Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall that V_m is the given simple European derivative security, and the value and portfolio processes are given by:

$$V_{k} = (1+r)^{k} \widetilde{E}[(1+r)^{-m}V_{m}|\mathcal{F}_{k}], \quad k = 0, 1, \dots, m-1.$$

$$\Delta_{k}(\omega_{1}, \dots, \omega_{k}) = \frac{V_{k+1}(\omega_{1}, \dots, \omega_{k}, H) - V_{k+1}(\omega_{1}, \dots, \omega_{k}, T)}{S_{k+1}(\omega_{1}, \dots, \omega_{k}, H) - S_{k+1}(\omega_{1}, \dots, \omega_{k}, T)}, \quad k = 0, 1, \dots, m-1.$$

Example 4.1 (Lookback Option) $u=2, d=0.5, r=0.25, S_0=4, \tilde{p}=\frac{1+r-d}{u-d}=0.5, \tilde{q}=1-\tilde{p}=0.5.$ Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

$$V_2 = \max_{0 \le k \le 2} (S_k - 5)^+.$$

Notice that

$$V_2(HH) = 11, V_2(HT) = 3 \neq V_2(TH) = 0, V_2(TT) = 0.$$

The payoff is thus "path dependent". Working backward in time, we have:

$$V_1(H) = \frac{1}{1+r} \left[\tilde{p} V_2(HH) + \tilde{q} V_2(HT) \right] = \frac{4}{5} \left[0.5 \times 11 + 0.5 \times 3 \right] = 5.60,$$

$$V_1(T) = \frac{4}{5} \left[0.5 \times 0 + 0.5 \times 0 \right] = 0,$$

$$V_0 = \frac{4}{5} \left[0.5 \times 5.60 + 0.5 \times 0 \right] = 2.24.$$

Using these values, we can now compute:

$$\Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)} = 0.93,$$

$$\Delta_1(H) = \frac{V_2(HH) - V_2(HT)}{S_2(HH) - S_2(HT)} = 0.67,$$

Figure 4.1: Stock price underlying the lookback option.

$$\Delta_1(T) = \frac{V_2(TH) - V_2(TT)}{S_2(TH) - S_2(TT)} = 0.$$

Working forward in time, we can check that

$$X_1(H) = \Delta_0 S_1(H) + (1+r)(X_0 - \Delta_0 S_0) = 5.59; V_1(H) = 5.60,$$

$$X_1(T) = \Delta_0 S_1(T) + (1+r)(X_0 - \Delta_0 S_0) = 0.01; V_1(T) = 0,$$

$$X_1(HH) = \Delta_1(H)S_1(HH) + (1+r)(X_1(H) - \Delta_1(H)S_1(H)) = 11.01; V_1(HH) = 11,$$

etc.

Example 4.2 (European Call) Let $u=2, d=\frac{1}{2}, r=\frac{1}{4}, S_0=4, \tilde{p}=\tilde{q}=\frac{1}{2}$, and consider a European call with expiration time 2 and payoff function

$$V_2 = (S_2 - 5)^+.$$

Note that

$$V_2(HH) = 11, \ V_2(HT) = V_2(TH) = 0, \ V_2(TT) = 0,$$

$$V_1(H) = \frac{4}{5} \left[\frac{1}{2} \cdot 11 + \frac{1}{2} \cdot 0 \right] = 4.40$$

$$V_1(T) = \frac{4}{5} \left[\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 \right] = 0$$

$$V_0 = \frac{4}{5} \left[\frac{1}{2} \times 4.40 + \frac{1}{2} \times 0 \right] = 1.76.$$

Define $v_{k}\left(x\right)$ to be the value of the call at time k when $S_{k}=x$. Then

$$v_2(x) = (x-5)^+$$

$$v_1(x) = \frac{4}{5} \left[\frac{1}{2} v_2(2x) + \frac{1}{2} v_2(x/2) \right],$$

$$v_0(x) = \frac{4}{5} \left[\frac{1}{2} v_1(2x) + \frac{1}{2} v_1(x/2) \right].$$

