Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall thatV,, is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vi = (14 ) E[(1+7r)""Vy,|F, k=0,1,...,m— L

_ Vk+1(w1,... 7Wk7H) — Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) — Sk+1(wl7... 7Wk7T)7

Ap(wy, ... wg) E=0,1,...,m— 1.

Example4.1 (Lookback Option) u = 2,d = 0.5,r = 0.25,Sy = 4,p = 1:;:!5’ =05,¢=1-—p=0.5.
Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

Va = max (Sx —5)T.
0<k<2
Notice that
Vo(HH) = 11, Vo(HT) =3 £ Va(TH) =0, Va(TT) = 0.
The payoff is thus “path dependent”. Working backward in time, we have:
1 4
V() = r[ﬁVZ(HH) + ¢V (HT)] = 3[0.5 x 114+ 0.5 x 3] = 5.60,
T

1

Vi(T) = £05% 0+ 0.5 % 0] =0,

_ 4

Vo 5 0.5 x 5.604 0.5 x 0] = 2.24.

Using these values, we can now compute:

Vi(H) —Vi(T) _
Bo = Sy(H) — S(T) ~ 093,
_ Vo(HH) = Va(HT) _
AuH) = Sy(HH) — So(HT) — 067,
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S =1

Figure 4.1:Sock price underlying the lookback option.

Working forward in time, we can check that
Xl(H) = A()Sl(H) + (1 + T)(Xo — AOSO) = 559, Vl(H) = 560,
Xl(T) = AoSl(T) + (1 + T)(Xo — AOSO) = 001, Vl(T) = 0,
Xy (HH) = Ay(H)S (HH) 4 (14 7) (X1 (H) — A (H)Sy(H)) = 11.01; Vi(HH) = 11,
etc.
|

Example4.2 (European Call) Letu = 2,d = $,r = 1,5, =
with expiration time 2 and payoff function

e
3

,p = ¢ = %, and consider a European call

Vy = (S — 5)7.

Note that
Vo(HH) =11, Vo(HT) = Vo(TH) = 0, Vo(TT) = 0,

4
Vi(H) = 5[%.11+ £.0] =4.40
4
Vi(T) = 3[%.0+ £.01=0

4
Vo= l3 x 440+ 3 x 0] = 176,
Definew, () to be the value of the call at timewhenSy, = . Then
va(z) = (& —5)*
[3v2(22) + 5v2(2/2)],

vi(z) =

vo(x) =

O W= O

[1v1(22) + Lv1(2/2)].
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In particular,
v5(16) = 11, vy(4) = 0, v2(1) = 0,

4 1 1
111+ 1.0) = 4.40,

ui(8) = £1

e

vi(2) = 3[%.0 +£.0] =0,

4
v = (3 x 440+ 5 x 0] = L.T6.

Let & (¢) be the number of shares in the hedging portfolio at tinvehenS; = . Then

o (z) = vk“(@ = Zk/;l(xm)’ k=0,1.

4.2 Computational Issues

For a model withn periods (coin tosses)? has2™ elements. For period, we must solve*
eqguations of the form

1 .
Vielwr, .o wi) = ——[pVipr (w1, -+ wiy H) + ¢Viga (w1, - ., wi, T
1+r

For example, a three-month option has 66 trading days. If each day is taken to be one period, then
n = 66 and2% ~ 7 x 107

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that
Vo= (1+7)"EV,,

and so we could compute, by simulation. More specifically, we could simulatecoin

tossesv = (wi,...,w,) under the risk-neutral probability measure. We could store the
value ofV,,(w). We could repeat this several times and take the average valie & an
approximation taly'V/,.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We'll get to that.

3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has
three possible values (16), v5(4), vo(1), rather than four possible valu€s(H H ), Vo(HT), Vo(T H), Vo (T'T).
If there were 66 periods, then in period 66 there would be 67 possible stock price values (since
the final price depends only on thember of up-ticks of the stock price —i.e., heads — so far)
and hence only 67 possible option values, rather #én- 7 x 10'°.
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4.3 Markov Processes

Technical condition alwayspresent: We consider only functions oR bnd subsets d® which are
Borel-measurable, i.e., we only consider subgetd R that are in5 and functiongy : IR— IR such
thatg~! is a function5— 5.

Definition 4.1 () Let (Q2, 7, P) be a probability space. LgtF};_, be a filtration underF. Let
{X1}7_, be a stochastic process @n, 7, P). This process is said to tarkov if:

e The stochastic procegs(; } is adapted to the filtratiofi7; }, and

e (The Markov Property). For eacht = 0,1, ..., n — 1, the distribution ofX;; conditioned
on F is the same as the distribution &f;; conditioned onX.

4.3.1 Different waystowritethe Markov property

() (Agreement of distributions). For every ¢ B = B(IR), we have

P(Xk_H € A|.7:k) = E[IA(Xk+1)|]:k]
ETTA(Xpg1)| X4]
= P[Xp41 € AIXG].

