
Stochastic Calculus Notes, Lecture 5
Last modified October 21, 2004

1 Brownian Motion

1.1. Introduction: Brownian motion is the simplest of the stochastic pro-
cesses called diffusion processes. It is helpful to see many of the properties of
general diffusions appear explicitly in Brownian motion. In fact, the Ito calculus
makes it possible to describea any other diffusion process may be described in
terms of Brownian motion. Furthermore, Brownian motion arises as a limit or
many discrete stochastic processes in much the same way that Gaussian random
variables appear as a limit of other random variables throught the central limit
theorem. Finally, the solutions to many other mathematical problems, parti-
cilarly various common partial differential equations, may be expressed in terms
of Brownian motion. For all these reasons, Brownian motion is a central object
to study.

1.2. History: Late in the 18th century, an English botanist named Brown
looked at pollen grains in water under a microscope. To his amazement, they
were moving randomly. He had no explination for supposedly inert pollen grains,
and later inorganic dust, seeming to swim as though alive. In 1905, Einstein
proposed the explination that the observed “Brownian” motion was caused by
individual water molecules hitting the pollen or dust particles. This allowed
him to estimate, for the first time, the weight of a water molecule and won him
the Nobel prize (relativity and quantum mechanics being too controversial at
the time). This is the modern view, that the observed random motion of pollen
grains is the result of a huge number of independent and random collisions with
tiny water molecules.

1.3. Basics: The mathematical description of Brownian motion involves a
random but continuous function on time, X(t). The standard Brownian motion
starts at x = 0 at time t = 0: X(0) = 0. The displacement, or increment
between time t1 > 0 and time t2 > t1, Y = X(t2) − X(t1), is the sum of a
large number of i.i.d. mean zero random variables, (each modeling the result
of one water molecule collision). It is natural to suppose that the number of
such collisions is proportional to the time increment. This implies, throught the
central limit theorem, that Y should be a Gaussian random variable with vari-
ance proportional to t2 − t1. The standard Brownian motion has X normalized
so that the variance is equal to t2 − t1. The random “shocks” (a term used in
finance for any change, no matter how small) in disjoint time intervals should
be independent. If t3 > t2 and Y2 = X(t3)−X(t2), Y1 = X(t2)−Xt1), then Y2

and Y1 should be independent, with variances t3 − t2 and t2 − t1 respectively.
This makes the increments Y2 and Y1 a two dimensional multivariate normal.
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1.4. Wiener measure: The probability space for standard Brownian motion
is C0([0, T ], R). As we said before, this consists of continuous functions, X(t),
defined for t in the range 0 ≤ t ≤ T . The notation C0 means1 that X(0) = 0.
The σ−algebra representing full information is the Borel algebra. The infi-
nite dimensional Gaussian probability measure on C0([0, T ], R) that represents
Brownian motion is called Wiener measure2.

This measure is uniquely specified by requiring that for any times 0 = t0 <
t1 < · · · < tn ≤ T , the increments Yk = X(tk+1)−X(tk) are independent Gaus-
sian random variables with var(Yk) = tk+1− tk. The proof (which we omit) has
two parts. First, it is shown that there indeed is such a measure. Second, it
is shown that there is only one such. All the information we need is contained
in the joint distribution of the increments. The fact that increments from dis-
joint time intervals are independent is the independent increments property. It
also is possible to consider Brownian motion on an infinite time horizon with
probability space C0([0,∞), R).

1.5. Technical aside: There is a different descripton of the Borel σ−algebra
on C0([0, T ], R). Rather than using balls in the sup norm, one can use sets more
closely related to the definition of Wiener measure through the joint distribution
of increments. Choose times 0 = t0 < t1 < · · · tn, and for each tk a Borel set,
Ik ⊆ R (thought of as “intervals” though they may not be). Let A be the event
{X(tk) ∈ Ik for all k}. The set of such events forms an algebra (check this),
though not a σ−algebra. The probabilities P (A) are determined by the joint
distributions of the increments. The Borel algebra on C0([0, T ], R) is generated
by this algebra (proof ommitted), so Wiener measure (if it exists) is determined
by these probabilities.

1.6. Transition probabilities: The transition probability density for Brownian
motion is the probability density for X(t + s) given that X(t) = y. We denote
this by G(y, x, s), the “G” standing for Green’s function. It is much like the
Markov chain transition probabilities P t

y,x except that (i) G is a probability
density as a function of x, not a probability, and (ii) tr is continuous, not
discrete. In our case, the increment X(t + s)−X(t), is Gaussina with variance
s. If we learn that X(t) = y, then y becomes the expected value of X(t + s).
Therefore,

G(y, x, s) =
1√
2πs

e(x−y)2/2s . (1)

1.7. Functionals: An element of Ω = C0([0, T ], R) is called X. We de-
note by F (X) a real valued function of X. In this context, such a func-
tion is often called a functional, to keep from confusing it with X(t), which

1In other contexts, people use C0 to indicate functions with “compact support” (whatever
that means) or functions that tend to zero as t →∞, but not here.

