absolutely (a requirement even for ordinary Riemann integrals) and the
function F is jointly measurable in all its arguments. Our integrand is nonnegative, so the
result will be infinite if the integral does not converge absolutely. We omit a discussion of
product measures and joint measurability.
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Here F = X(s)X(t), and ω is the random outcome (the whole path X[0, T ]
here), and P represents Wiener measure. If we interchange the ordinary Rie-
mann dsdt integral with the abstract dP integral, we get∫

s∈[0,T ]

∫
t∈[0,T ]

(∫
ω∈Ω

F (ω, s, t)dP (ω)
)

dsdt ,

Which is the abstract form of (5).

1.4. Measurability of Brownian motion integrals: Suppose t1 < t2. Consider
the integrals U =

∫ t1
0

X(t)dt and V =
∫ t2

t1
(X(t) − X(t1))dt. We expect U

to be measurable in Ft1 because all the X values defining U are measurable
in Ft1 . Similarly, all the differences defining V are independent of anything
anything in Ft1 . Therefore, we expect V to be independent of U . We omit the
straightforward proofs of these facts, which depend on elementary properties of
abstract integration.

1.5. The X3
t martingale: Many martingales are constructed from integrals

involving Brownian motion. A simple one is

F (t) = X(t)3 − 3
∫ t

0

X(s)ds .

To check the martingale property, choose t2 > t1 and, for t > t1, write X(t) =
X(t1) + ∆X(t). Then

E

[∫ t2

0

X(t)ds | Ft1

]
= E

[(∫ t1

0

X(t)dt +
∫ t2

t1

X(t)dt

) ∣∣∣ Ft1

]
= E

[∫ t

0

X(t)dt | Ft

]
+ E

[∫ t2

t1

(X(t1) + ∆X(t)) dt | Ft

]
=

∫ t

0

X(t)dt + (t2 − t1)X(t1) .

In the last line we use the facts that X(t) ∈ Ft1 when t < t1, and Xt1 ∈ Ft1 ,
and that E[∆X(t) | Ft1 ] = 0 when t > t1, which is part of the independent
increments property. For the X(t)3 part, we have,

E
[
(X(t1) + ∆X(t2))

3 | Ft1

]
= E

[
X(t1)3 + 3X(t1)2∆X(t2) + 3X(t1)∆X(t2)2 + ∆X(t2)3 | Ft1

]
= X(t1)3 + 3X(t1)2 · 0 + 3X(t1)E[∆X(t2)2 | Ft1 ] + 0
= X(t1)3 + 3(t2 − t1)X(t1) .

In the last line we used the independent increments property to get E[∆X(t2) |
Ft1 ] = 0, and the formula for the variance of the increment to get E[∆X(t2)2 |
Ft1 ] = t2 − t1. This verifies that E[F (t2) | Ft] = F (t1), which is the martingale
property.
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1.6. Backward equations for expected values of integrals: Many integrals
involving Brownian motion arise in applications and may be “solved” using
backward equations. One example is F =

∫ T

0
V (X(t))dt, which represents the

total accumulated V (X) over a Brownian motion path. If V (x) is a continuous
function of x, the integral is a standard Riemann integral, because V (X(t))
is a continuous function of t. We can calculate E[F ], using the more general
function

f(x, t) = Ex,t

[∫ T

t

V (X(s))ds

]
. (6)

As before, we can describe the function f(x, t) in terms of the random variable

F (t) = E

[∫ T

t

V (X(s))dt | Ft

]
.

Since F (t) is measurable in Ft and depends only on future values (X(s) with
s > t), F (t) is measurable in Gt. Since Gt is generated by X(t) alone, this
means that F (t) is a function of X(t), which we write as F (t) = f(X(t), t).
Of course, this definition is a big restatement of definition (6). Once we know
f(x, t), we can plug in t = 0 to get E[F ] = F (0) = f(x0, 0) if X(0) = x0 is
known. Otherwise, E[F ] = E[f(X(0), t)].

