
Chapter 9

Pricing in terms of Market Probabilities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym) Let IP and fIP be two probability measures on a space ���F�.
Assume that for every A � F satisfying IP �A� � �, we also have fIP �A� � �. Then we say thatfIP is absolutely continuous with respect to IP. Under this assumption, there is a nonegative random
variable Z such that

fIP �A� � Z
A

ZdIP� �A � F � (1.1)

and Z is called the Radon-Nikodym derivative of fIP with respect to IP.

Remark 9.1 Equation (1.1) implies the apparently stronger condition

fIEX � IE�XZ�

for every random variable X for which IEjXZj ��.

Remark 9.2 If fIP is absolutely continuous with respect to IP, and IP is absolutely continuous with
respect to fIP , we say that IP and fIP are equivalent. IP and fIP are equivalent if and only if

IP �A� � � exactly when fIP �A� � �� �A � F �

If IP and fIP are equivalent and Z is the Radon-Nikodym derivative of fIP w.r.t. IP, then �

Z
is the

Radon-Nikodym derivative of IP w.r.t. fIP , i.e.,

fIEX � IE�XZ� �X� (1.2)

IEY � fIE�Y�
�

Z
� �Y� (1.3)

(Let X and Y be related by the equation Y � XZ to see that (1.2) and (1.3) are the same.)
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Example 9.1 (Radon-Nikodym Theorem) Let � � fHH�HT� TH� TTg, the set of coin toss sequences
of length 2. Let P correspond to probability �

� for H and �
� for T , and let eIP correspond to probability �

� for

H and �
� for T . Then Z��� �

eIP ���
IP ��� , so

Z�HH� �
�

�
� Z�HT � �

�

�
� Z�TH� �

�

�
� Z�TT � �

�

�	
�

9.2 Radon-Nikodym Martingales

Let � be the set of all sequences of n coin tosses. Let IP be the market probability measure and letfIP be the risk-neutral probability measure. Assume

IP ��� � �� fIP ��� � �� �� � ��

so that IP and fIP are equivalent. The Radon-Nikodym derivative of fIP with respect to IP is

Z��� �
fIP ���
IP ���

�

Define the IP-martingale

Zk
�
� IE�ZjFk �� k � �� �� � � � � n�

We can check that Zk is indeed a martingale:

IE�Zk��jFk� � IE �IE�ZjFk���jFk�

� IE�ZjFk �

� Zk �

Lemma 2.28 If X is Fk-measurable, then fIEX � IE�XZk�.

Proof:

fIEX � IE�XZ�

� IE �IE�XZjFk��

� IE �X�IE�ZjFk��

� IE�XZk��

Note that Lemma 2.28 implies that if X is F k-measurable, then for any A � Fk,

fIE�IAX � � IE�ZkIAX ��

or equivalently, Z
A

XdfIP �
Z
A

XZkdIP�
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Figure 9.1: Showing theZk values in the 2-period binomial model example. The probabilities shown
are for IP, not fIP .

Lemma 2.29 If X is Fk-measurable and � � j � k, then

fIE�X jFj � �
�

Zj
IE�XZkjFj ��

Proof: Note first that �

Zj
IE�XZkjFj � is F j-measurable. So for any A � Fj , we have

Z
A

�

Zj
IE�XZkjFj �dfIP �

Z
A

IE�XZkjFj �dIP (Lemma 2.28)

�
Z
A

XZkdIP (Partial averaging)

�
Z
A

XdfIP (Lemma 2.28)

Example 9.2 (Radon-Nikodym Theorem, continued) We show in Fig. 9.1 the values of the martingaleZk.
We always have Z� � �, since

Z� � IEZ �

Z
�
ZdIP � eIP ��� � ��

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the following state price density process:

�k � �� 	 r��kZk� k � �� � � � � n�
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We then have the following pricing formulas: For a Simple European derivative security with
payoff Ck at time k,

V� � fIE h
�� 	 r��kCk

i
� IE

h
�� 	 r��kZkCk

i
(Lemma 2.28)

� IE��kCk��

More generally for � � j � k,

Vj � �� 	 r�jfIE h
�� 	 r��kCkjFj

i
�

�� 	 r�j

Zj
IE

h
�� 	 r��kZkCkjFj

i
(Lemma 2.29)

�
�

�j
IE��kCkjFj �

Remark 9.3 f�jVjg
k
j�� is a martingale under IP, as we can check below:

IE��j��Vj��jFj � � IE �IE��kCkjFj���jFj �

� IE��kCkjFj �

� �jVj �

Now for an American derivative security fGkg
n
k��:

V� � sup
��T�

fIE ��� 	 r���G� �

� sup
��T�

IE ��� 	 r���Z�G� �

� sup
��T�

IE���G� ��

More generally for � � j � n,

Vj � �� 	 r�j sup
��Tj

fIE ��� 	 r���G� jFj �

� �� 	 r�j sup
��Tj

�

Zj
IE ��� 	 r���Z�G� jFj �

�
�

�j
sup
��Tj

IE���G� jFj ��

Remark 9.4 Note that

(a) f�jVjgnj�� is a supermartingale under IP,

(b) �jVj � �jGj �j�
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Figure 9.2: Showing the state price values �k . The probabilities shown are for IP, not fIP .

