Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample space €2 is the set of all infinite sequences
w = (w1, wy,...)of HandT. Assumethe tosses are independent, and on each toss, the probability
of H is }, asisthe probability of 7". Define

)1 if w; =4,
YJ(“)—{ 1 ifw =T,

MO — 07
k

My = > Y, k=1,2,...
J=1

The process { M}, } 72, isasymmetric randomwalk (see Fig. 8.1) Itsanalogue in continuoustimeis
Brownian motion.

Define
7 =min{k > 0; M = 1}.

If M) never getsto 1 (eg., w = (T'TTT...)), then T = co. Therandom variable 7 is called the
first passagetimeto 1. It isthefirst time the number of heads exceeds by one the number of tails.

8.2 7 isalmost surely finite

It isshownina Homework Problem that { M}, } 72 o and { Ny }72 , where

[ -4
N, = exp{OMk—klog (6 —;e )}

= €€Mk ( 2 )k
el + e 0
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Figure 8.1: The randomwalk process M,
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Figure 8.2: Illustrating two functions of ¢

are martingales. (Take M, = —.S;. in part (i) of the Homework Problem and take § = —o in part
(v).) Since Ny = 1 and astopped martingale isa martingale, we have

9 kAT
1= ENk/\T = JF [eeMkAT <€€ T 6_0) ] (21)

for every fixed 6 € IR (See Fig. 8.2 for anillustration of the various functionsinvolved). We want
to let k—oo in (2.1), but we have to worry a bit that for some sequencesw € €2, 7(w) = oo.

p
) <
( 9 )’f“_}{(ﬁy if < oo,

We consider fixed 8 > 0, so

As k— o0,

el + et 0 if =00

Furthermore, My, < 1, because we stop this martingale when it reaches 1, so

0 < ?Mrnr < (6
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and

In addition,

0 if 7=o0.

lim efMinr ( 2 )k/w = { e’ (eeﬂl—%) it 7 < oo,

Recall Equation (2.1):

E[€€MkAr< 5 2 e)k/\T =1
e’ + e~

Letting k—oc, and using the Bounded Convergence Theorem, we obtain

2 T ]
6 _
F [6 (69 i 6_0) I{T<OO}- =1. (22)
For al 6 € (0, 1], we have
2 T
6
0<e (m) Iircooy <6
sowecan let 10 in (2.2), using the Bounded Convergence Theorem again, to conclude
E [I{T < oo}} =1

e,
P{r < oo} =1.

We know there are paths of the symmetric random walk { M, }72, which never reach level 1. We
have just shown that these paths collectively have no probability. (In our infinite sample space €2,
each path individually has zero probability). We therefore do not need the indicator 7 {r < o0} in

(2.2), and we rewrite that equation as

E [(eu%)] =e?, (2.3)

8.3 Themoment generating function for =

Let o € (0,1) begiven. Wewant to find # > 0 so that
2
o = 769{—6_9 .

Oeee—l—oee_e—QIO

Solution:

04(6_9)2 —2¢ 1 a=0
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e =

s 1EV1-a?
" )

We want § > 0, so we must havee=? < 1. Now 0 < a < 1,s0

0<(l-a)<(l-a)<l-a?

l—a<V1-a?

1-V1-a?<a,

1—+vV1—a?

— <1

(8
We take the negative square root:

g 1=V1- o’

" .

Recall Equation (2.3):

2 N\,

Witha € (0,1) and § > 0 related by

_o 1—+1—=a2
€ = -
o b
2
“ = e +e-0)’
this becomes
1-vV1-a?
Fa=—"—Y""% gca<l.
(0%

We have computed the moment generating function for the first passage timeto 1.

8.4 Expectation of 7

Recall that
1-VIi-a?
Fa™ = Y 0<a<l,
a
SO
d
%EO(T = FE(ra™™h
d [1-V1-a?
- da o
1—+v1—a?

a?V/1— a2’

(3.1)
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Using the Monaotone Convergence Theorem, we can let «11 in the equation

1 1—+vV1-a?
FE(ra™) = ————,
a1 — a?
to obtain
Fr=oc

Thusin summary:
r2 min{k; My = 1},

P{r <0} =1,

Fr = 0.

8.5 The Strong Markov Property

The random walk process { M} }72, isaMarkov process, i.e.,

IF | random variabledependingonly on My, Mgio,...| Fil

= JF'[ samerandom variable |Mj].

In discrete time, this Markov property impliesthe Strong Markov property:

IF | random variabledependingonlyon M.y, M, 4o, ..