2The American mathematician and MIT professor Norbert Wiener was equally brilliant
and inarticulate.
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is a random function of t. This functional is just what we called a “func-
tion of a random variable” (the path X palying the role of the abstract ran-
dom outcome ω). The simplest example of a functional is just a function of
X(T ): F (X) = V (X(T )). More complicated functionals are integrals: F (X) =∫ T

0
V (X(t))dt. extrema: F (X) = maxt≤T X(t), or stopping times such as

F (X) = min
{

t such that
∫ t

0
X(s)dx ≤ 1

}
. Stochastic calculus provides tools

for computing the expected values of many such functionals, often through solu-
tions of partial differential equations. Computing expected values of functionals
is our main way to understand the behavior of Brownian motion (or any other
stochastic process).

1.8. Markov property: The independent increments property makes Brown-
ian motion a Markov process. Let Ft be the σ−algebra generated by the path
up to time t. This may be characterized as the σ−algebra generated by all the
random variables X(s) for s ≤ t, which is the smallest σ−algebra in which all the
functions X(s) are measurable. It also may be characterized as the σ−algebra
generated by events of the form A above (“Tehcnical aside”) with tn ≤ t (proof
ommitted). We also have the σ−algebra Gt generated by the present only. That
is, Gt is generated by the single random variable X(t); it is the smallest σ−
algebra in which X(t) is measurable. Finally, we let Ht denote the σ−algebra
that depends only on future values X(s) for s ≥ t. The Markov property states
that if F (X) is any functional measurable with respect to Ht (i.e. depending
only on the future of t), then E[F | Ft] = E[F | Gt].

Here is a quick sketch of the proof. If F (X) is a function of finitely many
values, X(tk), with tk ≥ t, then then E[F | Ft] = E[F | Gt] follows from the
independent increments property. It is possible (though tedious) to show that
any F measurable with respect to Ht may be approximated by a functional
depending on finitely many future times. This extends E[F | Ft] = E[F | Gt] to
all F measurable in Ht.

1.9. Path probabilities: For discrete Markov chains, as here, the individual
outcomes are paths, X. For Markov chains one can compute the probability
of an individual path by multiplying the transition probabilities. The situation
is different Brownian motion, where each individual path has probability zero.
We will make much use of the following partial substitute. Again choose times
t0 = 0 < t1 < · · · < tn ≤ T , let ~t = (t1, . . . , tn) be the vector of these times, and
let ~X = (X(t1), . . . , X(tn)) be the vector of the corresponding observations of
X. We write U (n)(~x,~t) for the joint probability density for the n observations,
which is found by multiplying together the transition probability densities (1)
(and using properties of exponentials):

U (n)(~x,~t) =
n−1∏
k=0

G(xk, xk+1, tk+1 − tk)
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=
1

(2π)n/2

n−1∏
k=0

1√
tk+1 − tk

exp

(
−1
2

n−1∑
k=0

(xk+1 − xk)2

tk+1 − tk

)
. (2)

The formula (2) is a concrete summary of the defining properties of the
probability measure for Brownian motion, Wiener measure: the independent
increments property, the Gaussian distribution of the increments, the variance
being proportional to the time differences, and the increments having mean zero.
It also makes clear that each finite collection of observations forms a multivariate
normal. For any of the events A as in “Technical aside”, we have

P (A) =
∫

x1∈I1

· · ·
∫

xn∈In

U (n)(x1, . . . , xn,~t)dx1 · · · dxn .

1.10. Consistency: You cannot give just any old probability densities to
replace the joint densities (2). They must satisfy a simple consistency condition.
Having given the joint density for n observations, you also have given the joint
density for a subset of these observations. For example, the joint density for
X(t1) and X(t3) must be the marginal of the joint density of X((t1), X(t2),
and X(t3):

U (2)(x1, x3, t1, t3) =
∫ ∞

x2=−∞
U (3)(x1, x2, x3, t1, t2, t3)dx2 .

It is possible to verify these consistency conditions by direct calculation with
the Gaussian integrals. A more abstract way is to understand the consistency
conditions as adding random increments. The U (2) density says that we get
X(t3) from X(t1) by adding an increment that is Gaussian with mean zero
and variance t3 − t1. The U (2) says that we get X(t3) from X(t2) by adding
a Gaussian with mean zero and variance t3 − t2. In turn, we get X(t2) from
X(t1) by adding an increment having mean zero and variance t2− t1. Since the
smaller time increments are Gaussian and independent of each other, their sum
is also Gaussian, with mean zero and variance (t3 − t2) + (t2 − t1), which is the
same as the variance in going from X(t1) to X(t3) directly.

1.11. Rough paths: The above picture shows 5 Brownian motion paths.
They are random and differ in gross features (some go up, others go down), but
the fine scale structure of the paths is the same. They are not smooth, or even
differentiable functions of t. If X(t) is a differentiable function of t, then for
small ∆t its increments are roughly proportional to ∆t:

∆X = X(t + ∆t)−X(t) ≈ dX

dt
∆tl.

