
Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall thatVm is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vk � �� � r�kfIE��� � r��mVmjFk�� k � �� �� � � � � m� ��

	k���� � � � � �k� �
Vk������ � � � � �k� H�� Vk������ � � � � �k� T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
� k � �� �� � � � � m� ��

Example 4.1 (Lookback Option) u � �� d � ���� r � ����� S� � �� �p � ��r�d
u�d

� ���� �q � � � �p � ����
Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

V� � max
��k��

�Sk � �	��

Notice that
V��HH	 � ��� V��HT 	 � 
 �� V��TH	 � �� V��TT 	 � ��

The payoff is thus “path dependent”. Working backward in time, we have:

V��H	 �
�

� � r
��pV��HH	 � �qV��HT 	 �

�

�
����� �� � ���� 
 � �����

V��T 	 �
�

�
����� � � ���� � � ��

V� �
�

�
����� ���� � ���� � � �����

Using these values, we can now compute:

�� �
V��H	 � V��T 	

S��H	 � S��T 	
� ���
�

���H	 �
V��HH	� V��HT 	

S��HH	� S��HT 	
� �����
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4
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Figure 4.1:Stock price underlying the lookback option.

���T 	 �
V��TH	� V��TT 	

S��TH	� S��TT 	
� ��

Working forward in time, we can check that

X��H	 � ��S��H	 � �� � r	�X� ���S�	 � ����� V��H	 � �����

X��T 	 � ��S��T 	 � �� � r	�X� ���S�	 � ����� V��T 	 � ��

X��HH	 � ���H	S��HH	 � �� � r	�X��H	����H	S��H		 � ������ V��HH	 � ���

etc.

Example 4.2 (European Call) Let u � �� d � �

�
� r � �

�
� S� � �� �p � �q � �

�
, and consider a European call

with expiration time 2 and payoff function

V� � �S� � �	��

Note that
V��HH	 � ��� V��HT 	 � V��TH	 � �� V��TT 	 � ��

V��H	 �
�

�
��
�
��� � �

�
�� � ����

V��T 	 �
�

�
��
�
�� � �

�
�� � �

V� �
�

�
��
�
� ���� � �

�
� � � �����

Definevk�x	 to be the value of the call at timek whenSk � x. Then

v��x	 � �x� �	�

v��x	 �
�

�
��
�
v���x	 �

�

�
v��x��	�

v��x	 �
�

�
��
�
v���x	 �

�

�
v��x��	�
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In particular,
v����	 � ��� v���	 � �� v���	 � ��

v���	 �
�

�
��
�
��� � �

�
�� � �����

v���	 �
�

�
��
�
�� � �

�
�� � ��

v� �
�

�
��
�
� ���� � �

�
� � � �����

Let �k�x	 be the number of shares in the hedging portfolio at timek whenSk � x. Then

�k�x	 �
vk����x	� vk���x��	

�x� x��
� k � �� ��

4.2 Computational Issues

For a model withn periods (coin tosses),
 has�n elements. For periodk, we must solve�k

equations of the form

Vk���� � � � � �k� �
�

� � r
��pVk������ � � � � �k� H� � �qVk������ � � � � �k� T ���

For example, a three-month option has 66 trading days. If each day is taken to be one period, then
n �  and��� � �� ����.

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that

V� � �� � r��nfIEVn�
and so we could computeV� by simulation. More specifically, we could simulaten coin
tosses� � ���� � � � � �n� under the risk-neutral probability measure. We could store the
value ofVn���. We could repeat this several times and take the average value ofVn as an
approximation tofIEVn.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We’ll get to that.

3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has
three possible valuesv����� v����� v����, rather than four possible valuesV��HH�� V��HT �� V��TH�� V��TT �.
If there were 66 periods, then in period 66 there would be 67 possible stock price values (since
the final price depends only on thenumber of up-ticks of the stock price – i.e., heads – so far)
and hence only 67 possible option values, rather than��� � �� ����.
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4.3 Markov Processes

Technical condition always present: We consider only functions on IR and subsets of IR which are
Borel-measurable, i.e., we only consider subsetsA of IR that are inB and functionsg � IR�IR such
thatg�� is a functionB�B.

Definition 4.1 () Let �
�F�P� be a probability space. LetfFkgnk�� be a filtration underF . Let
fXkgnk�� be a stochastic process on�
�F�P�. This process is said to beMarkov if:

� The stochastic processfXkg is adapted to the filtrationfF kg, and

� (The Markov Property). For eachk � �� �� � � � � n� �, the distribution ofXk�� conditioned
onFk is the same as the distribution ofXk�� conditioned onXk.