In particular,

$$v_2(16) = 11, \ v_2(4) = 0, \ v_2(1) = 0,$$
$$v_1(8) = \frac{4}{5} \left[\frac{1}{2} \cdot 11 + \frac{1}{2} \cdot 0 \right] = 4.40,$$
$$v_1(2) = \frac{4}{5} \left[\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 \right] = 0,$$
$$v_0 = \frac{4}{5} \left[\frac{1}{2} \times 4.40 + \frac{1}{2} \times 0 \right] = 1.76.$$

Let $\delta_k(x)$ be the number of shares in the hedging portfolio at time k when $S_k = x$. Then

$$\delta_k(x) = \frac{v_{k+1}(2x) - v_{k+1}(x/2)}{2x - x/2}, \quad k = 0, 1.$$

4.2 Computational Issues

For a model with n periods (coin tosses), Ω has 2^n elements. For period k, we must solve 2^k equations of the form

$$V_k(\omega_1,\ldots,\omega_k) = \frac{1}{1+r} [\tilde{p}V_{k+1}(\omega_1,\ldots,\omega_k,H) + \tilde{q}V_{k+1}(\omega_1,\ldots,\omega_k,T)].$$

For example, a three-month option has 66 trading days. If each day is taken to be one period, then n=66 and $2^{66}\sim 7\times 10^{19}$.

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that

$$V_0 = (1+r)^{-n} \widetilde{I\!\!E} V_n,$$

and so we could compute V_0 by simulation. More specifically, we could simulate n coin tosses $\omega=(\omega_1,\ldots,\omega_n)$ under the risk-neutral probability measure. We could store the value of $V_n(\omega)$. We could repeat this several times and take the average value of V_n as an approximation to $\widetilde{E}V_n$.

- 2. Approximate a many-period model by a continuous-time model. Then we can use calculus and partial differential equations. We'll get to that.
- 3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has three possible values $v_2(16)$, $v_2(4)$, $v_2(1)$, rather than four possible values $V_2(HH)$, $V_2(HT)$, $V_2(TH)$, $V_2(TT)$. If there were 66 periods, then in period 66 there would be 67 possible stock price values (since the final price depends only on the *number* of up-ticks of the stock price i.e., heads so far) and hence only 67 possible option values, rather than $2^{66} \sim 7 \times 10^{19}$.

4.3 Markov Processes

Technical condition always present: We consider only functions on \mathbb{R} and subsets of \mathbb{R} which are Borel-measurable, i.e., we only consider subsets A of \mathbb{R} that are in \mathcal{B} and functions $g: \mathbb{R} \to \mathbb{R}$ such that g^{-1} is a function $\mathcal{B} \to \mathcal{B}$.

Definition 4.1 () Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\{\mathcal{F}_k\}_{k=0}^n$ be a filtration under \mathcal{F} . Let $\{X_k\}_{k=0}^n$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. This process is said to be *Markov* if:

- The stochastic process $\{X_k\}$ is adapted to the filtration $\{\mathcal{F}_k\}$, and
- (The Markov Property). For each k = 0, 1, ..., n 1, the distribution of X_{k+1} conditioned on \mathcal{F}_k is the same as the distribution of X_{k+1} conditioned on X_k .

4.3.1 Different ways to write the Markov property

(a) (Agreement of distributions). For every $A \in \mathcal{B} \stackrel{\triangle}{=} \mathcal{B}(I\!\! R)$, we have

$$\begin{split} I\!\!P(X_{k+1} \in A | \mathcal{F}_k) &= I\!\!E[I_A(X_{k+1}) | \mathcal{F}_k] \\ &= I\!\!E[I_A(X_{k+1}) | X_k] \\ &= I\!\!P[X_{k+1} \in A | X_k]. \end{split}$$