For Brownian motion, the expected value of the square of ∆X (the variance of
∆X) is proportional to ∆t. This suggests that typical values of ∆X will be on
the order of

√
∆t. In fact, an easy calculation gives

E[|∆X|] =
√

∆t

2π
.
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This would be impossible if successive increments of Brownian motion were all
in the same direction (see “Total variation” below). Instead, Brownian motion
paths are constantly changing direction. They go nowhere (or not very far) fast.

1.12. Total variation: One quantitative sense of path roughness is the vact
that Brownian motion paths have infinite total variation. The total variation
of a function X(t) measures the total distance it moves, counting both ups and
downs. For a differentiable function, this would be

TV(X) =
∫ T

0

∣∣∣∣dX

dt

∣∣∣∣ dtl. (3)

If X(t) has simple jump discontinuities, we add the sizes of the jumps to (3).
For general functions, the total variation is

TV(X) = sup
n−1∑
k=0

|X(tk+1)−X(tk)| , (4)

where the supremum as over all positive n and all sequences t0 = 0 < t1 < · · · <
tn ≤ T .

Suppose X(t) has finitely many local maxima or minima, such as t0 = local
max, t1 = local min, etc. Then taking these t values in (4) gives the exact total
variation (further subdivision does not increase the left side). This is one way
to relate the general definition (4) to the definition for differentiable functions
(??). This does not help for Brownian motion paths, which have infinitely many
local maxima and minima.

1.13. Almost surely: Let A ∈ F be a measurable event. We say A happens
almost surely if P (A) = 1. This allows us to establish properties of random ob-
jects by doing calculations (stochastic calculus). For example, we will show that
Brownian motions paths have infinite total variation almost surely by showing
that for any (small) ε > 0 and any (large) N ,

P (TV(X) < N) < ε . (5)

Let B ⊂ C0([0, t], R) be the set of paths with finite total variation.. This is a
countable union

B =
⋃

N>0

{TV(X) < N} =
⋃

N>0

BN .

Since P (BN ) < ε) for any ε > 0, we must have P (BN ) = 0. Countable additivity
then implies that P (B) = 0, which means that P (TV = ∞) = 1.

There is a distinction between outcomes that do not exist and events that
never happen because they have probability zero. For example, if Z is a one
dimensional Gaussian random variable, the outcome Z = 0 does exist, but the
event {Z = 0} is impossible (never will be observed). This is what we mean
when we say “a Gaussian random variable never is zero”, or “every Brownian
motion path has invinite total variation”.
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1.14. The TV of BM: The heart of the matter is tha actual calculation
behind the inequality (5). We choose an n > 0 and define (not for the last time)
∆t = T/n and tk = k∆t. Let Y be the random variable

Y =
n−1∑
k=0

|X(tk+1)−X(tk)| .

Remember that Y is one of the candidates we must use in the supremem (4) that
defines the total variation. If Y is large, then the total variation is at least as

large. Because E[|∆X|] =
√

2
π

√
∆t, we have E[Y ] =

√
2
π

√
T
√

n. A calculation
using the independent increments property shows that

var(Y ) =
(

1− 2
π

)
T

for any n. Tchebychev’s inequality3 implies that

P

(
Y <

(√
2
π

√
n− k

√
1− 2

π

)
√

T

)
≤ 1

k2
.

If we take very large n and medium large k, this inequality says that it is very
unlikely for Y (or total variation of X) to be much less than const

√
n. Our

inequality (5) follows from this whth a suitable choice of n and k.

1.15. Structure of BM paths: For any function X(t), we can define the
total variation on the interval [t1, t2] in an obvious way. The odometer of a car
records the distance travelled regardless of the direction. For X(t), the total
variation on the interval [0, t] plays a similar role. Clearly, X is monotone on
the interval [t1, t2] if and only if TV(X, t1, t2) = |X(t2)−X(t1)|. Otherwise,
X has at least one local min or max within [t1, t2]. Now, Brownian motion
paths have infinite total variation on any interval (the proof above implies this).
Therefore, a Brownian motion path has a local max or min within any interval.
This means that (like the rational numbers, for example) the set of local maxima
and minima is dense: There is a local max or min arbitrarily close to any given
number.

1.16. Dynamic trading: The infinite total variation of Brownian motion has
a consequence for dynamic trading strategies. Some of the simplest dynamic
trading strategies, Black-Scholes hedging, and Merton half stock/half cash trad-
ing, call for trades that are proportional to the change in the stock price. If the
stock price is a diffusion process and there are transaction costs proportional
to the size of the trade, then the total transaction costs will either be infinite
(in the idealized continuous trading limit) or very large (if we trade as often as

3If E[Y ] = µ and var(Y ) = σ2, then P (|Y − µ| > kσ) < 1
k2 . The proof and more examples

are in any good basic probability book.
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possible). It turns out that dynamic trading strategies that take trading costs
into account can approach the idealized zero cost strategies when trading costs
are small. Next term you will learn how this is done.

