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Stochastic Calculus for Finance
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Outline

The aim of these lectures is to introduce some of the techniques from stochastic
analysis that are employed in mathematical finance. This is a huge area, so we can
certainly do no more than scratch the surface, but we will see that mathematics
has been of fundamental importance in the revolution that has taken place in the
financial markets over the last twenty-five years.

Although we use financial examples for motivation, Brownian motion and
stochastic calculus play an important role in almost every area of modern math-
ematics.

As time permits we will cover some or all of the following topics:

1.

10.

Basic examples of financial derivatives: Examples of financial instru-
ments, a first example of ‘arbitrage pricing’.

Discrete time models I: Single period models, pricing a European option,
characterising no arbitrage, risk neutral probabilities.

Discrete time models II: Multiperiod binary models, discrete parameter
martingales, risk-neutral pricing, Cox-Ross-Rubinstein.

Brownian motion: Definition of Brownian motion (motivated via a rescal-
ing of simple random walk), Lévy’s construction.

. The reflection principle and hitting times: reflection principle, hitting

times, scaling properties.

. Martingales in continuous time: filtrations, adapted processes, Optional

Sampling Theorem.

Stochastic integration and It6’s formula: variation and quadratic vari-
ation, quadratic variation of Brownian motion, outline of construction of the
[t0 stochastic integral and the [t0 isometry, the chain rule and integration
by parts for stochastic calculus. The Martingale Representation Theorem,
Lévy’s characterisation of Brownian motion, Girsanov’s Theorem.

. The Black-Scholes model: self-financing strategies, equivalent martingale

measures, the risk-neutral pricing formula.

. Pricing and hedging European options: Examples of European op-

tions. Explicit pricing formula. Evaluation of price and hedging strategies
for European calls and puts.

Valuation of some exotic options. Digital options, barrier options etc.

There are no formal prerequisites for the course, but a knowledge of (or willingness
to learn) some basic probability would be a distinct advantage. (It will be assumed
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that the reader is familiar with the notions of probability distribution, mean and
variance and conditional expectation. The central limit theorem will be quoted
without proof and we will talk about stochastic processes without dwelling on
what they are.)
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