The backward equation for f is

∂tf +
1
2
∂2

xf + V (x, t) = 0 , (7)

with final conditions f(x, T ) = 0. The derivation is similar to the one we used
before for the backward equation for Ex,t[V (XT )]. We use Taylor series and the
tower property to calculate how f changes over a small time increment, ∆t. We
start with ∫ T

t

V (X(s))ds =
∫ t+∆t

t

V (X(s))ds +
∫ T

t+∆t

V (X(s))ds ,

take the x, t expectation, and use (6) to get

f(x, t) = Ex,t

[∫ t+∆t

t

V (X(s))ds
∣∣∣ Ft

]
+ Ex,t

[∫ T

t+∆t

V (X(s))ds
∣∣∣ Ft

]
. (8)

The first integral on the right has the value V (x)∆t+o(∆t). We write o(∆t) for
a quantity that is smaller than ∆t in the sense that o(∆t)/∆t → 0 as ∆t → 0
(we will shortly divide by ∆t, take the limit ∆t → 0, and neglect all o(∆t)
terms.). The second term has

Ex,t

[∫ T

t+∆t

V (X(s))ds | Ft+∆t

]
= F (Xt+∆t) = f(X(t + ∆t), t + ∆t) .
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Writing X(t + ∆t) = X(t) + ∆X, we use the tower property with Ft ⊂ Ft+∆t

to get

E

[∫ T

t+∆t

V (X(s))ds | Ft

]
= E [f(Xt + ∆X, t + ∆t) | Ft] .

As before, we use Taylor expansions the conditional expectation to get first

f(x+∆X, t+∆t) = f(x, t)+∆t∂tf(x, t)+∆X∂xf(x, t)+
1
2
∆X2∂2

xf(x, t)+o(∆t) ,

then

Ex,t [f(x + ∆X, t + ∆t] = f(x, t) + ∆t∂tf(x, t) +
1
2
∆t∂2

xf(x, t) + o(∆t) .

Putting all this back into (8) gives

f(x, t) = ∆tV (x) + f(x, t) + ∆t∂tf(x, t) +
1
2
∆t∂2

xf(x, t) + o(∆t) .

Now just cancel f(x, t) from both sides and let ∆t → 0 to get the promised
equation (7).

1.7. Application of PDE: Most commonly, we cannot evaluate either the
expected value (6) or the solution of the partial differential equation (PDE)
(7). How does the PDE represent progress toward evaluating f? One way is
by suggesting a completely different computational procedure. If we work only
from the definition (6), we would use Monte Carlo for numerical evaluation.
Monte Carlo is notoriously slow and inaccurate. There are several techniques
for finding the solution of a PDE that avoid Monte Carlo, including finite dif-
ference methods, finite element methods, spectral methods, and trees. When
such deterministic methods are practical, they generally are more reliable, more
accurate, and faster. In financial applications, we are often able to find PDEs
for quantities that have no simple Monte Carlo probabilistic definition. Many
such examples are related to optimization problems: maximizing an expected
return or minimizing uncertainty with dynamic trading strategies in a randomly
evolving market. The Black Scholes evaluation of the value of an American style
option is a well known example.

1.8. The Feynman Kac formula: Consider

F = E

[
exp

(∫ T

0

V (X(t)dt

)]
. (9)

As before, we evaluate F using the related and more refined quantities

f(x, t) = Ex,t

[
e

∫ T

t
V (Xs)ds

]
(10)
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satisfies the backward equation

∂tf +
1
2
∂2

xf + V (x)f = 0 . (11)

When someone refers to the Feynman Kac formula, they usually are referring
to the fact that (10) is a formula for the solution of the PDE (11). In our work,
the situation mostly will be reversed. We use the PDE (11) to get information
about the quantity defined by (10) or even just about the process X(t).

We can verify that (10) satisfies (11) more or less as in the preceding para-
graph. We note that

exp

{∫ t+∆t

t

V (X(s))ds +
∫ T

t+∆t

V (X(s))ds

}

= exp

{∫ t+∆t

t

V (X(s))ds

}
· exp

{∫ T

t+∆t

V (X(s))ds

}

= (1 + ∆tV (X(t)) + o(∆t)) · exp

{∫ T

t+∆t

V (X(s))ds

}

The expectation of the rigth side with respect to Ft+∆t is

(1 + ∆tV (Xt) + o(∆t)) · f(X(t + ∆X, t + ∆t) .