1.17. Quadratic variation: A more useful measure of roughness of Brownian
motion paths and other diffusion processes is quadratic variation. Using previous
notations: ∆t = T/n, tk = k∆t, the definition is4 (where n → ∞ as ∆t → 0
with t = n∆t fixed)

Q(X) = lim
∆t→0

Qn(X) = lim
∆t→0

n−1∑
k=0

(X(tk+1 −X(tk))2 . (6)

If X is a differentiable function of t, then its quadratic variation is zero (Qn

is the sum of n terms each of order 1/n2). For Brownian motion, Q(T ) =
T (almost surely). Clearly E[Qn] = T for any n (independent increments,
Gaussian increments with variance ∆t). The independent increments property
also lets us evaluate var(Qn) = 3T 2/n (the sum of n terms each equal to 3∆t2 =
3T 2/n2). Thus, Qn must be increasingly close to T as n gets larger5

1.18. Trading volatility: The quadratic variation of a stock price (or a similar
quantity) is called it’s “realized volatility”. The fact that it is possible to buy
and sell realized volatility says that the (geometric) Brownian motion model
of stock price movement is not completely realistic. That model predicts that
realized volatility is a constant, which is nothing to bet on.

1.19. Brownian bridge construction:

1.20. Continuous time stochastic process: The general abstract definition of
a continuous time stochastic process is just a probability space, Ω, and, for each
t > 0, a σ−algebra Ft. These algebras should form a filtration (corresponding
to increase of information): Ft1 ⊆ Ft2 if t1 ≤ t2. There should also be a family
of random variables Yt(ω), with Yt measurable in Ft (i.e. having a value known
at time t). This explains why probabilists often write Xt instead of X(t) for
Brownian motion and other diffusion processes. For each t, we think of Xt as a
function of ω with t simply being a parameter. Our choice of probability space
Ω = C0([0, T ], R) implies that for each ω, Xt(ω) is a continuous function of t.
(Actually, for simple Brownian motion, the path X plays the role of the abstract
outcome ω, though we never write Xt(X).) Other stochastic processes, such as
the Poisson jump process, do not have continuous sample paths.

4It is possible, though not customary, to define TV(X) using evenly spaced points. In the
limit ∆t → 0, we would get the same answer for continuous paths or paths with TV(X) < ∞.
You don’t have to use uniformly spaced times in the definition of Q(X), but I think you get
a different answer if you let the times depend on X as they might in the definition of total
variation.

5Thes does not quite prove that (almost surely) Qn → T as n → ∞. We will come back
to this point in later lectures.
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1.21. Continuous time martingales: A stochastic process Ft (with Ω and the
Ft) is a martingale if E[Fs | Ft] = Ft for s > t. Brownian motion forms the first
example of a continuous time martingale. Another famous martingale related to
Brownian motion is Ft = X2

t − t (the reader should check this). As in discrete
time, any random variable, Y , defines a continuous time martingale through
conditional expectations: Yt = E[Y | Ft]. The Ito calculus is based on the idea
that a stochastic integral with respect to X should produce a martingale.

2 Brownian motion and the heat equation

2.1. Introduction: Forward and backward equations are tools for calculating
probabilities and expected values related to Brownian motion, as they are for
Markov chains and stochastic processes more generally. The probability density
of X(t) satisfies a forward equation. The conditional expectations E[V | Ft]
satisfy backward equations for a variety of functionals V . For Brownian motion,
the forward and backward equations are partial differential equations, either the
heat equation or a close relative. We will see that the theory of partial differential
equations of diffusion type (the heat equation being the a prime example) and
the theory of diffusion processes (Brownian motion being a prime example) each
draw from the other.

2.2. Forward equation for the probability density: If X(t) is a standard
Brownian motion with X(0) = 0, then X(t) ∼ N (0, t), so its probability density
is (see (1))

u(x, t) = G(0, x, t) =
1√
2πt

ex2/2t .

Directly calculating partial derivatives, we can verify that

∂tG =
1
2
∂2

xG . (7)

We also could consider a Brownian motion with a more general initial density
X(0) ∼ u0(x). Then X(t) is the sum of independent random variables X(0)
and an N (0, t). Therefore, the probability density for X(t) is

u(x, t) =
∫ ∞

y=−∞
G(y, x, t)u0(y)dy =

∫ ∞

y=−∞
G(0, x− y, t)u0(y)dy . (8)

Again, direct calculation (differentiating (8), x and t derivatives land on G)
shows that u satisfies

∂tu =
1
2
∂2

xu . (9)

This is the heat equation, also called diffusion equation. The equation is used in
two ways. First, we can compute probabilities by solving the partial differential
equation. Second, we can use known probability densities as solutions of the
partial differential equation.
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2.3. Heat equation via Taylor series: The above is not so much a derivation
of the heat equation as a verification. We are told that u(x, t) (the probability
density of Xt) satisfies the heat equation and we verify that fact. Here is a
method for deriving a forward equation without knowing it in advance. We
assume that u(x, t) is smooth enough as a function of x and t that we may expand
it to to second order in Taylor series, do the expansion, then take the conditional
expectation of the terms. Variations of this idea lead to the backward equations
and to major parts of the Ito calculus.