4.3.1 Different ways to write the Markov property

(a) (Agreement of distributions). For everyA � B �
� B�IR�, we have

IP �Xk�� � AjFk� � IE�IA�Xk���jFk �

� IE�IA�Xk���jXk�

� IP �Xk�� � AjXk��

(b) (Agreement of expectations of all functions). For every (Borel-measurable) functionh � IR�IR

for whichIEjh�Xk���j ��, we have

IE�h�Xk���jFk� � IE�h�Xk���jXk��

(c) (Agreement of Laplace transforms.) For everyu � IR for whichIEeuXk�� ��, we have

IE

�
euXk��

����Fk

�
� IE

�
euXk��

����Xk

�
�

(If we fix u and defineh�x� � eux, then the equations in (b) and (c) are the same. However in
(b) we have a condition which holds forevery functionh, and in (c) we assume this condition
only for functionsh of the formh�x� � eux. A main result in the theory of Laplace transforms
is that if the equation holds for everyh of this special form, then it holds for everyh, i.e., (c)
implies (b).)

(d) (Agreement of characteristic functions) For everyu � IR, we have

IE
h
eiuXk�� jFk

i
� IE

h
eiuXk�� jXk

i
�

wherei �
p��. (Sincejeiuxj � j cosx�sin xj � � we don’t need to assume thatIEjeiuxj �

�.)
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Remark 4.1 In every case of the Markov properties whereIE�� � � jXk� appears, we could just as
well writeg�Xk� for some functiong. For example, form (a) of the Markov property can be restated
as:

For everyA � B, we have

IP �Xk�� � AjFk� � g�Xk��

whereg is a function that depends on the setA.

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a “current” timek and one future timek � �. Conditions (a)-(d) are also equivalent to conditions
involving the process at timek and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov property. Let j be a positive integer.

(A) For everyAk�� 	 IR� � � � �Ak�j 	 IR,

IP �Xk�� � Ak��� � � � � Xk�j � Ak�j jFk� � IP �Xk�� � Ak��� � � � � Xk�j � Ak�j jXk��

(A’) For everyA � IRj ,

IP ��Xk��� � � � � Xk�j� � AjFk� � IP ��Xk��� � � � � Xk�j� � AjXk��

(B) For every functionh � IRj�IR for whichIEjh�Xk��� � � � � Xk�j�j ��, we have

IE�h�Xk��� � � � � Xk�j�jFk� � IE�h�Xk��� � � � � Xk�j�jXk��

(C) For everyu � �uk��� � � � � uk�j� � IRj for whichIEjeuk��Xk�������uk�jXk�j j ��, we have

IE�euk��Xk�������uk�jXk�j jFk� � IE�euk��Xk�������uk�jXk�j jXk��

(D) For everyu � �uk��� � � � � uk�j� � IRj we have

IE�ei�uk��Xk�������uk�jXk�j	jFk� � IE�ei�uk��Xk�������uk�jXk�j	jXk��

Once again, every expression of the formIE�� � � jXk� can also be written asg�Xk�, where the
functiong depends on the random variable represented by� � � in this expression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) �
 (A). (with j � � in (A)) Assume (b). Then (a) also holds (takeh � IA).
Consider

IP �Xk�� � Ak��� Xk�� � Ak��jFk�

� IE�IAk���Xk���IAk���Xk���jFk�

(Definition of conditional probability)

� IE�IE�IAk���Xk���IAk���Xk���jFk���jFk �

(Tower property)

� IE�IAk���Xk����IE�IAk���Xk���jFk���jFk�

(Taking out what is known)

� IE�IAk���Xk����IE�IAk���Xk���jXk���jFk �

(Markov property, form (a).)

� IE�IAk���Xk����g�Xk���jFk�

(Remark 4.1)

� IE�IAk���Xk����g�Xk���jXk�

(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditioned on��X k�, and
use the tower property on the left, to obtain

IP �Xk�� � Ak��� Xk�� � Ak��jXk� � IE�IAk���Xk����g�Xk���jXk�� (3.1)

Since both
IP �Xk�� � Ak��� Xk�� � Ak��jFk �

and
IP �Xk�� � Ak��� Xk�� � Ak��jXk�

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A) withj � �.

Example 4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove this later. If we want to estimate the distribution ofSk�� based on the information in
Fk, the only relevant piece of information is the value ofSk. For example,

eIE�Sk��jFk � ��pu� �qd	Sk � �� � r	Sk (3.2)

is a function ofSk. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that forany functionh, eIE�h�Sk��	jFk

is a function ofSk. Equation (3.2) is the case ofh�x	 � x.

Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

V�� �
�



�S�� � S�� � S��	�
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The value of this security at time 50 is

V�� � �� � r	�� eIE��� � r	���V��jF��

� �� � r	��� eIE�V��jS���

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, theF��-measurable random variableV�� can be written as

V������ � � � � ���	 � g�S������ � � � � ���		

for some functiong, which we can determine with a bit of work.

4.4 Showing that a process is Markov

Definition 4.2 (Independence) Let �
�F �P� be a probability space, and letG andH be sub-�-
algebras ofF . We say thatG andH areindependent if for everyA � G andB � H, we have

IP �A � B� � IP �A�IP �B��

We say that a random variableX is independent of a�-algebraG if ��X�, the�-algebra generated
byX , is independent ofG.