(b) (Agreement of expectations of all functions). For every (Borel-measurable) function $h: \mathbb{R} \to \mathbb{R}$ for which $\mathbb{E}|h(X_{k+1})| < \infty$, we have

$$I\!\!E[h(X_{k+1})|\mathcal{F}_k] = I\!\!E[h(X_{k+1})|X_k].$$

(c) (Agreement of Laplace transforms.) For every $u \in \mathbb{R}$ for which $\mathbb{E} e^{uX_{k+1}} < \infty$, we have

$$\mathbb{E}\left[e^{uX_{k+1}}\middle|\mathcal{F}_k\right] = \mathbb{E}\left[e^{uX_{k+1}}\middle|X_k\right].$$

(If we fix u and define $h(x) = e^{ux}$, then the equations in (b) and (c) are the same. However in (b) we have a condition which holds for *every* function h, and in (c) we assume this condition only for functions h of the form $h(x) = e^{ux}$. A main result in the theory of Laplace transforms is that if the equation holds for every h of this special form, then it holds for every h, i.e., (c) implies (b).)

(d) (Agreement of characteristic functions) For every $u \in \mathbb{R}$, we have

$$\mathbb{E}\left[e^{iuX_{k+1}}|\mathcal{F}_k\right] = \mathbb{E}\left[e^{iuX_{k+1}}|X_k\right],$$

where $i = \sqrt{-1}$. (Since $|e^{iux}| = |\cos x + \sin x| \le 1$ we don't need to assume that $I\!\!E|e^{iux}| < \infty$.)

71

Remark 4.1 In every case of the Markov properties where $I\!\!E[\ldots|X_k]$ appears, we could just as well write $g(X_k)$ for some function g. For example, form (a) of the Markov property can be restated as:

For every $A \in \mathcal{B}$, we have

$$IP(X_{k+1} \in A | \mathcal{F}_k) = g(X_k),$$

where g is a function that depends on the set A.

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at a "current" time k and one future time k+1. Conditions (a)-(d) are also equivalent to conditions involving the process at time k and multiple future times. We write these apparently stronger but actually equivalent conditions below.

Consequences of the Markov property. Let j be a positive integer.

(A) For every $A_{k+1} \subset \mathbb{R}, \ldots, A_{k+i} \subset \mathbb{R}$,

$$IP[X_{k+1} \in A_{k+1}, \dots, X_{k+j} \in A_{k+j} | \mathcal{F}_k] = IP[X_{k+1} \in A_{k+1}, \dots, X_{k+j} \in A_{k+j} | X_k].$$

(A') For every $A \in \mathbb{R}^j$,

$$\mathbb{P}[(X_{k+1},\ldots,X_{k+i})\in A|\mathcal{F}_k] = \mathbb{P}[(X_{k+1},\ldots,X_{k+i})\in A|X_k].$$

(B) For every function $h: \mathbb{R}^j \to \mathbb{R}$ for which $\mathbb{E}[h(X_{k+1}, \dots, X_{k+j})] < \infty$, we have

$$\mathbb{E}[h(X_{k+1},\ldots,X_{k+i})|\mathcal{F}_k] = \mathbb{E}[h(X_{k+1},\ldots,X_{k+i})|X_k].$$

- (C) For every $u = (u_{k+1}, \dots, u_{k+j}) \in I\!\!R^j$ for which $I\!\!E[e^{u_{k+1}X_{k+1} + \dots + u_{k+j}X_{k+j}}] < \infty$, we have $I\!\!E[e^{u_{k+1}X_{k+1} + \dots + u_{k+j}X_{k+j}}|\mathcal{F}_k] = I\!\!E[e^{u_{k+1}X_{k+1} + \dots + u_{k+j}X_{k+j}}|X_k].$
- **(D)** For every $u = (u_{k+1}, \dots, u_{k+j}) \in \mathbb{R}^j$ we have

$$\mathbb{E}[e^{i(u_{k+1}X_{k+1}+...+u_{k+j}X_{k+j})}|\mathcal{F}_k] = \mathbb{E}[e^{i(u_{k+1}X_{k+1}+...+u_{k+j}X_{k+j})}|X_k].$$

Once again, every expression of the form $I\!\!E(...|X_k)$ can also be written as $g(X_k)$, where the function g depends on the random variable represented by . . . in this expression.

Remark. All these Markov properties have analogues for vector-valued processes.