Let us fix two times separated by a small ∆t: t′ = t + ∆t. The rules of
conditional probability allow us to compute the density of X = X(t′) in terms
of the density of Y = X(t) and the transition probabilit density (1):

u(x, t + ∆t) =
∫ ∞

y=−∞
G(y, x, ∆t)u(y, t)dy . (10)

The main idea is that for small ∆t, X(t + ∆t) will be close to X(t). This is
expressed in G being small unless y is close to x, which is evident in (1). In
the integral, x is a constant and y is the variable of integration. If we would
approximate u(y, t) by u(x, t), the value of the integral just would be u(x, t).
This would give the true but not very useful approximation u(x, t + ∆t) ≈
u(x, t) for small ∆t. Adding the next Taylor series term (writing ux for ∂xu):
u(y, t) ≈ u(x, t)+ux(x, t)(y−x), the integral does not change the result because∫

G(y, x,∆t)(y − x)dy = 0. Adding the next term:

u(y, t) ≈ u(x, t) + ux(x, t)(y − x) +
1
2
uxx(x, t)(y − x)2 ,

gives (because E[(Y −X)2] = ∆t)

u(x, t + ∆t) ≈ u(x, t) +
1
2
uxx(x, t)∆t .

To derive a partial differential equation, we expand the left side as u(x, t+∆t) =
u(x, t) + ut(x, t)∆t + O(∆t2). On the right, we use∫

G(y, x, ∆t) |y − x|3 dy = O(∆t3/2) .

Altogether, this gives

u(x, t) + ut(x, t)∆t = u(x, t) + uxx(x, t)∆t + O(∆t3/2) .

If we cancel the common u(x, t) then cancel the common factor ∆t and let
∆t → 0, we get the desired heat equation (9).

2.4. The initial value problem: The heat equation (9) is the Brownian motion
anologue of the forward equation for Markov chains. If we know the time 0
density u(x, 0) = u0(x) and the evolution equation (9), the values of u(x, t) are
completely and uniquely determined (ignoring mathematical technicalities that
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would be unlikely to trouble a practical person). The task of finding u(x, t) for
t > 0 from u0(x) and (9) is called the “initial value problem”, with u0(x) being
the “initial value” (or “values”??). This initial value problem is “well posed”,
which means that the solution, u(x, t), exists and depends continuously on the
initial data, u0. If you want a proof that the solution exists, just use the integral
formula for the solution (8). Given u0, the integral (8) exists, satisfies the heat
equation, and is a continuous function of u0. The proof that u is unique is more
technical, partly because it rests on more technical assumptions.

2.5. Ill posed problems: In some situations, the problem of finding a function
u from a partial differential equation and other data may be “ill posed”, useless
for practical purposes. A problem is ill posed if it is not well posed. This means
either that the solution does not exist, or that it does not depend continuously
on the data, or that it is not unique. For example, if I try to find u(x, t) for
positive t knowing only u0(x) for x > 0, I must fail. A mathematician would say
that the solution, while it exists, is not unique, there being many different ways
to give u0(x) for x > 0, each leading to a different u. A more subtle situation
arises, for example, if we give u(x, T ) for all x and wish to determine u(x, t)
for 0 ≤ t < T . For example, if u(x, T ) = 1[0,1](x), there is no solution (trust
me). Even if there is a solution, for example given by (8), is does not depend
continuously on the values of u(x, T ) for T > t (trust me).

The heat equation (9) relates values of u at one time to values at another
time. However, it is “well posed” only for determining u at future times from u
at earlier times. This “forward equation” is well posed only for moving forward
in time.

2.6. Conditional expectations: We saw already for Markov chains that
certain conditional expected values can be calculated by working backwards in
time with the backward equation. The Brownian motion version of this uses
the conditional expectation

f(x, t) = E[V (XT ) | Xt = x] . (11)

One “modern” formulation of this defines Ft = E[V (Xt) | Ft]. The Markov
property implies that Ft is measurable in Gt, which makes it a function of
Xt. We write this as Ft = f(Xt, t). Of course, these definitions mean the
same thing and yield the same f . The definition is also sometimes written as
f(x, t) = Ex,t[V (XT )]. In general if we have a parametrized family of probability
measures, Pα, we write the expected value with respect to Pα as Eα[·]. Here,
the probability measure Px,t is the Wiener measure describing Brownian motion
paths that start from x at time t, which is defined by the densities of increments
for times larger than t as before.

