
Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample space � is the set of all infinite sequences
� � ���� ��� � � �� of H and T . Assume the tosses are independent, and on each toss, the probability
of H is �

� , as is the probability of T . Define

Yj��� �

�
� if �j � H�
�� if �j � T�

M� � ��

Mk �
kX

j��

Yj � k � �� �� � � �

The process fMkg�k�� is a symmetric random walk (see Fig. 8.1) Its analogue in continuous time is
Brownian motion.

Define
� � minfk � ��Mk � �g�

If Mk never gets to 1 (e.g., � � �TTTT � � � �), then � � �. The random variable � is called the
first passage time to 1. It is the first time the number of heads exceeds by one the number of tails.

8.2 � is almost surely finite

It is shown in a Homework Problem that fMkg�k�� and fNkg�k�� where

Nk � exp

�
�Mk � k log

�
e� 	 e��

�

��

� e�Mk

�
�

e� 	 e��

�k
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Figure 8.1: The random walk process Mk
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Figure 8.2: Illustrating two functions of �

are martingales. (Take Mk � �Sk in part (i) of the Homework Problem and take � � �� in part
(v).) Since N� � � and a stopped martingale is a martingale, we have

� � IENk�� � IE

�
e�Mk��

�
�

e� 	 e��

�k���
(2.1)

for every fixed � � IR (See Fig. 8.2 for an illustration of the various functions involved). We want
to let k�� in (2.1), but we have to worry a bit that for some sequences � � �, ���� ��.

We consider fixed � � �, so �
�

e� 	 e��

�
� ��

As k��, �
�

e� 	 e��

�k��
�
� 	

�
e��e��


�
if � ���

� if � ��
Furthermore, Mk�� � �, because we stop this martingale when it reaches 1, so

� � e�Mk�� � e�
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and

� � e�Mk��

�
�

e� 	 e��

�k��
� e��

In addition,

lim
k��

e�Mk��

�
�

e� 	 e��

�k��
�

�
e�
	

�
e��e��


�
if � ���

� if � ���

Recall Equation (2.1):

IE

�
e�Mk��

�
�

e� 	 e��

�k���
� �

Letting k��, and using the Bounded Convergence Theorem, we obtain

IE

�
e�
�

�

e� 	 e��

��
If���g

�
� �� (2.2)

For all � � ��� �
, we have

� � e�
�

�

e� 	 e��

��
If���g � e�

so we can let ��� in (2.2), using the Bounded Convergence Theorem again, to conclude

IE
h
If� ��g

i
� ��

i.e.,
IPf� ��g � ��

We know there are paths of the symmetric random walk fMkg�k�� which never reach level 1. We
have just shown that these paths collectively have no probability. (In our infinite sample space �,
each path individually has zero probability). We therefore do not need the indicator If� ��g in

(2.2), and we rewrite that equation as

IE

��
�

e� 	 e��

���
� e�� � (2.3)

8.3 The moment generating function for �

Let 	 � ��� �� be given. We want to find � � � so that

	 �

�
�

e� 	 e��

�
�

Solution:
	e� 	 	e�� � � � �

	�e���� � �e�� 	 	 � �
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e�� �
�� p

�� 	�

	
�

We want � � �, so we must have e�� � �. Now � � 	 � �, so

� � ��� 	�� � ��� 	� � �� 	��

�� 	 �
p
�� 	��

��
p
�� 	� � 	�

�� p
�� 	�

	
� �

We take the negative square root:

e�� �
�� p

�� 	�

	
�

Recall Equation (2.3):

IE

��
�

e� 	 e��

���
� e�� � � � ��

With 	 � ��� �� and � � � related by

e�� �
�� p

�� 	�

	
�

	 �

�
�

e� 	 e��

�
�

this becomes

IE	� �
�� p

�� 	�

	
� � � 	 � �� (3.1)

We have computed the moment generating function for the first passage time to 1.

8.4 Expectation of �

Recall that

IE	� �
��p�� 	�

	
� � � 	 � ��

so

d

d	
IE	� � IE��	����

�
d

d	

�
��p�� 	�

	

�

�
��p�� 	�

	�
p
�� 	�

�
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Using the Monotone Convergence Theorem, we can let 		� in the equation

IE��	���� �
��p�� 	�

	�
p
�� 	�

�

to obtain

IE� ���

Thus in summary:

�
�
� minfk�Mk � �g�

IPf� ��g � ��

IE� ���

8.5 The Strong Markov Property

The random walk process fMkg�k�� is a Markov process, i.e.,

IE � random variable depending only on Mk���Mk��� � � � j Fk 


� IE � same random variable jMk
 �

In discrete time, this Markov property implies the Strong Markov property:

IE � random variable depending only on M����M���� � � � j F� 


� IE � same random variable j M� 
 �

for any almost surely finite stopping time � .

8.6 General First Passage Times

Define

�m
�
� minfk � ��Mk � mg� m � �� �� � � �

Then �� � �� is the number of periods between the first arrival at level 1 and the first arrival at level
2. The distribution of �� � �� is the same as the distribution of �� (see Fig. 8.3), i.e.,

IE	����� �
�� p

�� 	�

	
� 	 � ��� ���
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Figure 8.3: General first passage times.