Proof that (b) \Longrightarrow **(A)**. (with j=2 in (A)) Assume (b). Then (a) also holds (take $h=I_A$). Consider

$$\begin{split} I\!\!P[X_{k+1} \in A_{k+1}, X_{k+2} \in A_{k+2} | \mathcal{F}_k] \\ &= I\!\!E[I_{A_{k+1}}(X_{k+1})I_{A_{k+2}}(X_{k+2}) | \mathcal{F}_k] \\ &\quad \text{(Definition of conditional probability)} \\ &= I\!\!E[I\!\!E[I_{A_{k+1}}(X_{k+1})I_{A_{k+2}}(X_{k+2}) | \mathcal{F}_{k+1}] | \mathcal{F}_k] \\ &\quad \text{(Tower property)} \\ &= I\!\!E[I_{A_{k+1}}(X_{k+1}).I\!\!E[I_{A_{k+2}}(X_{k+2}) | \mathcal{F}_{k+1}] | \mathcal{F}_k] \\ &\quad \text{(Taking out what is known)} \\ &= I\!\!E[I_{A_{k+1}}(X_{k+1}).I\!\!E[I_{A_{k+2}}(X_{k+2}) | X_{k+1}] | \mathcal{F}_k] \\ &\quad \text{(Markov property, form (a).)} \\ &= I\!\!E[I_{A_{k+1}}(X_{k+1}).g(X_{k+1}) | \mathcal{F}_k] \\ &\quad \text{(Remark 4.1)} \\ &= I\!\!E[I_{A_{k+1}}(X_{k+1}).g(X_{k+1}) | X_k] \\ &\quad \text{(Markov property, form (b).)} \end{split}$$

Now take conditional expectation on both sides of the above equation, conditioned on $\sigma(X_k)$, and use the tower property on the left, to obtain

$$\mathbb{P}[X_{k+1} \in A_{k+1}, X_{k+2} \in A_{k+2} | X_k] = \mathbb{E}[I_{A_{k+1}}(X_{k+1}) . g(X_{k+1}) | X_k]. \tag{3.1}$$

Since both

$$IP[X_{k+1} \in A_{k+1}, X_{k+2} \in A_{k+2} | \mathcal{F}_k]$$

and

$$IP[X_{k+1} \in A_{k+1}, X_{k+2} \in A_{k+2} | X_k]$$

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A) with j=2.

Example 4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process. We will formally prove this later. If we want to estimate the distribution of S_{k+1} based on the information in \mathcal{F}_k , the only relevant piece of information is the value of S_k . For example,

$$\widetilde{\mathbb{E}}[S_{k+1}|\mathcal{F}_k] = (\widetilde{p}u + \widetilde{q}d)S_k = (1+r)S_k \tag{3.2}$$

is a function of S_k . Note however that form (b) of the Markov property is stronger then (3.2); the Markov property requires that for *any* function h,

$$\widetilde{E}[h(S_{k+1})|\mathcal{F}_k]$$

is a function of S_k . Equation (3.2) is the case of h(x) = x.

Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

$$V_{66} = \frac{1}{3}(S_{64} + S_{65} + S_{66}).$$

The value of this security at time 50 is

$$V_{50} = (1+r)^{50} \widetilde{E}[(1+r)^{-66} V_{66} | \mathcal{F}_{50}]$$
$$= (1+r)^{-16} \widetilde{E}[V_{66} | S_{50}],$$

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other words, the F_{50} -measurable random variable V_{50} can be written as

$$V_{50}(\omega_1,\ldots,\omega_{50}) = g(S_{50}(\omega_1,\ldots,\omega_{50}))$$

for some function g, which we can determine with a bit of work.

4.4 Showing that a process is Markov

Definition 4.2 (Independence) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathcal{G} and \mathcal{H} be sub- σ -algebras of \mathcal{F} . We say that \mathcal{G} and \mathcal{H} are *independent* if for every $A \in \mathcal{G}$ and $B \in \mathcal{H}$, we have

$$I\!\!P(A\cap B)=I\!\!P(A)I\!\!P(B).$$

We say that a random variable X is independent of a σ -algebra \mathcal{G} if $\sigma(X)$, the σ -algebra generated by X, is independent of \mathcal{G} .