2.7. Backward equation by direct verification: Given that Xt = x, the
conditional density for XT is same transition density (1). The expectation (11)
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is given by the integral f(x, t) as an integral, we get

f(x, t) =
∫ ∞

−∞
G(x, y, T − t)V (y)dy . (12)

We can verify by explicit differentiation (x and t derivatives act on G) that

∂tf +
1
2
∂2

xf = 0 . (13)

Note that the sign of ∂t here is not what it was in (9), which is because we are
calculating ∂tG(T − t) rather than ∂tG(t). This (13) is the backward equation.

2.8. Backward equation by Taylor series: As with the forward equation (9),
we can find the backward equation by Taylor series expansions. We start by
choosing a small ∆t and expressing f(x, t) in terms of6 f(·, t + ∆t). As before,
define Ft = E[V (XT ) | Ft] = f(Xt, t). Since Ft ⊂ Ft+∆t, the tower property
implies that Ft = E[Ft+∆t | Ft].

f(x, t) = Ex,t[f(Xt+∆t)]

=
∫ ∞

y=−∞
f(y, t + ∆t)G(x, y, ∆t)dy . (14)

As before, we expand f(y, t+∆t) about x, t dropping terms that contribute less
than O(∆t):

f(y, t + ∆t)

= f(x, t) + fx(x, t)(y − x) +
1
2
fxx(x, t)(y − x)2 + ft(x, t)∆t

+O(|y − x|3) + O(∆t2) .

Substituting this into (14) and integrating each term leads to

f(x, t) = f(x, t) + 0 +
1
2
fxx(x, t)∆t + ft(x, t)∆t + O(∆t3/2) + O(∆t2) .

A bit of algebra and ∆t → 0 then gives (13).
For future reference, we pause to note the differences between this derivation

of (13) and the related derivation of (9). Here, we integrated G with respect
to its second argument, while earlier we integrated with respect to the first
argument. This does not matter for the special case of Brownian motion and
the heat equation because G(x, y, t) = G(y, x, t). When we apply this reasoning
to other diffusion processes, G(x, y, t) will be a probability density as a function
of y for every x, but it need not be a probability density as a function of x for
given y. This is an anologue of the fact in Markov chains that the transition

6The notation f(·, t+∆t) is to avoid writing f(x, t+∆t) which might imply that the value
f(x, t) depends only on f at time t + ∆t for the same x value. Instead, it depends on all the
values f(y, t + ∆t).
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matrix P acts from the left on column vectors f (summing Pjk over k) but from
the right on row vectors u (summing Pjk over j). For each j,

∑
k Pjk = 1 but

the column sums
∑

j Pjk may not equal one. Of course, the sign of the ∂t term
is different in the two cases because we did the t Taylor series on the right side
of (14) but on the left side of (10).

2.9. The final value problem: The final values f(x, T ) = V (x), together with
the backward evolution equation (13) allow us to determine the values f(·, t)
for t < T . The definition (11) makes this obvious. This means that the final
value problem for the backward heat equation is a well posed problem.

On the other hand, the initial value problem for the backward heat equation
is not a well posed problem. If we have a f(x, 0) and we want a V (x) that leads
to it, we are probably out of luck.

2.10. Duality: As for Markov chains, we can express the expected value of
V (XT ) in terms of the probability density at any earlier time t ≤ T

E[V (XT )] =
∫

u(x, t)f(x, t)dx .

This again implies that the right side is independent of t, which in turn al-
lows us to derive the forward equation (9) from the backward equation (13) or
conversely. For example, differentiating and using (13) gives

0 =
d

dt

=
∫

ut(x, t)f(x, t)dx +
∫

u(x, t)ft(x, t)dx

=
∫

ut(x, t)f(x, t)dx−
∫

u(x, t) 1
2fxx(x, t)dx .

To derive an equation involving only u derivatives, we want to integrate the last
integral by parts to move the x derivatives from f to u. In this formal derivation,
we will assume that the probability density u(x, t) decays to zero fast enough as
|x| → ∞ that we can neglect possible boundary terms at x = ±∞. This gives∫ (

ut(x, t)− 1
2uxx(x, t)

)
f(x, t)dx = 0 .

If this relation holds for a sufficiently rich family of functions f , we can only
conclude that ut − 1

2uxx is identically zero, which is the forward equation (9).

2.11. The smoothing property, regularity: Solutions of the forward or back-
ward heat equation become smooth functions of x and t even if the initial data
(for the forward equation) or final data (for the backward equation) are not
smooth. For u, this is clear from the integral formula (8). If we differentiate
with respect to x, this derivative passes under the integral and onto the G fac-
tor. This applies also to x or t derivatives of any order, since the corresponding
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derivatives of G are still smooth integrable functions of x. The same can be said
for f using (12); as long as t < T , any derivatives of f with respect to x and/or t
are bounded. A function that has all partial derivatives of any order bounded is
called “smooth”. (Warning, this term is not used consistently. Some people say
“smoooth” to mean, for example, merely having derivatives up to second order
bounded.) Solutions of more general forward and backward equations often,
but not always, have the smoothing property.