When we now take expectation with respect to Ft, which amounts to averaging
over ∆X, using Taylor expansion of f about f(x, t) as before, we get (11).

1.9. The Feynman integral: A precurser to the Feynman Kac formula, is the
Feynman integral2 solution to the Schrödinger equation. The Feynman integral
is not an integral in the sense of measure theory. (Neither is the Ito integral, for
that matter.) The colorful probabilist Marc Kac (pronounced “Katz”) discov-
ered that an actual integral over Wiener measure (10) gives the solution of (11).
Feynman’s reasoning will help us derive the Girsanov formula, so we pause to
sketch it.

The finite difference approximation∫ T

0

V (X(t))dt ≈ ∆t
n−1∑
k=0

V (X(tk)) , (12)

(always ∆t = T/n, tk = k∆t) leads to an approximation to F of the form

Fn = E

[
exp

(
∆t

n=1∑
k=0

V (X(tk))

)]
. (13)

2The American Physicist Richard Feynman was born and raised in Far Rockaway (a neigh-
borhood of Queens, New York). He is the author of several wonderful popular books, including
Surely You’re Joking, Mr. Feynman and The Feynman Lectures on Physics.
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The functional Fn depends only on finitely many values Xk = X(tk), so we may
evaluate (13) using teh known joint density function for ~X = (X1, . . . , Xn). The
density is (see “Path probabilities” from Lecture 5):

U (n)(~x) =
1

(2π∆tn/2
exp

(
−

n−1∑
k=0

(xk+1 − xk)2/e∆t

)
.

It is suggestive to rewrite this as

U (n)(~x) =
1

(2π∆tn/2
exp

[
−∆t

2

n−1∑
k=0

(
xk+1 − xk

∆t

)2
]

. (14)

Using this to evaluate Fn gives

Fn =
1

(2π∆tn/2

∫
Rn exp

[
∆t

n−1∑
k=0

V (xk)− ∆t

2

n−1∑
k=0

(
xk+1 − xk

∆t

)2
]

d~x . (15)

It is easy to show that Fn → F as n → ∞ as long as V (x) is, say, continuous
and bounded (see below).

Feynman proposed a view of F = limn→∞ Fn in (15) that is not mathemat-
ically rigorous but explains “what’s going on”. If xk ≈ x(tk), then we should
have

∆t
n−1∑
k=0

V (xk) →
∫ T

t=0

V (x(t))dt .

Also, (
xk+1 − xk

∆t

)
≈ dx

dt
= ẋ(tk) ,

so we should also have

∆t

2

n−1∑
k=0

(
xk+1 − xk

∆t

)2

→
∫ T

0

ẋ(t)2dt .

As n →∞, the integral over Rn should converge to the integral over all “paths”
x(t). We denote this by P without worring about exactly which paths are
allowed (continuous, differentiable, ...?). The integration element d~x has the
possible formal limit

d~x =
n−1∏
k=0

dxk =
n−1∏
k=0

dx(tk) →
T∏

t=0

dx(t) .

Altogether, this gives the formal expression for the limit of (15):

F = const
∫
P

exp

(∫ T

0

V (x(t))dt− 1
2

∫ T

0

ẋ(t)2dt

)
T∏

t=0

dx(t) . (16)
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1.10. Feynman and Wiener integration: Mathematicians were quick to com-
plain about (16). For one thing, the constant const = limn→∞(2π∆t)n/2 should
be infinite. More seriously, there is no abstract integral measure corresponding
to
∫
P
∏T

t=0 dx(t) (it is possible to prove this). Kac proposed to write (16) as

F =
∫
P

exp

(∫ T

0

V (x(t))dt

)[
const · exp

(
− 1

2

∫ T

0

ẋ(t)2dt

)
T∏

t=0

dx(t)

]
.

and then interpret the latter part as Wiener measure (dP ):

const · exp

(
− 1

2

∫ T

0

ẋ(t)2dt

)
T∏

t=0

dx(t) = dP (X) (17)

In fact, we have already implicitly argued informally (and it can be formalized)
that

lim
n→∞

U (n)(~x)
n−1∏
k=0

dxk → dP (X) as n →∞ .