Example 4.4 Consider the two-period binomial model. Recall that \mathcal{F}_1 is the σ -algebra of sets determined by the first toss, i.e., \mathcal{F}_1 contains the four sets

$$A_H \stackrel{\triangle}{=} \{HH, HT\}, A_T \stackrel{\triangle}{=} \{TH, TT\}, \phi, \Omega.$$

Let \mathcal{H} be the σ -algebra of sets determined by the second toss, i.e., \mathcal{H} contains the four sets

$$\{HH, TH\}, \{HT, TT\}, \phi, \Omega.$$

Then \mathcal{F}_1 and \mathcal{H} are independent. For example, if we take $A = \{HH, HT\}$ from \mathcal{F}_1 and $B = \{HH, TH\}$ from \mathcal{H} , then $\mathbb{P}(A \cap B) = \mathbb{P}(HH) = p^2$ and

$$I\!\!P(A)I\!\!P(B) = (p^2 + pq)(p^2 + pq) = p^2(p+q)^2 = p^2.$$

Note that \mathcal{F}_1 and S_2 are not independent (unless p=1 or p=0). For example, one of the sets in $\sigma(S_2)$ is $\{\omega; S_2(\omega) = u^2 S_0\} = \{HH\}$. If we take $A = \{HH, HT\}$ from \mathcal{F}_1 and $B = \{HH\}$ from $\sigma(S_2)$, then $\mathbb{P}(A \cap B) = \mathbb{P}(HH) = p^2$, but

$$IP(A)IP(B) = (p^2 + pq)p^2 = p^3(p+q) = p^3.$$

The following lemma will be very useful in showing that a process is Markov:

Lemma 4.15 (Independence Lemma) *Let* X *and* Y *be random variables on a probability space* $(\Omega, \mathcal{F}, \mathbb{P})$. *Let* \mathcal{G} *be a sub-\sigma-algebra of* \mathcal{F} . *Assume*

- X is independent of G;
- *Y* is *G*-measurable.

Let f(x,y) be a function of two variables, and define

$$g(y) \stackrel{\triangle}{=} I\!\!E f(X,y)$$
.

Then

$$I\!\!E[f(X,Y)|\mathcal{G}] = g(Y).$$

Remark. In this lemma and the following discussion, capital letters denote random variables and lower case letters denote nonrandom variables.

Example 4.5 (Showing the stock price process is Markov) Consider an n-period binomial model. Fix a time k and define $X \stackrel{\triangle}{=} \frac{S_{k+1}}{S_k}$ and $\mathcal{G} \stackrel{\triangle}{=} \mathcal{F}_k$. Then X = u if $\omega_{k+1} = H$ and X = d if $\omega_{k+1} = T$. Since X depends only on the (k+1)st toss, X is independent of \mathcal{G} . Define $Y \stackrel{\triangle}{=} S_k$, so that Y is \mathcal{G} -measurable. Let h be any function and set $f(x,y) \stackrel{\triangle}{=} h(xy)$. Then

$$g(y) \stackrel{\triangle}{=} \mathbb{E}f(X,y) = \mathbb{E}h(Xy) = ph(uy) + qh(dy)$$

The Independence Lemma asserts that

$$\mathbb{E}[h(S_{k+1})|\mathcal{F}_k] = \mathbb{E}[h\left(\frac{S_{k+1}}{S_k}.S_k\right)|\mathcal{F}_k]
= \mathbb{E}[f(X,Y)|\mathcal{G}]
= g(Y)
= ph(uS_k) + qh(dS_k).$$

This shows the stock price is Markov. Indeed, if we condition both sides of the above equation on $\sigma(S_k)$ and use the tower property on the left and the fact that the right hand side is $\sigma(S_k)$ -measurable, we obtain

$$\mathbb{E}[h(S_{k+1})|S_k] = ph(uS_k) + qh(dS_k).$$

Thus $\mathbb{E}[h(S_{k+1})|\mathcal{F}_k]$ and $\mathbb{E}[h(S_{k+1})|X_k]$ are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for $\mathbb{E}[h(S_{k+1})|\mathcal{F}_k]$ as a function of S_k . This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider an *n*-period binomial model. Define the *running maximum* of the stock price to be

$$M_k \stackrel{\triangle}{=} \max_{1 \le i \le k} S_j$$
.