2.12. Rate of smoothing: Suppose the payout (and final value) function,
V (x), is a discontinuous function such as V (x) = 1x<0(x) (a “digital” option in
finance). The solution to the backward equation can be expressed in terms of
the cumulative normal (with Z ∼ N (0, 1))

N(x) = P (Z < x) =
1√
2π

∫ x

z=−∞
e−z2/2dz .

Then we have

f(x, t) =
∫ 0

y=−∞
G(x, y, T − t)dy

=
1√

2π(T − t)

∫ 0

y=−∞
e−(x−y)2/2(t−t)dy

f(x, t) = N(x/
√

T − t) . (15)

From this it is clear that f is differentiable when t < T , but the first x derivative
is as large as 1/

√
T − t, the second as large as 1/(T − t), etc. All derivatives

blow up as t → T with higher derivatives blowing up faster. This can make
numerical solution of the backward equation difficult and inaccurate when the
final data V (x) is not smooth.

The formula (15) can be derived without integration. One way is to note that
f(x, t) = P (XT < 0 | Xt = x) and XT ∼ x+

√
T − tZ, (Gaussian increments) so

that XT < 0 is the same as Z < x/
√

T − t. Even without the normal probability,
a physicist would tell you that ∆X ∼

√
∆t, so the hitting probability starting

from x at time t has to be some function of x/
√

T − t.

2.13. Diffusion: If you put a drop of ink into a glass of still water, you
will see the ink slowly diffuse through the water. This is modelled as a vast
number of tiny ink particles each preforming an independent Brownian motion
in the water. Let u(x, t) represent the density of particles about x at time t
(say, particles per cubic millemeter). This u satisfies the heat equation but not
the requirement that

∫
u(x, t)dx = 1. If ink has been diffusing through water

for some time, there will be dark regions with a high density of particles (large
u) and lighter regions with smaller u. In the absence of boundaries (sides of the
class and the top of the water), the ink distribution would be Gaussian.

2.14. Heat: Heat also can diffuse through a medium, as happens when
we put a thick metal pan over a flame and wait for the other side to heat
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up. We can think of u(x, t) as representing the temperature in a metal at
location x at time t. This helps us interpret solutions of the heat equation
(9) when u is not necessarily positive. In particular, it helps us imagine the
cancellation that can occur when regions of positive and negative u are close to
each other. Heat flows from the high temperature regions to low or negative
temperature regions in a way that makes the temperature distribution a more
uniform. A physical argument that heat (temperature) flowing through a metal
should satisfy the heat equation was given by the French mathematical phycisist,
friend of Napoleon, and founder of Ecole Polytechnique, Joseph Fourier.

2.15. Hitting times: A stopping time, τ , is any time that depends on the
Brownian motion path X so that the event τ ≤ t is measurable with respect to
Ft. This is the same as saying that for each t there is some process that has as
input the values Xs for 0 ≤ s ≤ t and as output a decision τ ≤ t or τ > t. One
kind of stopping time is a hitting time:

τa = min (t | Xt = a) .

More generally (particularly for Brownian motion in more than one dimension)
if A is a closed set, we may consider τA = min(t | Xt ∈ A). It is useful to define
a Brownian motion that stops at time τ : X̃t = Xt if t ≤ τ , X̃t = Xτ if t ≥ τ .

2.16. Probabilities for stopped Brownian motion: Suppose Xt is Brownian
motion starting at X0 = 1 and X̃ is the Brownian motion stopped at time τ0,
the first time Xt = 0. The probability measure, Pt, for X̃t may be written
as the sum of two terms, Pt = P s

t + P ac
t . (Since X̃t is a single number, the

probability space is Ω = R, and the σ−algebra is the Borel algebra.) The
“singular” part, P s

t , corresponds to the paths that have been stopped. If p(t) is
the probability that τ ≤ t, then P s

t = p(t)δ(x), which means that for any Borel
set, A ⊆ R, P s

t (A) = p(t) if 0 ∈ A and P s
t (A) = 0 if 0 /∈ A. This δ is called

the “delta function” or “delta mass”; it puts weight one on the point zero and
no weight anywhere else. Probabilists sometimes write δx0 for the measure that
puts weight one on the point x0. Phycisists write δx0(x) = ‘delta(x = x0). The
“absolutely continuous” part, P ac

t , is given by a density, u(x, t). This means
that P ac

t (A) =
∫

A
u(x, t)dx. Because

∫
R

u(x, t)dx = 1− p(t) < 1, u, while being
a density, is not a probability density.

This decomposition of a measure (P ) as a sum of a singular part and ab-
solutely continuous part is a special case of the Radon Nikodym theorem. We
will see the same idea in other contexts later.