= [ samerandomvariable | M,].
for any almost surely finite stoppingtime 7.

8.6 General First Passage Times

Define
Tmémin{kZO;Mk:m}, m=1,2,...

| F5]
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Then 7 — 71 isthe number of periods between the first arrival at level 1 and thefirst arrival at level

2. Thedistributionof 7o — 7 isthe same asthe distributionof 7, (see Fig. 8.3), i.e.,

1-vVI—a?
Ea™ ™ = % a € (0,1).
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To-1
Figure 8.3: General first passagetimes.

For o € (0,1),
Ela™|F,] = E[a"a™ " |F,]
= o Fa™ T F,]
(taking out what is known)
= o IFa™ M ]
(strong Markov property)
= o F[a™

(M;, =1, notrandom )

o 1—+v1—0o?
= —
Take expectations of both sidesto get
_ _ A2
Fam — ]Ea(li Vi-a )
(8
 [1-vitaz)’
- (8
In general,
1 —a2\™
Eamm = (ﬁ) o€ (0,1).
(8

8.7 Example: Perpetual American Put

Consider the binomial model, withu = 2,d = },r = %, and payoff function (5 — Si)*. Therisk
neutral probabilitiesare p = 1, § = 3, and thus

Sy, = SouMk,
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where M}, is a symmetric random walk under the risk-neutral measure, denoted by P. Suppose
So = 4. Here are some possible exercise rules:

Rule0: Stop immediately. 7o = 0, V() = 1.
Rule1: Stop as soon as stock pricefalsto 2, i.e., at time

T_1 = min{k; My = —1}.
Rule2: Stop as soon as stock pricefalsto 1, i.e., at time

T_o 2 min{k; My = —2}.

Because the random walk is symmetric under P, 7_ has the same distribution under P asthe
stopping time 7,,, in the previous section. This observation leads to the following computations of
value. Value of Rule 1:

Ve = B[40 (5 5,,)"

= G-2*B )]

1P

4
5

Value of Rule 2:
v = (5= )R [(3)7]
= 4(3)?

This suggeststhat the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
fallsto 2, and the value of the put is 2 if S = 4.

Suppose instead we start with .S, = 8, and stop the first time the price fallsto 2. This requires 2

down steps, so the value of thisrule with thisinitial stock priceis
— 3
_ 9t 2| g (L2 2
(65— |(3)7=] =3.(3) =2

In general, if Sy = 27 for some j > 1, and we stop when the stock price fallsto 2, then j — 1 down
stepswill be required and the value of the optionis

We define
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If Sy = 27 for some j < 1, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the put is

v(@) 2597, j=1,0,-1,-2,...

Proposed exerciserule: Exercise the put whenever the stock price is at or below 2. The value of
this rule is given by v(27) as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. Thisleads us to make the following:

Conjecture 1 The value of the perpetual put at time £ isv(Sy).

How do we recognize the value of an American derivative security when we seeit?
There are three parts to the proof of the conjecture. We must show:

@ U(Sk) > (5 — Sk)+ vk,

(b) {(g)kv(sk) }ZO_O isasupermartingale,

(€) {v(Sk)}72, isthe smallest processwith properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the form S, = 27,50 S}, is
always of the form 27, with a possibly different ;.

Proof: (a). Just check that

v(2) £33 = (5-2)T for j> 1,

1
2
v(2) £ 5 -2 > (5-27)* for j < L.

Thisis straightforward. [

Proof: (b). We must show that

v(Sk)

v

I [$0(Sk)| 7]
L1025, + £.4o(4S).
By assumption, S = 2 for some j. We must show that

v(27) > 2u(20+h) 4 2o(2071).

If j > 2, thenv(27) = 3.(3)7~! and

= 23.(3) +23.(1)?

1 _
= 3 pgrd
- 3. )j—?
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If j = 1, thenv(27) = v(2) = 3 and

Zo(27F) 4 2u(207)
= Zv(4)+ 2v(1)
= 231+2%4

3/5+8/5

= 2l <v(2)=3

Thereisagap of size 2.
If j <0,thenv(27) = 5 — 2/ and

= 4-2 <u(2)=5-2,
Thereisagap of size 1. This concludesthe proof of (b).
Proof: (c). Suppose {Y}}}_, issome other process satisfying:
@) Y > (5 —Sp)* Vk,
() {(})*V;}2, isasupermartingale.
We must show that

Vi > v(Sy) Vk.
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(7.1)

Actually, since the put is perpetual, every time k islike every other time, so it will suffice to show

YO Z U(SO)7

(7.2)

provided we let S, in (7.2) be any number of theform 27. With appropriate (but messy) conditioning

on F, the proof we give of (7.2) can be modified to prove (7.1).

