Chapter 9

Pricing in termsof Market Probabilities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym) Let P and 1P be two probability measures on a space (€2, F).
Assume that for every A € F satisfying IP(A) = 0, we also have IP(A) = 0. Then we say that
IP is absolutely continuouswith respect to P. Under this assumption, there is a nonegative random
variable 7 such that

PA) = /A ZdIP, VA € T, (L.1)

and Z is called the Radon-Nikodym derivative of 1P with respect to P.

Remark 9.1 Equation (1.1) impliesthe apparently stronger condition
EX = E[XZ]
for every random variable X for which IF'| X 7| < cc.

Remark 9.2 If P is absol utely continuous with respect to P, and P is absolutely continuous with
respect to /P, we say that P and /P are equivalent. P and IP are equivaent if and only if

IP(A) =0 exactly when IP(A) =0, YA e F.

If P and IP are equivalent and Z is the Radon-Nikodym derivative of IP w.r.t. P, then  isthe
Radon-Nikodym derivative of Pw.r.t. 713, i.e,

EX = E[XZ] VX, (1.2)

— 1
EY = E[Y.Z] VY. (1.3)

(Let X and Y berelated by theequation Y = X 7 to see that (1.2) and (1.3) are the same.)
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Example9.1 (Radon-Nikodym Theorem) Let @ = {H H, HT,TH,TT}, the set of coin toss sequences
of length 2. Let P correspond to probability & for H and 2 for 7', and let /P correspond to probability 1 for

H and 1 for T'. Then Z (w) = %gl,so

)
Z(HH) = % ) ) J

L ZMHT) = ¢, Z(TH) = ¢, Z(TT) = 4.

9.2 Radon-Nikodym Martingales

Let 2 be the set of all sequences of n coin tosses. Let P be the market probability measure and et
IP be therisk-neutral probability measure. Assume

Pw) >0, P(w) >0, Yw € Q,
so that P and /P are equivalent. The Radon-Nikodym derivative of /P with respect to Pis

Define the P-martingale
7 2 ElZIF], k=0,1,...,n.
We can check that 7, isindeed a martingale:
E[Zx 1| Fi] = IEUE[Z|F ]| Fi]
= IE[Z]F%]
= Z.

Lemma2.28 If X is F;-measurable, then IEX = IE[X Z;].

Pr oof:

EX = [E[XZ]
EE[XZ|T]]
E[X.E[Z|F]
= E[XZ)].

Note that Lemma 2.28 impliesthat if X is 7 ,-measurable, thenfor any A € Fy,

I, X] = E[Z;14X],

or equivalently,
/Xd?ﬁ:/ X ZydP.
A A
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Figure9.1: Showingthe 7 valuesin the 2-period binomial model example. The probabilitiesshown
arefor P, not IP.

Lemma 2.29 If X is F-measurableand 0 < j < k, then

— 1
BIX|F,) = - EIX %7
J

Proof: Notefirst that %E[XZM}}] is F ;-measurable. So for any A € F;, we have
J

/ ZLJE[XZM]CJ?I? / E[X Zy|F;)dIP  (Lemma2.28)
A Zj A
= /XdeP (Partial averaging)
A
- / XdP (Lemma2.28)
A

Example 9.2 (Radon-Nikodym Theorem, continued) Weshow inFig. 9.1the valuesof the martingale 7 .
We alwayshave 7, = 1, since

ZO:JEZ:/QZCIP:JTD(Q):L

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the following state price density process:

Ck:(1—|—r)—ka, k=0,...,n.
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We then have the following pricing formulas: For a Simple European derivative security with
payoff (. attime £,
Vo = IE[(147r)75]
- E [(1 1 r)—kzkck} (Lemma 2.28)
= E[GC]

More generally for 0 < 5 < k,

V, = (14+r)E {(1"’7‘)_k0k|}—j}
_ ME {(1 + r)‘kaCij} (Lemma 2.29)
Z;
= %E[Ckcﬂfﬂ
J

Remark 9.3 {(;V;}%_, isamartingale under P, as we can check below:

ECi+1VinlFj] = IEUE[GCLF ]| F]
E[CCrl F]
GV

Now for an American derivativesecurity {G'r.}7_,:

Vo = sup E[(1+7r)77G,]
T€TH

= sup E[(1+r)""Z;G;]
T€To

= sup B[GGo)
T€TH

More generally for 0 < j < n,

vV, = (1+ r)j sup E [(1+7r)77G|F]
TET)

4 1
= (14r)sup —E[(1+r)772.G;|F;]
reT; Zj

1
= —sup I[G.G,|F;].
C] 7Ty

Remark 9.4 Notethat
(@ {¢;V;}—, isasupermartingale under P

(b) &Vi = GGy v,
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Figure 9.2: Showing the state price values (.. The probabilities shown are for P, not P.

(©) {¢;V;}—o isthe smallest process having properties (@) and (b).

We interpret ¢ by observing that ¢, (w) IP(w) isthe value at time zero of a contract which pays $1
at timek if w occurs.