(c) f�jVjgnj�� is the smallest process having properties (a) and (b).

We interpret �k by observing that �k���IP ��� is the value at time zero of a contract which pays $1
at time k if � occurs.

Example 9.3 (Radon-NikodymTheorem, continued) We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabilities. Recall that p � �

� , q � �
� . The

state price values �k are shown in Fig. 9.2.

For a European Call with strike price 5, expiration time 2, we have

V��HH� � ��� ���HH�V��HH� � ����� �� � �
����

V��HT � � V��TH� � V��TT � � ��

V� �
�

�
�

�

�
� �
��� � ��
	�

���HH�

���HH�
V��HH� �

����

����
� �� � ����� �� � �����

V��H� �
�

�
� ����� � ����

Compare with the risk-neutral pricing formulas:

V��H� � �
�V��HH� � �

�V��HT � � �
� � �� � �����

V��T � �
�
�V��TH� � �

�V��TT � � ��

V� �
�
�V��H� � �

�V��T � �
�
� � ���� � ��
	�

Now consider an American put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
�k�
� Sk�

�. We compute the value of the put under various stopping times � :

(0) Stop immediately: value is 1.

(1) If � �HH� � � �HT � � �� � �TH� � � �TT � � �, the value is

�

�
� �

� � ��
� � �
� � ���� � ���	�
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+
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Figure 9.3: Showing the values �k�
� Sk�� for an American put. The probabilities shown are for
IP, not fIP .

(2) If we stop at time 2, the value is

�

�
� �

� � ��
� � �
� �

�

�
� ��
� � �

� �
�
� � ���� � ���	

We see that (1) is optimal stopping rule.

9.4 Stochastic Volatility Binomial Model

Let � be the set of sequences of n tosses, and let � � dk � �	rk � uk, where for each k, dk� uk� rk
are Fk-measurable. Also let

�pk �
� 	 rk � dk

uk � dk
� �qk �

uk � �� 	 rk�

uk � dk
�

Let fIP be the risk-neutral probability measure:

fIPf�� � Hg � �p��

fIP f�� � Tg � �q��

and for � � k � n, fIP ��k�� � H jFk� � �pk�fIP ��k�� � T jFk� � �qk �

Let IP be the market probability measure, and assume IPf�g � � �� � �. Then IP and fIP are
equivalent. Define

Z��� �
fIP ���
IP ���

�� � ��
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Zk � IE�ZjFk �� k � �� �� � � � � n�

We define the money market price process as follows:

M� � ��

Mk � �� 	 rk���Mk��� k � �� � � � � n�

Note that Mk is Fk��-measurable.

We then define the state price process to be

�k �
�

Mk

Zk� k � �� � � � � n�

As before the portfolio process is f
kg
n��
k�� . The self-financing value process (wealth process)

consists of X�, the non-random initial wealth, and

Xk�� � 
kSk�� 	 �� 	 rk��Xk �
kSk�� k � �� � � � � n� ��

Then the following processes are martingales under fIP :

�
�

Mk

Sk

�n
k��

and
�

�

Mk

Xk

�n
k��

�

and the following processes are martingales under IP:

f�kSkg
n
k�� and f�kXkg

n
k���

We thus have the following pricing formulas:

Simple European derivative security with payoff Ck at time k:

Vj � Mj
fIE �

Ck

Mk

����Fj

�

�
�

�j
IE ��kCkjFj �

American derivative security fGkg
n
k��:

Vj � Mj sup
��Tj

fIE �
G�

M�

����F j

�

�
�

�j
sup
��Tj

IE ���G� jFj � �

The usual hedging portfolio formulas still work.



118

9.5 Another Applicaton of the Radon-Nikodym Theorem

Let ���F� Q� be a probability space. Let G be a sub-�-algebra of F , and let X be a non-negative
random variable with

R
�X dQ � �. We construct the conditional expectation (under Q) of X

given G. On G, define two probability measures

IP �A� � Q�A� �A � G�

fIP �A� � Z
A

XdQ �A � G�

Whenever Y is a G-measurable random variable, we haveZ
�
Y dIP �

Z
�
Y dQ�

if Y � �A for some A � G, this is just the definition of IP , and the rest follows from the “standard
machine”. If A � G and IP �A� � �, then Q�A� � �, so fIP �A� � �. In other words, the measure fIP
is absolutely continuous with respect to the measure fIP . The Radon-Nikodym theorem implies that
there exists a G-measurable random variable Z such that

fIP �A� �� Z
A

Z dIP �A � G�

i.e., Z
A

X dQ �

Z
A

Z dIP �A � G�

This shows that Z has the “partial averaging” property, and since Z is G-measurable, it is the con-
ditional expectation (under the probability measure Q) of X given G. The existence of conditional
expectations is a consequence of the Radon-Nikodym theorem.