These intuitive but mathematically nonsensical formulas are a great help in
understanding Brownian motion. For one thing, (17) makes clear that Wiener
measure is Gaussian. Its density has the form const ·exp(−Q(x)), where Q(x) is
a positive quadratic function of x. Here Q(x) =

∫
ẋ(t)2dt (and the constant is,

alas, infinite). Moreover, in many cases it is possible to approximate integrals
of the form

∫
exp(φ(~x))d~x by eφ∗ , where φ∗ = max~x φ(~x) if the φ is sharply

peaked around its maximum. This is particularly common in “rare event” or
“large deviation” problems. In our case, this would lead us to solve the calculus
of variations problem

max
x

(∫ T

0

V (x(t)dt− 1
2

∫ T

0
ẋ(t)2dt

)
.

1.11. Application of Feynman Kac: The problem of evaluating

f = E

[
exp

(∫ T

0

V (Xt)dt

)]
arises in many situations. In finance, f could represent the present value of
a payment in the future subject to unknown fluctuating interest rates. The
PDE (11) provides a possible way to evaluate f = f(0, 0), either analytically or
numerically.

2 Mathematical formalism

2.1. Introduction: We examine the solution formulas for the backward and
forward equation from two points of view. The first is an analogy with linear
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algebra, with function spaces playing the role of vector space and operators
playing the role of matrices. The second is a more physical picture, interpreting
G(x, y, t) as the Green’s function describing the forward diffusion of a point mass
of probability or the backward diffusion of a localized unit of payout.

2.2. Solution operator As time moves forward, the probability density for
Xt changes, or evolves. As time moves backward, the value function f(x, t)
also evolves3 The backward evolution process is given by (for s > 0, this is a
consequence of the tower property.)

f(x, t− s) =
∫

G(x, y, s)f(y, t)dy . (18)

We write this abstractly as f(t− s) = G(s)f(t).
This formula is anologous to the comparable Markov chain formula f(t−s) =

P sf(t). In the Markov chain case, s and t are integers and f(t) represents a
vector in Rn whose components are fk(t). Here, f(t) is a function of x whose
values are f(x, t). We can think of P s as an n × n matrix or as the linear
operator that transforms the vector f to the vector g = P sf . Similarly, G(s) is
a linear operator, transforming a function f into g, with

g(x) =
∫ ∞

−∞
G(x, t, s)f(y)dy .

The operation is linear, which means that G(af (1) + bf (2)) = aGf (1) + bGf (2).
The family of operators G(s) for s > 0 produces the solution to the backward
equaion, so we call G(s) the solution operator for time s.

2.3. Duhamel’s principle: The inhomogeneous backward equation

∂tf + ∂2
xf = V (x, t) , (19)

with homogeneous4 final condition f(x, T ) = 0 may be solved by

f(x, t) = Ex,t

[∫ T

t

V (X(t′), t′dt′)

]
.

Exchanging the order of integration, we may write

f(x, t) =
∫ T

t′=t

g(x, t, t′)dt′ , (20)

where
g(x, t, t′) = Ex,t [V (X(t′))] .

3Unlike biological evolustion, this evolution process makes the solution less complicated,
not more.

4We often say “homogeneous” to mean zero and “inhomogeneous” to mean not zero. That
may be because if V (x, t) is zero then it is constant, i.e. the same everywhere, which is the
usual meaning of homogeneous.
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This g is the expected value (at (x, t)) of a payout (V (·, t′) at time t′ > t). As
such, g is the solution of a homogeneous final value problem with inhomogeneous
final values:

∂tg + 1
2∂2

xg = 0 for t < t′ ,

g(x, t′) = V (x, t′) .