2.17. Forward equation for u: The density for the absolutely continuous part,
u(x, t), is the density for paths that have not touched X = a. In the diffusion
interpretation, think of a tiny ink particle diffusing as before but being absorbed
if it ever touches a. It is natural to expect that when x 6= a, the density satisfies
the heat equation (9). u “knows about” the boundary condition because of
the “boundary condition” u(a, t) = 0. This says that the density of particles
approaches zero near the absorbing boundary. By the end of the course, we
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will have several ways to prove this. For now, think of a diffusing particle, a
Brownian motion path, as being hyperactive; it moves so fast that it has already
visited a neighborhood of its current location. In particluar, if Xt is close to a,
then very likely Xs = a for some s < t. Only a small minority of the particles
at x near a, with small density u(x, t) → 0 as x → a have not touched a.

2.18. Probability flux: Suppose a Brownian motion starts at a random point
X0 > 0 with probability density u0(x) and we take the absorbing boundary
at a = 0. Clearly, u(x, t) = 0 for x < 0 because a particle cannot cross from
positive to negative without crossing zero, the Brownian motion paths being
continuous. The probability of not being absorbed before time t is given by

1− p(t) =
∫

x>0

u(x, t)dx . (16)

The rate of absorbtion of particles, the rate of decrease of probabiltiy, may be
calculated by using the heat equation and the boundary condition. Differenti-
ating (16) with respect to t and using the heat equation for the right side then
integrating gives

−ṗ(t) =
∫

x>0

∂tu(x, t)dx

=
∫

x>0

1
2
∂2

xu(x, t)dx

ṗ(t) =
1
2
∂xu(0, t) . (17)

Note that both sides of (17) are positive. The left side because P (τ ≤ t) is an
increasing function of t, the right side because u(0, t) = 0 and u(x, t) > 0 for
x > 0. The identity (17) leads us to interpret the left side as the probability
“flux” (or “density flux if we are thinking of diffusing particles). The rate
at which probability flows (or particles flow) across a fixed point (x = 0) is
proportional to the derivative (the gradient) at that point. In the heat flow
interpretation this says that the rate of heat flow across a point is proportional
to the temperature gradient. This natural idea is called Fick’s law (or possibly
“Fourier’s law”).

2.19. Images and Reflections: We want a function u(x, t) that satisfies the
heat equation when x > 0, the boundary condition u(0, t) = 0, and goes to δx0

as t ↓ 0. The “method of images” is a trick for doing this. We think of δx0 as
a unit “charge” (in the electrical, not financial sense) at x0 and g(x − x0, t) =

1√
2π

e−(x−x0)
2/2t as the response to this charge, if there is no absorbing boundary.

For example, think of puting a unit drop of ink at x0 and watching it spread
along the x axis in a “bell shaped” (i.e. gaussian) density distribution. Now
think of adding a negative “image charge” at −x0 so that u0(x) = δx0 − δ−x0

and correspondingly

u(x, t) =
1√
2πt

(
e−(x−x0)

2/2t − e−(x+x0)
2/2t
)

. (18)
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This function satisfies the heat equation everywhere, and in particular for x > 0.
It also satisfies the boundary condition u(0, t) = 0. Also, it has the same initial
data as g, as long as x > 0. Therefore, as long as x > 0, the u given by (18)
represents the density of unabsorbed particles in a Brownian motion with ab-
sorption at x = 0. You might want to consider the image charge contribution
in (18), 1√

2π
e−(x−x0)

2/2t, as “red ink” (the ink that represents negative quanti-
ties) that also diffuses along the x axis. To get the total density, we subtract
the red ink density from the black ink density. For x = 0, the red and black
densities are the same because the distance to the sources at ±x0 are the same.
When x > 0 the black density is higher so we get a positive u. We can think of
the image point, −x0, as the reflection of the original source point through the
barrier x = 0.

2.20. The reflection principle: The explicit formula (18) allows us to evaluate
p(t), the probability of touching x = 0 by time t starting at X0 = x0. This is

p(t) = 1−
∫

x>0

u(x, t)dx =
∫

x>0

1√
2πt

(
e−(x−x0)

2/2t − e−(x+x0)
2/2t
)

dx .

Because
∫∞
−∞

1√
2πt

e−(x−x0)/2tdx = 1, we may write

p(t) =
∫ 0

−∞

1√
2πt

e−(x−x0)
2/2tdx +

∫ ∞

0

1√
2πt

e−(x+x0)
2/2tdx .

Of course, the two terms on the right are the same! Therefore

p(t) = 2
∫ 0

−∞

1√
2πt

e−(x−x0)
2/2tdx .

This formula is a particular case the Kolmogorov reflection principle. It says
that the probability that Xs < 0 for some s ≤ t is (the left side) is exactly
twice the probability that Xt < 0 (the integral on the right). Clearly some of
the particles that cross to the negative side at times s < t will cross back, while
others will not. This formula says that exactly half the particles that touch
for some s ≤ t have Xt > 0. Kolmogorov gave a proof of this based on the
Markov property and the symmetry of Brownian motion. Since Xτ = 0 and
the increments of X for s > τ are independent of the increments for s < τ , and
since the increments are symmetric Gaussian random variables, they have the
same chance to be positive Xt > 0 as negative Xt < 0.
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