Example 9.3 (Radon-NikodymTheorem, continued) We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabilities. Recall thatp = £, ¢ = 2. The
state price values (i, are shown in Fig. 9.2.

For a European Call with strike price 5, expiration time 2, we have
Vo(HH) =11, G(HH)V2(HH) = 1.44 x 11 = 15.84.

Va(HT) = Vao(TH) = Vo (T'T) = 0.
1

1
Vo= 2 x = x 15.84 = 1.76.
0 3 X 3 X
G(HH) 1.44
Va(HH) = ~= % 11 = 1.20 x 11 = 13.20
G P = 557 8
1
Vi(H) = 3 % 13.20 = 4.40

Compare with the risk-neutral pricing formulas:
Vi(H) = $Vi(HH) + 2Vi(HT) = 2 x 11 = 4.40,
Vi(T) = 2Vi(TH) + 2Vi(TT) = 0,
Vo= 2Vi(H)+ 2Vi(T) = 2 x 4.40 = 1.76.

Now consider an American put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
Cx (5 — Sk)™. We compute the value of the put under various stopping times 7

(0) Stop immediately: valueis 1.
() Wr(HH) =7(HT) =2, 7(TH) = 7(TT) = 1, thevaueis

x 2 x0.724 3 x 1.80 = 1.36.

| —
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(5-S(HH)'= 0

{4HH)(5- %(HH)—
(5- sl(H)) =0 /
LH(E-SH) =0
(5-S(HM)'=1
\ L4HT) (5- %(HT)) =072
(5S0)"= (5-$(TH)'= 1
o5 S0 ZéTH) (5- %(TH)) =0.72
(5-§(M)"=3
M G-§M)* =180
2R G-smm)*=a

4TT) (5-S(TT) "= 1.44

Figure 29.3: Showing the values i.(5 — Si)* for an American put. The probabilities shown are for
P, not IP.

(2) If westop attime 2, thevalueis

1
%x072—|——><§><072+—><—><144—096

ool»—x

We see that (1) is optimal stopping rule. [ ]

9.4 Stochastic Volatility Binomial M odel

Let Q2 bethe set of sequencesof n tosses, andlet 0 < dp < 1+7rg < ug, wherefor each k, di., ur, ry
are F-measurable. Also let

L+rg—dpy . up— (1+rg)
= 3 qr = .

up — dy, up — dy,

Let /P be the risk-neutral probability measure:
ﬁ{wl = H} = ]307
ﬁ{wl = T} = (207

andfor2 < k < n, .
PPlwyyr = H|Fr] = i,

Plwpyr = T|Fr] = G

Let P be the market probability measure, and assume P{w} > 0 Vw € €. Then P and /P are
equivalent. Define

Z(w) :# o € Q,
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Zp = E[Z|Fy], k=0,1,...,n.

We define the money market price process as follows:

M = (1 + rk—l)Mk—h k=1,...,n.
Note that M, is F},_;-measurable.

We then define the state price processto be

1
=—Z,, k=0,...,n.
Ck Mk ks ) y T

As before the portfolio process is {A k}Z;é- The self-financing value process (wealth process)
consistsof X, the non-random initial wealth, and

X1 = AkSkH + (1—|— T‘k)(Xk — AkSk), k=0,...,n—1.

Then the following processes are martingal es under P

1 " 1 "
—5 } and { —X } )
{ Mk g k=0 Mk g k=0
and the following processes are martingales under P:
{CSktizo  and  {CiXk}i—o-
We thus have the following pricing formulas:

Simple European derivativesecurity with payoff Cj, at time k:

vV, = M]E[ﬂ

My, fj]

=:%EMQVA
J

American derivativesecurity {G}7_q:

adl

T

Vi = M; supﬁ
TET)

1
= —sup B[GGIF).
C] 7Ty

The usual hedging portfolio formulas still work.
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9.5 Another Applicaton of the Radon-Nikodym Theorem

Let (Q2, F, Q) be aprobability space. Let G be a sub-o-algebra of F, and let X be a non-negative
random variable with [ X dQ = 1. We construct the conditional expectation (under Q) of X
given G. On G, define two probability measures

P(A)=Q(A) VAeg;

TP“(A):/AXdQ YA EG.

Whenever Y isaG-measurable random variable, we have

/QYdP:/QYdQ;

if Y =1, forsome A € G, thisisjust the definition of /°, and the rest follows from the “standard
machine”. If A € G and IP(A) = 0, then)(A) = 0, 50 IP(A) = 0. In other words, the measure /P
is absolutely continuouswith respect to the measure /P. The Radon-Nikodym theorem implies that
there exists a G-measurable random variable Z such that

P(A)é/AZdJP VA €,

/AXdQ:/AZdP VA EG.

Thisshowsthat 7 has the “partia averaging” property, and since /7 is G-measurable, it is the con-
ditional expectation (under the probability measure () of X given G. The existence of conditional
expectationsis a consequence of the Radon-Nikodym theorem.