For 	 � ��� ��,

IE �	�� jF�� 
 � IE


	��	����� jF��

�
� 	��IE�	����� jF�� 


(taking out what is known)

� 	��IE�	����� jM�� 


(strong Markov property)

� 	��IE�	����� 


�M�� � �� not random �

� 	��

�
��

p
�� 	�

	

�
�

Take expectations of both sides to get

IE	�� � IE	�� �

�
�� p

�� 	�

	

�

�

�
�� p

�� 	�

	

��

In general,

IE	�m �

�
��p�� 	�

	

�m
� 	 � ��� ���

8.7 Example: Perpetual American Put

Consider the binomial model, with u � �� d � �
� � r � �

� , and payoff function ��� Sk�
�. The risk

neutral probabilities are 
p � �
� , 
q � �

� , and thus

Sk � S�u
Mk �
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where Mk is a symmetric random walk under the risk-neutral measure, denoted by fIP . Suppose
S� � �. Here are some possible exercise rules:

Rule 0: Stop immediately. �� � �� V ���� � �.

Rule 1: Stop as soon as stock price falls to 2, i.e., at time

���
�
� minfk�Mk � ��g�

Rule 2: Stop as soon as stock price falls to 1, i.e., at time

���
�
� minfk�Mk � ��g�

Because the random walk is symmetric under fIP , ��m has the same distribution under fIP as the
stopping time �m in the previous section. This observation leads to the following computations of
value. Value of Rule 1:

V ����� � fIE 

�� 	 r�������� S����

��
� ��� ���IE

h
��	�

���

i
� ��

��
q
�� ��	�

�

�
	

�
�

�
�

Value of Rule 2:

V ����� � ��� ���fIE h
��	�

���

i
� ������

�

� ��

This suggests that the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
falls to 2, and the value of the put is 


� if S� � �.

Suppose instead we start with S� � �, and stop the first time the price falls to 2. This requires 2
down steps, so the value of this rule with this initial stock price is

��� ���fIE h
��	�

���

i
� ������

� �
�

�
�

In general, if S� � �j for some j � �, and we stop when the stock price falls to 2, then j � � down
steps will be required and the value of the option is

��� ���fIE h
��	�

���j���

i
� ������

j���

We define
v��j�

�
� ������

j��� j � �� �� �� � � �
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If S� � �j for some j � �, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the put is

v��j�
�
� �� �j � j � �� �������� � � �

Proposed exercise rule: Exercise the put whenever the stock price is at or below 2. The value of
this rule is given by v��j� as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. This leads us to make the following:

Conjecture 1 The value of the perpetual put at time k is v�Sk�.

How do we recognize the value of an American derivative security when we see it?

There are three parts to the proof of the conjecture. We must show:

(a) v�Sk� � ��� Sk�� 
k�

(b)
n
��	�

kv�Sk�
o�
k��

is a supermartingale,

(c) fv�Sk�g�k�� is the smallest process with properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the form S� � �j , so Sk is
always of the form �j , with a possibly different j.

Proof: (a). Just check that

v��j�
�
� ������

j�� � ��� �j�� for j � ��

v��j�
�
� �� �j � ��� �j�� for j � ��

This is straightforward.

Proof: (b). We must show that

v�Sk� � fIE h
�
	v�Sk���jFk

i
� �

	 �
�
�v��Sk� 	

�
	 �

�
�v�

�
�Sk��

By assumption, Sk � �j for some j. We must show that

v��j� � �
	v��

j��� 	 �
	v��

j����

If j � �, then v��j� � ������
j�� and

�
	v��

j��� 	 �
	v��

j���

� �
	 ����

�
��
j 	 �

	 ����
�
��
j��

� ��

�
�
	 �
�

�
	 �

	

�
����

j��

� ���� ��
�
��
j��

� v��j��



CHAPTER 8. Random Walks 105

If j � �, then v��j� � v��� � � and

�
	v��

j��� 	 �
	v��

j���

� �
	v��� 	

�
	v���

� �
	 ���

�
� 	

�
	 ��

� �
� 	 �
�

� ��	 � v��� � �

There is a gap of size �
	 .

If j � �, then v��j� � �� �j and

�
	v��

j��� 	 �
	v��

j���

� �
	��� �j��� 	 �

	��� �j���

� �� �
	�� 	 ���j��

� �� �j � v��j� � �� �j �

There is a gap of size 1. This concludes the proof of (b).

Proof: (c). Suppose fYkgnk�� is some other process satisfying:

(a’) Yk � ��� Sk�� 
k�
(b’) f��	�kYkg�k�� is a supermartingale.

We must show that

Yk � v�Sk� 
k� (7.1)

Actually, since the put is perpetual, every time k is like every other time, so it will suffice to show

Y� � v�S��� (7.2)

provided we letS� in (7.2) be any number of the form �j . With appropriate (but messy) conditioning
on Fk, the proof we give of (7.2) can be modified to prove (7.1).