(b) (Agreement of expectations of all functions). For every (Borel-measurable) furictidi— IR
for which IE'|h(Xj41)| < oo, we have

ETh(Xp41)|Fr] = B[ Xpq1) [ X3]-
() (Agreement of Laplace transforms.) For everg IR for which FEeXk+1 < 00, we have

b/ [e“X’“‘H

}"k] - [e“Xk‘H

Xk] :

(If we fix v and defing:(z) = €**, then the equations in (b) and (c) are the same. However in

(b) we have a condition which holds fevery functionh, and in (c) we assume this condition

only for functions: of the formh(z) = ¢**. A main resultin the theory of Laplace transforms

is that if the equation holds for evefyof this special form, then it holds for evety i.e., (c)
implies (b).)

(d) (Agreement of characteristic functions) For everyg IR, we have
E [eiuX]H_l |]:k} - FE [eiuX]H—l |Xk} ,

wherei = /—1. (Since|e’™”| = | cosz +sin z| < 1 we don’t need to assume thit]e?*| <
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Remark 4.1 In every case of the Markov properties whekg. . .| X;] appears, we could just as
well write ¢(X,) for some functiory. For example, form (a) of the Markov property can be restated
as:

For everyA € B, we have
P(Xi1 € AlFy) = 9(Xk),
wherey is a function that depends on the set

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a “current” timek and one future timé& + 1. Conditions (a)-(d) are also equivalent to conditions
involving the process at timeé and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov property. Let j be a positive integer.

(A) ForeveryA,i; C IR,... , Axy; C R,

P[Xkt1 € Akgry oo s Xigj € Ak Fr] = P[Xky1 € Appr, oo Xy € Ak [ X

(A’) ForeveryA € IR/,

P[(Xk+17 . 7Xk+j) - A|.7:k] = P[(Xk-l—h . 7Xk+j) € A|Xk]

(B) For every functiorh : I?/— IR for which IE|h( Xy 1, - - - , Xt ;)| < oo, we have

E[h(Xk-I-h . e 7Xk_|_])|.7:k] — E[h(Xk-I-h . e 7Xk+])|Xk]

(C) Foreveryu = (i1, ... ,ugy;) € IR’ for which I|ets+1 Xrt1++uet; Xits| < o0, we have

E[euk+1Xk+1+~~~+uk+] KXitj |fk] — E[euk+1Xk+1+~~~+'U«k+] KXigy |Xk]

(D) For everyu = (ugy1, .- - ,urs;) € IR7 we have

E[ei(ukHXkH+~~~+uk+JXk+J)|}‘k] - E[ei(uk+1Xk+1+~~+uk+gXk+;)|Xk]'

Once again, every expression of the fofff1...| X) can also be written ag(.X), where the
functiong depends on the random variable represented byn this expression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) = (A). (with j = 2 in (A)) Assume (b). Then (a) also holds (take= 1,).
Consider
P[Xpy1 € Apgr, Xpy2 € Apgo| Fil
= Ela,,  (Xep) g, (Xeg2)[Fi
(Definition of conditional probability)
= B A, (Xep) T4, (Xe2) [P ]| F]
(Tower property)
= By, (Xepr) By, (X)) 73]
(Taking out what is known)
= Ela,, (Xppr) By, (X2 [ X ][ 7]
(Markov property, form (a).)
= B, (Xe1)-9(Xea) | F]
(Remark 4.1)
= B, (Xen)-9(Xea) [ X
(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditiomédkan, and
use the tower property on the left, to obtain

PXkt1 € Apprs Xppo € Appal Xo] = B[4, (Xer1) g (Xiga) [ X 3.1)
Since both
PP[Xk+1 € Akt1, Xpyo € Apyo| Fi

and
P[Xkt1 € Apyr, Xpgo € Apyo| Xi]

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A)wizh =

Example4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove this later. If we want to estimate the distributiortaf,; based on the information in
Fr, the only relevant piece of information is the valueSaf For example,

E[Ses1|Fi] = (pu+ §d) Sk = (1+1)Sk (3.2)

is a function ofS;. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that fany function#, B
ETh(Sk41)|F k]

is a function ofSy. Equation (3.2) is the case bfz) = =.
Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

1
Ves = 3(564 + Ses + Ses).
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The value of this security at time 50 is

Vso = (147)E[(14 r) "% Ve | Fs0]
= (14 7)Y B [Ves|S50],

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, thef’s;-measurable random variablg, can be written as

Vio(wi, ..., ws0) = 9(Sso(wi, ... ,ws0))

for some functiory, which we can determine with a bit of work. [ |

4.4 Showing that a processis Markov

Definition 4.2 (Independence) Let (2, 7, I?) be a probability space, and l6tand?{ be sube-
algebras ofF. We say that; and?{ areindependent if for every A € G andB € #, we have

P(AN B) = IP(A)IP(B).

We say that a random variahlé is independent of a-algebrag if o(.X), thes-algebra generated
by X, isindependent of.