 (21)

Duhamel’s principle, which we just demonstrated, is as follows. To solve the
invonogeneous final value problem (19), we solve a homogeneous final value
problem (21) for each t′ between t and T then we add up the results (20).

2.4. Infinitesimal generator: There are matrices of many different types that
play various roles in theory and computation. And so it is with operators. In
addition to the solution operator, there is the infinitesimal generator (or simply
generator). For Brownian motion in one dimension, the generator is

L = 1
2∂2

x . (22)

The backward equation may be written

∂tf + Lf = 0 . (23)

For other diffusion processes, the generator is the operator L that puts the
backward equation for process in the form (23).

Just as a matrix has a transpose, an operator has an adjoint, written L∗.
The forward equation takes the form

∂tu = L∗u .

The operator (22) for Brownian motion is self adjoint, which means that L∗ = L,
which is why the operator 1

2∂2
x is the appears in both. We will return to these

points later.

2.5. Composing (multiplying) operators: If A and B are matrices, then there
are two ways to form the matrix AB. One way is to multiply the matrices. The
other is to compose the linear transformations: f → Bf → ABf . In this way,
AB is the composite linear transformation formed by first applying B then
applying A. We also can compose operators, even if we sometimes lack a good
explicit representation for the composite AB. As with matrices, composition of
operators is associative: A(Bf) = (AB)f .

2.6. Composing solution operators: The solution operator G(s1 moves the
value function backward in time by the amount s1, which is written f(t− s1) =
G(s1)f(t). The operator G(s2) moves it back an additional s2, i.e. f(t− (s1 +
s2)) = G(s2)f(t−s1) = G(s2)G(s1)f(t). The result is to move f back by s1+s2

in total, which is the same as applying G(s1 + s2). This shows that for every
(allowed) f , G(s2)G(s1)f = G(s2 + s1)f ,. which means that

G(s2)G(s1) = G(s2 + s1) . (24)
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This is called the semigroup property. It is a basic property of the solution
operator for any problem. The matrix anologue for Markov chains is P s2+s+1 =
P s2P s1 , which is a basic fact about powers of matrices having nothing to do
with Markov chains. The property (24) would be called the group property if
we were to allow negative s2 or s1, which we do not. Negative s is allowed in
the matrix version if P is nonsingular. There is no particular physical reason
for the transition matrix of a Markov chain to be non singular.

2.7. Operator kernels: If matrix A has elements Ajk, we can compute g = Af
by doing the sum gj =

∑
k Ajkfk. Similarly, operator A may or may not have

a kernel5, which is a function A(x, y) so that g = Af is represented by

g(x) =
∫

A(x, y)f(y)dy .

If operators A and B both have kernels, then the composite operator has the
kernel

(AB)(x, y) =
∫

A(x, z)B(z, y)dz . (25)

To derive this formula, set g = Bf and h = Ag. Then h(x) =
∫

A(x, z)g(z)dz
and g(z) =

∫
B(z, y)f(y)dy implies that

h(x) =
∫ (∫

A(x, z)B(z, y)dz

)
f(y)dy .

This shows that (25) is the kernel of AB. The formula is anologous to the
formula for matrix multiplication.

2.8. The semigroup property: When we defined (18) the solution operators
G(s), we did so by specifying the kernels

G(x, t, s) =
1√
2πs

e−(x−y)2/2s .

According to (25). the semigroup property should be an integral identity in-
volving G. The identity is

G(x, y, s2 + s1) =
∫

G(x, z, s2)G(z, y, s1)dz .

More concretely:

1√
2π(s2 + s1)

e−(x−y)2/2(s2+s1)

=
1√

2π(s2)
1√

2π(s1)

∫
e−(x−z)2/2s2e−(z−y)2/2s1dz .

5The term kernel also describes vectors f with Af = 0, it is unfortunate that the same
word is used for these different objects.
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The reader is encouraged to verify this by direct integration. It also can be
verified by recognizing it as the statement that adding independent mean zero
Gaussian random variables with variance s2 and s1 respectively gives a Gaussian
with variance s2 + s1.