Example 4.4 Consider the two-period binomial model. Recall thatF � is the�-algebra of sets determined
by the first toss, i.e.,F� contains the four sets

AH

�
� fHH�HTg� AT

�
� fTH� TTg� �� ��

LetH be the�-algebra of sets determined by the second toss, i.e.,H contains the four sets

fHH�THg� fHT� TTg� ����

ThenF� andH are independent. For example, if we takeA � fHH�HTg fromF� andB � fHH�THg
fromH, thenIP �A �B	 � IP �HH	 � p� and

IP �A	IP �B	 � �p� � pq	�p� � pq	 � p��p� q	� � p��

Note thatF� andS� are not independent (unlessp � � or p � �). For example, one of the sets in��S�	 is
f��S���	 � u�S�g � fHHg. If we takeA � fHH�HTg from F� andB � fHHg from ��S�	, then
IP �A �B	 � IP �HH	 � p�, but

IP �A	IP �B	 � �p� � pq	p� � p��p� q	 � p��

The following lemma will be very useful in showing that a process is Markov:

Lemma 4.15 (Independence Lemma) Let X and Y be random variables on a probability space
�
�F�P�. Let G be a sub-�-algebra of F . Assume
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� X is independent of G;

� Y is G-measurable.

Let f�x� y� be a function of two variables, and define

g�y�
�
� IEf�X� y��

Then
IE�f�X� Y �jG� � g�Y ��

Remark. In this lemma and the following discussion, capital letters denote random variables and
lower case letters denote nonrandom variables.

Example 4.5 (Showing the stock price process is Markov) Consider ann-period binomial model. Fix a

timek and defineX
�
�

Sk��
Sk

andG
�
� Fk. ThenX � u if �k�� � H andX � d if �k�� � T . SinceX

depends only on the�k� �	st toss,X is independent ofG. DefineY
�
� Sk, so thatY is G-measurable. Leth

be any function and setf�x� y	
�
� h�xy	. Then

g�y	
�
� IEf�X� y	 � IEh�Xy	 � ph�uy	 � qh�dy	�

The Independence Lemma asserts that

IE�h�Sk��	jFk � IE�h

�
Sk��
Sk

�Sk

�
jFk

� IE�f�X�Y 	jG

� g�Y 	

� ph�uSk	 � qh�dSk	�

This shows the stock price is Markov. Indeed, if we condition both sides of the above equation on��Sk	 and
use the tower property on the left and the fact that the right hand side is��Sk	-measurable, we obtain

IE�h�Sk��	jSk � ph�uSk	 � qh�dSk	�

ThusIE�h�Sk��	jFk andIE�h�Sk��	jXk are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
IE�h�Sk��	jFk as a function ofSk. This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider ann-period binomial model. Define therunning maximum of the stock price to be

Mk
�
� max

��j�k
Sj �

Consider a simple European derivative security with payoff at timen of vn�Sn�Mn�.

Examples:
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� vn�Sn�Mn� � �Mn �K�� (Lookback option);

� vn�Sn�Mn� � IMn�B�Sn �K�� (Knock-in Barrier option).

Lemma 5.16 The two-dimensional process f�Sk�Mk�gnk�� is Markov. (Here we are working under
the risk-neutral measure IP, although that does not matter).

Proof: Fix k. We have
Mk�� � Mk � Sk���

where� indicates the maximum of two quantities. LetZ
�
�
Sk��
Sk

, so

fIP �Z � u� � �p� fIP �Z � d� � �q�

andZ is independent ofF k . Leth�x� y� be a function of two variables. We have

h�Sk���Mk��� � h�Sk���Mk � Sk���
� h�ZSk�Mk � �ZSk���

Define

g�x� y�
�
� fIEh�Zx� y � �Zx��

� �ph�ux� y � �ux�� � �qh�dx� y � �dx���

The Independence Lemma implies

fIE�h�Sk���Mk���jFk � � g�Sk�Mk� � �ph�uSk�Mk � �uSk�� � �qh�dSk�Mk��

the second equality being a consequence of the fact thatMk  dSk � Mk . Since the RHS is a
function of �Sk�Mk�, we have proved the Markov property (form (b)) for this two-dimensional
process.

Continuing with the exotic option of the previous Lemma... LetVk denote the value of the derivative
security at timek. Since�� � r��kVk is a martingale underfIP , we have

Vk �
�

� � r
fIE�Vk��jFk�� k � �� �� � � � � n� ��

At the final time, we have
Vn � vn�Sn�Mn��

Stepping back one step, we can compute

Vn�� �
�

�� r
fIE�vn�Sn�Mn�jFn���

�
�

� � r
��pvn�uSn��� uSn�� �Mn��� � �qvn�dSn���Mn���� �
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This leads us to define

vn���x� y�
�
�

�

�� r
��pvn�ux� ux � y� � �qvn�dx� y��

so that
Vn�� � vn���Sn���Mn����

The general algorithm is

vk�x� y� �
�

� � r

�
�pvk���ux� ux � y� � �qvk���dx� y�

�
�

and the value of the option at timek is vk�Sk�Mk�. Since this is a simple European option, the
hedging portfolio is given by the usual formula, which in this case is

	k �
vk���uSk� �uSk��Mk�� vk���dSk�Mk�

�u� d�Sk