Example4.4 Consider the two-period binomial model. Recall ttft is the o-algebra of sets determined
by the first toss, i.e JF; contains the four sets

Ap & {HH, HTY, Ar 2 (TH,TT}, ¢, Q.
Let % be thes-algebra of sets determined by the second tossH.egntains the four sets
{HH,TH},{HT,TT},$, <.

ThenF, and# are independent. For example, if we take= {H H, HT} from 7, andB = {HH,TH }
from 7, thenlP(A N B) = IP(HH) = p* and

P(A)P(B) = (9 +p9)(0° +pa) =P’ (p +0)° = p°.
Note thatF; and S, are not independent (unlegs= 1 or p = 0). For example, one of the setsdtiS:) is
{w; So(w) = u?So} = {HH}. Ifwe takeA = {HH,HT} from F; andB = {H H} from ¢(55), then
P(ANB) = IP(HH) = p?, but

P(A)IP(B) = (0” + po)p” =p°(p + ¢) =p°.

The following lemma will be very useful in showing that a process is Markov:

Lemma4.15 (Independence Lemma) Let X and Y be random variables on a probability space
(Q, F,P). Let G be a sub-c-algebra of F. Assume
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e X isindependent of G;
e Y isG-measurable.

Let f(z, y) be afunction of two variables, and define

a(y) £ Ef(X,y).

Then
E[f(X,Y)|g] = g(Y).

Remark. In this lemma and the following discussion, capital letters denote random variables and
lower case letters denote nonrandom variables.

Example4.5 (Showing the stock price processisMarkov) Consider am-period binomial model. Fix a

time k and defineX 2 Sg—;’l andg 2 Fr. ThenX = wif wyyr = HandX = dif wpy; = 7. SinceX
depends only on thg: + 1)st toss X is independent of . DefineY’ 2 Sk, so thatY” is G-measurable. Let

be any function and sgi(x, y) 2 h(zy). Then

9(y) = Ef(X,y) = ER(Xy) = ph(uy) + gh(dy).

The Independence Lemma asserts that

Eh(Sks1)|Fr] = Elh (ngl.sk) | 7]

= E[f(X,Y)|d]
= g(Y)
= ph(uSk) + q¢h(dSk).

This shows the stock price is Markov. Indeed, if we condition both sides of the above equatigfi.orand
use the tower property on the left and the fact that the right hand sid&'jg-measurable, we obtain

ThusE[h(Sk+1)|Fi] andIE[h(Sk+1)| Xi] are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
FE[h(Sk+1)|Fr] as a function of5;,. This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider am-period binomial model. Define thr&inning maximum of the stock price to be

A
M, = max S;.
1<j<k

Consider a simple European derivative security with payoff at tinoév,,(S,,, M.,).
Examples:
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e v,(S,, M,) = (M, — K)* (Lookback option);
o v, (S, M) = Ing,>B(Sn — K)* (Knock-in Barrier option).

Lemmab5.16 Thetwo-dimensional process{ (S, My)}7_, isMarkov. (Here we areworking under
the risk-neutral measure P, although that does not matter).

Proof: Fix k. We have
Mps1 = MV Siqa,

whereV indicates the maximum of two quantities. LBte %:—1 S0

P(Z=u)=p, P(Z=d)=4,
andZ is independent of ;.. Leth(z, y) be a function of two variables. We have

h(Sk+1, Mg+1) = h(Sks1, MV Skt1)
h(ZSk, M Vv (ZSk))

Define

>

Eh(Zz,yV (Zz))
= ph(uz,yV (uz))+ gh(dz,y Vv (dz)).

9(z,y)

The Independence Lemma implies
Eh(Sk1, Mit1)|Fi] = g(Sk, Mi) = ph(uS, My, V (uSk)) + Gh(dSi, M),

the second equality being a consequence of the factMhat dSy, = Mj. Since the RHS is a
function of (S, Mj), we have proved the Markov property (form (b)) for this two-dimensional
process. [

Continuing with the exotic option of the previous Lemma... Vgtdenote the value of the derivative
security at timek. Since(1 + r)~*V} is a martingale undef’, we have

1 ~—
Vk 147 [Vk+1|]:k]7 y Ly y T

At the final time, we have
Vi = v, (Sp, My).

Stepping back one step, we can compute

1 —
Vi = —Fv, Snan Fne
1 1+7r [U ( )| 1]
1
= —1 T [ﬁvn(USn—h USn_l vV Mn—l) + (jvn (dsn—h Mn—l)] .



76

This leads us to define

oumt(e,9) & o o, uz V y) + o, (d, )]
so that
Vn—l = Un—l(Sn—h Mn—l)-

The general algorithm is

1T N
vp(2,Y) = —— | PUrg1 (uz, uz V y) + Gurgr (de, y) |,

1+r
and the value of the option at timeis v (S, My). Since this is a simple European option, the
hedging portfolio is given by the usual formula, which in this case is

Vk4+1 (uSk, (uSk) vV Mk) — Uk41 (dSk, Mk)

A =
g (u—d)Sk