For j < 1, , , ,
v(2) =5-2" = (5-2)*,

soif Sy = 27 for somej < 1, then () implies
YO Z (5 - 2])+ = U(So).
Suppose now that S, = 27 for some j > 2,i.e., Sy > 4. Let

T = min{k; Sy =2}
= min{k; My =7 — 1}.
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Then

Because {(2)*V;,}52, isasupermartingale
Yo > E[(2)Y:] > B [(2)(5 - $-)t] = v(S0).
|

Comment on the proof of (c): If the candidate value process is the actual value of a particular
exercise rule, then (c) will be automatically satisfied. In thiscase, we constructed v so that v(.Sy) is
the value of the put at time % if the stock price at time k is.5; and if we exercise the put thefirst time
(k, or later) that the stock priceis 2 or less. In such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock priceswhich can fall at any pointin (0, o), not just at pointsof theform 27 for
integers j, then we can imagine the function v(z), defined for al = > 0, which gives the value of
the perpetual American put when the stock price isz. Thisfunction should satisfy the conditions:

(@ v(z) > (K —a)*, Va,

(b) v(z) > 3 [po(ua) + Go(da)], Va,

(c) Ateach z, either (a) or (b) holdswith equality.
In the example we worked out, we have

For j > 1:0(2)=3.(1)y71 = =

1
2

For j <1:v(2)=5-2.
This suggests the formula

We then have (see Fig. 8.4):
@ v(z)>(5- x)"';Vx,

(b) v(z) > % [%U(Qx) + %v(%)} for every x except for 2 < = < 4.
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V(X)

Figure 8.4: Graph of v(z).

Check of condition (c):

e If 0 < z < 3, then (a) holdswith equality.

e If 2 > 6, then (b) holdswith equality:

—_

[N
[N

2]_6
x| oz

e If3 < 2 <4o0r4 < z < 6, then both (8) and (b) are strict. Thisis an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (&) or (b) holdswith equality at every point.

x 6
e+ 23] = 1+

8.9 Distribution of First Passage Times
Let { M} }72 , beasymetric random walk under a probability measure /P, with M, = 0. Defining
7 =min{k > 0; M =1},

we recall that

1-vV1-aZ
Fa=-—Y""% gca<l.
(0%

We will use this moment generating function to obtain the distribution of 7. We first obtain the
Taylor series expasion of IFa™ asfollows:
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fle) = 1-vl-w f(0)=
1
fll@) = 3(1-2)72, f(0)=3
1 1 —§ 1 1
M@y = -2)7E )=
3 5 " 3
M) = -7 )= 3
1x3 .. 27 —3 2j—1
e = DX X@IZI -
. 1x3x... 27 —3
90 = XX QjX(J )
o Ix3x...x(2§-3) 2x4x...x (2] —-2)
B 27 ' 20-1(5 — 1)!
() (252!
= () (= 1!
The Taylor series expansion of f(z) isgiven by
fle) = 1-V1l-2
— i%f(j)(O)xf
i=0 7
_ 5 1\%! (25 -2)! ;
- ST e
_ S @t 1 2) =2\ ;
- 520 (7))
So we have
Eom — 1—+v1—a?
(8
= s
_ oo (o)L (22
a 2+]«§<2) (1—1)( j )
But also,

Fao™ = Zazj_lﬂ?{r =2j—1}.
J=1
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Figure 8.5: Reflection principle.

Figure 8.6: Examplewith j = 2.

Therefore,

P{r=1} = 1
NNt 1 2j — 2
P{r=2j-1} = (5) . (‘7. ) J=23...

8.10 TheRéeflection Principle

To count how many paths reach level 1 by time 2j — 1, count all those for which AM,;_; = 1 and
double count all those for which AM;_; > 3. (See Figures 8.5, 8.6.)
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In other words,
P{r <2j -1} = P{Myj_1 =1} +2P{M;_; > 3}
= IP{My;_y =1} + IP{My;_1 > 3} + IP{My;—1 < -3}
= 1—IP{My;—y = —1}.
Forj > 2,
P{r=2j-1} = P{r<2j-1}-IP{r<2j-3}

= [1—=IP{Mzj—1=—-1}] - [1 = IP{Mzj_3 = —1}]
= P{ng_g = —1} — P{sz_l = —1}

- O - O

= ()7 G- - ey
= ()7 e -2 - e hei-2)
- (0"

- (%)2]_1 (]il) (2]3'_2)