2.9. Fundamental solution: The operators G(t) form a fundamental solution6

for the problem ft + Lf = 0 if

∂tG = LG , for t > 0 , (26)

G(0) = I . (27)

The property (26) really means that ∂t

(
G(t)f

)
= L

(
Gf
)

for any f . If G(t) has
a kernel G(x, y, t), this in turn means (as the reader should ckeck) that

∂tG(x, y, t) = LxG(x, y, t) , (28)

where Lx means that the derivatives on L are with respect to the x variables in
G. In our case with G being the heat kernel, this is

∂t
1√
2πt

e−(x−y)2/2t = 1
2∂2

x
1√
2πt

e−(x−y)2/2t ,

which we have checked and rechecked.
Without matrices, we still have the identity operator: If = f for all f . The

property (27) really means that G(t)f → f as t → 0. It is easy to verify this
for our heat kernel provided that f is continuous.

2.10. Duhamel with fundamental solution operator: The g appearing in (20)
may be expresses as g(t, t′) = G(t′ − t)V (t′), where V (t′) is the function with
values V (x, t′). This puts (20) in the form

f(t) =
∫ T

t

G(t′ − t)V (t′)dt′ . (29)

We illustrate the properties of the fundamental solution operator by verifying
(29) directly. We want to show taht (29) implies that ∂tf + Lf = V (t) and
f(T ) = 0. The latter is clear. For the former we compute ∂tf(t) by differenti-
ating the right side of (29):

∂t

∫ T

t

G(t′ − t)V (t′)dt′ = −G(t− t)V (t)−
∫ T

t

G′(t′ − t)V (t′)dt′ ,

We write G′(t) to represent ∂tG(t). This allows us to write ∂tG(t′ − t) =
−G′(t′ − t) = −LG(t′ − t). Continuing, the left side is

−V (t)−
∫ T

t

LG(t′ − t)V (t′)dt′ = −V (t)−
∫ T

t

LG(t′ − t)V (t′)dt′ .

6We have adjusted this definition from its original form in books on ordinary differential
equations to accomodate the backward evolution of the backward equation. This amounts to
reversing the sign of L.
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If we take L outside the integral on the right, we recognize what is left in the
integral as f(t). Altogether, we have ∂tf = −V (t)−Lf(t). This is almost right,
I just have to fix the minus sign somehow.

2.11. Green’s function: Consider the solution formula for the homogeneous
final value problem ∂tf + Lf = 0, f(T ) = V :

f(x, t) =
∫

G(x, y, T − t)V (y)dy . (30)

Consider a special “jackpot” payout V (y) = δ(y − x0). If you like, you can
think of V (y) = 1

ε when |y = x0| < ε then let ε → 0. We then get f(x, t) =
G(x, x0, T − t). The function that satisfies ∂tG + LxG = 0, G(x, T = δ(x− x0)
is called the Greens’s function7. The Green’s function represents the result of
a point mass payout. A general payout can be expressed as a sum (integral) of
point mass payouts as x0 with weight V (x0):

V (y) =
∫

V (x0)δ(y − x0)dx0 .

Since the backward equation is linear, the general value function will be the
weighted sum (integral) of the point mass value functions, which is the formula
(30).

2.12. More generally: Brownian motion is special in that G(x, y, t) is a
function of x − y. This is because Brownian motion is translation invariant: a
Brownian motion starting from any point looks like a Brownian motion starting
from any other point. Brownian motion is also special in that the forward
equation and backward equations are nearly the same, having the same spatial
operator L = 1

2∂2
x.

More general diffusion processes loose both these properties. The solution
operator depends in a more complicated way on x and y. The backward equa-
tion is ∂tf + Lf = 0 but the forward equation is ∂tu = L∗u. The Green’s
function, G(x, y, t) is the fundamental solution for the backward equation in the
x, t variables with y as a parameter. It also is the fundamental solution to the
forward equation in the y, t variables with x as a parameter. This material will
be in a future lecture.

7This is in honor of a 19th century Englishman named Green.
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