Consider a simple European derivative security with payoff at time n of $v_n(S_n, M_n)$.

Examples:

- $v_n(S_n, M_n) = (M_n K)^+$ (Lookback option);
- $v_n(S_n, M_n) = I_{M_n > B}(S_n K)^+$ (Knock-in Barrier option).

Lemma 5.16 The two-dimensional process $\{(S_k, M_k)\}_{k=0}^n$ is Markov. (Here we are working under the risk-neutral measure P, although that does not matter).

Proof: Fix k. We have

$$M_{k+1} = M_k \vee S_{k+1},$$

where \vee indicates the maximum of two quantities. Let $Z \stackrel{\triangle}{=} \frac{S_{k+1}}{S_k}$, so

$$\widetilde{I\!\!P}(Z=u)=\widetilde{p},\ \widetilde{I\!\!P}(Z=d)=\widetilde{q},$$

and Z is independent of \mathcal{F}_k . Let h(x,y) be a function of two variables. We have

$$h(S_{k+1}, M_{k+1}) = h(S_{k+1}, M_k \vee S_{k+1})$$

= $h(ZS_k, M_k \vee (ZS_k)).$

Define

$$g(x,y) \stackrel{\triangle}{=} \widetilde{E}h(Zx, y \vee (Zx))$$
$$= \widetilde{p}h(ux, y \vee (ux)) + \widetilde{q}h(dx, y \vee (dx)).$$

The Independence Lemma implies

$$\widetilde{E}[h(S_{k+1}, M_{k+1})|\mathcal{F}_k] = g(S_k, M_k) = \tilde{p}h(uS_k, M_k \vee (uS_k)) + \tilde{q}h(dS_k, M_k),$$

the second equality being a consequence of the fact that $M_k \wedge dS_k = M_k$. Since the RHS is a function of (S_k, M_k) , we have proved the Markov property (form (b)) for this two-dimensional process.

Continuing with the exotic option of the previous Lemma... Let V_k denote the value of the derivative security at time k. Since $(1+r)^{-k}V_k$ is a martingale under \widetilde{IP} , we have

$$V_k = \frac{1}{1+r} \widetilde{E}[V_{k+1} | \mathcal{F}_k], k = 0, 1, \dots, n-1.$$

At the final time, we have

$$V_n = v_n(S_n, M_n)$$
.

Stepping back one step, we can compute

$$V_{n-1} = \frac{1}{1+r} \widetilde{E}[v_n(S_n, M_n) | \mathcal{F}_{n-1}]$$

$$= \frac{1}{1+r} [\tilde{p}v_n(uS_{n-1}, uS_{n-1} \vee M_{n-1}) + \tilde{q}v_n(dS_{n-1}, M_{n-1})].$$

This leads us to define

$$v_{n-1}(x,y) \stackrel{\triangle}{=} \frac{1}{1+r} \left[\tilde{p}v_n(ux, ux \vee y) + \tilde{q}v_n(dx,y) \right]$$

so that

$$V_{n-1} = v_{n-1}(S_{n-1}, M_{n-1}).$$

The general algorithm is

$$v_k(x,y) = \frac{1}{1+r} \Big[\tilde{p}v_{k+1}(ux, ux \vee y) + \tilde{q}v_{k+1}(dx, y) \Big],$$

and the value of the option at time k is $v_k(S_k, M_k)$. Since this is a simple European option, the hedging portfolio is given by the usual formula, which in this case is

$$\Delta_k = \frac{v_{k+1}(uS_k, (uS_k) \vee M_k) - v_{k+1}(dS_k, M_k)}{(u-d)S_k}$$