For j � �,
v��j� � �� �j � ��� �j���

so if S� � �j for some j � �, then (a’) implies

Y� � ��� �j�� � v�S���

Suppose now that S� � �j for some j � �, i.e., S� � �. Let

� � minfk�Sk � �g
� minfk�Mk � j � �g�
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Then

v�S�� � v��j� � ������
j��

� IE
h
��	�

���� S� �
�
i
�

Because f��	�kYkg�k�� is a supermartingale

Y� � IE
h
��	�

�Y�
i
� IE

h
��	�

� ��� S��
�
i
� v�S���

Comment on the proof of (c): If the candidate value process is the actual value of a particular
exercise rule, then (c) will be automatically satisfied. In this case, we constructed v so that v�Sk� is
the value of the put at time k if the stock price at time k is Sk and if we exercise the put the first time
(k, or later) that the stock price is 2 or less. In such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock prices which can fall at any point in �����, not just at points of the form � j for
integers j, then we can imagine the function v�x�, defined for all x � �, which gives the value of
the perpetual American put when the stock price is x. This function should satisfy the conditions:

(a) v�x� � �K � x��� 
x,

(b) v�x� � �
��r �
pv�ux� 	 
qv�dx�
 � 
x�

(c) At each x, either (a) or (b) holds with equality.

In the example we worked out, we have

For j � � � v��j� � ������
j�� �

�

�j
�

For j � � � v��j� � �� �j �

This suggests the formula

v�x� �

�
�
x
� x � ��

�� x� � � x � ��

We then have (see Fig. 8.4):

(a) v�x� � ��� x��� 
x�

(b) v�x� � �
	

h
�
�v��x� 	

�
�v�

x
��
i

for every x except for � � x � �.
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5

5
v(x)

x

(3,2)

Figure 8.4: Graph of v�x�.

Check of condition (c):

� If � � x � �, then (a) holds with equality.

� If x � �, then (b) holds with equality:

�
	

�
�
�v��x� 	

�
�v�

x

�
�

�
� �

	

�
�
�

�

�x
	 �

�

��

x

�
�

�

x
�

� If � � x � � or � � x � �, then both (a) and (b) are strict. This is an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (a) or (b) holds with equality at every point.

8.9 Distribution of First Passage Times

Let fMkg�k�� be a symetric random walk under a probability measure IP , with M� � �. Defining

� � minfk � ��Mk � �g�

we recall that

IE	� �
��p�� 	�

	
� � � 	 � ��

We will use this moment generating function to obtain the distribution of � . We first obtain the
Taylor series expasion of IE	� as follows:
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f�x� � ��p�� x� f��� � �

f ��x� � �
���� x��

�
� � f ���� � �

�

f ���x� �
�

�
��� x��



� � f ����� �

�

�

f ����x� �
�

�
��� x��

�
� � f ������ �

�

�
� � �

f �j��x� �
�� �� � � �� ��j � ��

�j
��� x��

��j���
� �

f �j���� �
�� �� � � �� ��j � ��

�j

�
�� �� � � �� ��j � ��

�j
�
�� �� � � �� ��j � ��

�j���j � ���

�
	
�
�


�j�� ��j � ���

�j � ���

The Taylor series expansion of f�x� is given by

f�x� � �� p
�� x

�
�X
j��

�

j�
f �j����xj

�
�X
j��

	
�
�


�j�� ��j � ���

j��j � ���
xj

�
x

�
	

�X
j��

	
�
�


�j�� �

�j � ��

�
�j � �

j

�
xj �

So we have

IE	� �
��p�� 	�

	

�
�

	
f�	��

�
	

�
	

�X
j��

�
	

�

��j�� �

�j � ��

�
�j � �

j

�
�

But also,

IE	� �
�X
j��

	�j��IPf� � �j � �g�
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Figure 8.5: Reflection principle.

Figure 8.6: Example with j � �.

Therefore,

IPf� � �g � �
� �

IPf� � �j � �g �

�
�

�

��j�� �

�j � ��

�
�j � �

j

�
� j � �� �� � � �

8.10 The Reflection Principle

To count how many paths reach level 1 by time �j � �, count all those for which M�j�� � � and
double count all those for which M�j�� � �. (See Figures 8.5, 8.6.)
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In other words,

IPf� � �j � �g � IPfM�j�� � �g	 �IPfM�j�� � �g
� IPfM�j�� � �g	 IPfM�j�� � �g	 IPfM�j�� � ��g
� �� IPfM�j�� � ��g�

For j � �,

IPf� � �j � �g � IPf� � �j � �g � IPf� � �j � �g
� ��� IPfM�j�� � ��g
� ��� IPfM�j�
 � ��g

� IPfM�j�
 � ��g � IPfM�j�� � ��g
�

	
�
�


�j�
 ��j � ���

�j � ����j � ���
�
	
�
�


�j�� ��j � ���

j��j � ���

�
	
�
�


�j�� ��j � ���

j��j � ���
��j�j � ��� ��j � ����j � ��


�
	
�
�


�j�� ��j � ���

j��j � ���
��j��j � ��� ��j � ����j � ��


�
	
�
�


�j�� ��j � ���

j��j � ���

�
	
�
�


�j�� �

�j � ��

�
�j � �

j

�
�


